

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part I:
Characterization

Alexander Wolff

Upward Planar Drawings – Motivation

Upward Planar Drawings – Motivation

- What may the direction of edges in a digraph represent?

Upward Planar Drawings – Motivation

- What may the direction of edges in a digraph represent?
 - Time

PERT diagram

Program Evaluation and Review Technique
(Project management)

Upward Planar Drawings – Motivation

- What may the direction of edges in a digraph represent?
 - Time
 - Flow

Program Evaluation and Review Technique
(Project management)

Place/Transition net
(Modeling languages for distributed systems)

Upward Planar Drawings – Motivation

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy

PERT diagram

Program Evaluation and Review Technique
(Project management)

Petri net

Place/Transition net
(Modeling languages for distributed systems)

Phylogenetic network
Ancestral trees / networks
(Biology)

Upward Planar Drawings – Motivation

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy
 - ...

PERT diagram

Program Evaluation and Review Technique
(Project management)

Petri net

Place/Transition net
(Modeling languages for distributed systems)

Phylogenetic network
Ancestral trees / networks
(Biology)

Upward Planar Drawings – Motivation

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy
 - ...
- Would be nice to have general direction preserved in drawing.

Program Evaluation and Review Technique
(Project management)

Place/Transition net
(Modeling languages for distributed systems)

Ancestral trees / networks
(Biology)

Upward Planar Drawings – Definition

A directed graph is **upward planar** when it admits a drawing that is

Upward Planar Drawings – Definition

A directed graph is **upward planar** when it admits a drawing that is

- planar and
-

Upward Planar Drawings – Definition

A directed graph is **upward planar** when it admits a drawing that is

- planar and
- where each edge is drawn as an upward, y-monotone curve.

Upward Planar Drawings – Definition

A directed graph is **upward planar** when it admits a drawing that is

- planar and
- where each edge is drawn as an upward, y-monotone curve.

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

bimodal vertex

not bimodal

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:

- planar
- acyclic
- bimodal

bimodal vertex

not bimodal

Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic
 - bimodal
- ... but these conditions are *not sufficient*.

bimodal vertex

not bimodal

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

no crossings

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

acyclic digraph with
a single **source s** and **single sink t**

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

acyclic digraph with
a single **source s** and **single sink t**

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

acyclic digraph with
a single **source s** and **single sink t**

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

acyclic digraph with
 a single **source s** and single sink **t**

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Additionally:

Embedded such that s and t are on the outer face f_0 .

$\left. \begin{array}{l} \text{no crossings} \\ \text{acyclic digraph with} \\ \text{a single source } s \text{ and single sink } t \end{array} \right\}$

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Additionally:

Embedded such that s and t are on the outer face f_0 .

or:

Edge (s, t) exists.

$\left. \begin{array}{l} \text{no crossings} \\ \text{acyclic digraph with} \\ \text{a single source } s \text{ and single sink } t \end{array} \right\}$

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Case 2:
no chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Case 2:
no chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Case 2:
no chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Case 2:
no chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Case 2:
no chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Case 2:
no chord

Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st -digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in
prespecified
triangle.

Induction on n .

Case 1:
chord

Case 2:
no chord

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part II:
Assignment Problem

Alexander Wolff

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G ,
it is NP-hard to decide whether G is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G ,
it is NP-hard to decide whether G is upward planar.

Theorem.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded planar* digraph G ,
it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G ,
it is NP-hard to decide whether G is upward planar.

Theorem.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G ,
it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G ,
it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G ,
it is NP-hard to decide whether G is upward planar.

Theorem.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G ,
it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G ,
it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

Given a *single-source* acyclic digraph G ,
it can be tested in $\mathcal{O}(n)$ time whether G is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G ,
it is NP-hard to decide whether G is upward planar.

Theorem.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G ,
it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G ,
it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

Given a *single-source* acyclic digraph G ,
it can be tested in $\mathcal{O}(n)$ time whether G is upward planar.

The Problem

Fixed Embedding Upward Planarity Testing.

Let G be a plane digraph, let F be the set of faces of G , and let f_0 be the outer face of G .

Test whether G is upward planar (w.r.t. to F and f_0).

The Problem

Fixed Embedding Upward Planarity Testing.

Let G be a plane digraph, let F be the set of faces of G , and let f_0 be the outer face of G .

Test whether G is upward planar (w.r.t. to F and f_0).

Plan.

- Find property that any upward planar drawing of G satisfies.
- Formalize property.
- Find algorithm to test property.

Angles, Local Sources & Sinks

Definitions.

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.
- $L(v) = \#$ large angles at v

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.
- $L(v) = \#$ large angles at v
- $L(f) = \#$ large angles in f

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.
- $L(v) = \#$ large angles at v
- $L(f) = \#$ large angles in f
- $S(v)$ & $S(f)$ for $\#$ small angles

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.
- $L(v) = \#$ large angles at v
- $L(f) = \#$ large angles in f
- $S(v)$ & $S(f)$ for $\#$ small angles
- $A(f) = \#$ local sources w.r.t. to f

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.
- $L(v) = \#$ large angles at v
- $L(f) = \#$ large angles in f
- $S(v)$ & $S(f)$ for $\#$ small angles
- $A(f) = \#$ local sources w.r.t. to f
 $= \#$ local sinks w.r.t. to f

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.
- $L(v) = \#$ large angles at v
- $L(f) = \#$ large angles in f
- $S(v)$ & $S(f)$ for $\#$ small angles
- $A(f) = \#$ local sources w.r.t. to f
 $= \#$ local sinks w.r.t. to f

Lemma 1.
 $L(f) + S(f) = 2A(f)$

Assignment Problem

- Vertex v is a **global source** at faces f_1 and f_2 .

Assignment Problem

- Vertex v is a **global source** at faces f_1 and f_2 .
- Does v have a **large** angle in f_1 or f_2 ?

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part III:
Angle Relations

Alexander Wolff

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

■ $L(f) \geq 1$

Proof by induction on $L(f)$.

■ $L(f) = 0$

$\Rightarrow S(f) = 2$ ✓

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

■ $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

Proof by induction on $L(f)$.

■ $L(f) = 0$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **sink** v with small angle:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **sink** v with small angle:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **sink** v with small angle:

$$L(f) - S(f)$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- sink v with small angle:

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

$$\Rightarrow S(f) = 2 \quad \checkmark$$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **sink** v with small angle:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \end{aligned}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **sink** v with small angle:

$$L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1)$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- sink v with small angle:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \\ &= -2 \end{aligned}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- sink v with small/large angle:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \\ &= -2 \end{aligned}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- sink v with small/large angle:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \\ &= -2 \end{aligned}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- sink v with small/large angle:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 2 \\ &\quad - (S(f_1) + S(f_2)) \\ &= -2 \end{aligned}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

$$\Rightarrow S(f) = 2 \quad \checkmark$$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **source** v with small angle:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

$$\Rightarrow S(f) = 2 \quad \checkmark$$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- source v with small angle:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- source v with ~~small~~ angle:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- source v with ~~small~~/large angle:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- source v with ~~small~~/large angle:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- source v with ~~small~~/large angle:

$$L(f) - S(f)$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- source v with ~~small~~/large angle:

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **source** v with ~~small~~/large angle:

$$L(f) - S(f) = L(f_1) + L(f_2) + 2 - (S(f_1) + S(f_2))$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **source** v with ~~small~~/large angle:

$$L(f) - S(f) = L(f_1) + L(f_2) + 2 - (S(f_1) + S(f_2))$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- **source** v with ~~small~~/large angle:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 2 \\ &\quad - (S(f_1) + S(f_2)) \\ &= -2 \end{aligned}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- vertex v that is neither source nor sink:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

$$\Rightarrow S(f) = 2 \quad \checkmark$$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- vertex v that is neither source nor sink:

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- vertex v that is neither source nor sink:

$$L(f) - S(f)$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- vertex v that is neither source nor sink:

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with edge from a large angle at a “low” sink u to...

- vertex v that is neither source nor sink:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \end{aligned}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

$$\Rightarrow S(f) = 2 \quad \checkmark$$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- vertex v that is neither source nor sink:

$$L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1)$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

$$\Rightarrow S(f) = 2 \quad \checkmark$$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- vertex v that is neither source nor sink:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \\ &= -2 \end{aligned}$$

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on $L(f)$.

- $L(f) = 0$

- $L(f) \geq 1$

Split f with **edge** from a large angle at a “low” **sink** u to...

- vertex v that is neither source nor sink:

$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \\ &= -2 \end{aligned}$$

- Otherwise “high” **source** u exists.

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \left\{ \begin{array}{l} \text{if } \text{out-degree}(v) \geq 3 \\ \text{if } \text{out-degree}(v) = 2 \\ \text{if } \text{out-degree}(v) = 1 \\ \text{if } \text{out-degree}(v) = 0 \end{array} \right. \right\}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) =$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof.

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: $L(f) + S(f) = 2A(f)$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: $L(f) + S(f) = 2A(f)$

Lemma 2: $L(f) - S(f) = \pm 2$.

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: $L(f) + S(f) = 2A(f)$

Lemma 2: $L(f) - S(f) = \pm 2$.

Number of Large Angles

Lemma 3.

In every upward planar drawing of G , it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: $L(f) + S(f) = 2A(f)$

Lemma 2: $L(f) - S(f) = \pm 2$.

$$\Rightarrow 2L(f) = 2A(f) \pm 2.$$

Assignment of Large Angles to Faces

Let S be the set of **sources**, and let T be the set of **sinks**.

Assignment of Large Angles to Faces

Let S be the set of **sources**, and let T be the set of **sinks**.

Definition.

A **consistent assignment** $\Phi: S \cup T \rightarrow F$ is a mapping where

Assignment of Large Angles to Faces

Let S be the set of **sources**, and let T be the set of **sinks**.

Definition.

A **consistent assignment** $\Phi: S \cup T \rightarrow F$ is a mapping where

$\Phi: v \mapsto$ incident face, where v forms **large angle**

such that

Assignment of Large Angles to Faces

Let S be the set of **sources**, and let T be the set of **sinks**.

Definition.

A **consistent assignment** $\Phi: S \cup T \rightarrow F$ is a mapping where

$\Phi: v \mapsto$ incident face, where v forms **large angle**

such that

$$|\Phi^{-1}(f)| =$$

Assignment of Large Angles to Faces

Let S be the set of **sources**, and let T be the set of **sinks**.

Definition.

A **consistent assignment** $\Phi: S \cup T \rightarrow F$ is a mapping where

$\Phi: v \mapsto$ incident face, where v forms **large angle**

such that

$$|\Phi^{-1}(f)| = L(f) =$$

Assignment of Large Angles to Faces

Let S be the set of **sources**, and let T be the set of **sinks**.

Definition.

A **consistent assignment** $\Phi: S \cup T \rightarrow F$ is a mapping where

$\Phi: v \mapsto$ incident face, where v forms **large angle**

such that

$$|\Phi^{-1}(f)| = L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$$

Example of Angle to Face Assignment

■ global sources & sinks

$A(f)$ # sources / sinks of f

Example of Angle to Face Assignment

■ global sources & sinks

$A(f)$ # sources / sinks of f

Example of Angle to Face Assignment

global sources & sinks

$A(f)$ # sources / sinks of f

Example of Angle to Face Assignment

global sources & sinks

$A(f)$ # sources / sinks of f

$L(f)$ # large angles of f

Example of Angle to Face Assignment

global sources & sinks

$A(f)$ # sources / sinks of f

$L(f)$ # large angles of f

assignment

$\Phi: S \cup T \rightarrow F$

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part IV:
Refinement Algorithm

Alexander Wolff

Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

\Rightarrow : As constructed before.

Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

\Rightarrow : As constructed before.

\Leftarrow : Idea:

- Construct planar st-digraph that is supergraph of G .

Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

\Rightarrow : As constructed before.

\Leftarrow : Idea:

- Construct planar st-digraph that is supergraph of G .
- Apply equivalence from Theorem 1.

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break large angles (sources and sinks).

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x **source** \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x **source** \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x **source** \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x **source** \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x **source** \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .
- Refine outer face f_0 .

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .

- Refine outer face f_0 .

- Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .
- Refine outer face f_0 .

- Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.

Refinement Example

Result Upward Planarity Test

Theorem 2.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G ,
we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

Result Upward Planarity Test

Theorem 2.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G ,
we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

Proof.

- Test for bimodality.

Result Upward Planarity Test

Theorem 2.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G ,
we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

Result Upward Planarity Test

Theorem 2.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G , we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H .

Result Upward Planarity Test

Theorem 2.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G , we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H .
- Draw H upward planar.

Result Upward Planarity Test

Theorem 2.

[Bertolazzi et al., 1994]

Given a *combinatorially embedded* planar digraph G , we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H .
- Draw H upward planar.
- Deleted edges added in refinement step.

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part V:
Finding a Consistent Assignment

Alexander Wolff

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W =$
- $E' =$
- $\ell(e) =$
- $u(e) =$

- $b(w) =$

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W =$
- $E' =$
- $\ell(e) =$
- $u(e) =$

- $b(w) =$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\}$
- $E' =$
- $\ell(e) =$
- $u(e) =$
- $b(w) =$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' =$
- $\ell(e) =$
- $u(e) =$
- $b(w) =$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) =$
- $u(e) =$
- $b(w) =$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) =$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$■ b(w) = \begin{cases} 1 & \forall w \in W \cap V \end{cases}$$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$\blacksquare b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \end{cases}$$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$■ b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \end{cases}$$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$■ b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \end{cases}$$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$\blacksquare b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \end{cases}$$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$■ b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$■ b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$

Example.

Finding a Consistent Assignment

Idea.

Flow $(v, f) = 1$ from global **source** / **sink** v to the incident face f its **large angle** gets assigned to.

Flow network.

$$N_{F, f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$■ b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$

Example.

Discussion

- There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

Discussion

- There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

- Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n + r^{1.5})$, where $r = \# \text{ sources}$.

[Abbasi, Healy, Rextin 2010]

Discussion

- There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.
[Healy, Lynch 2005, Didimo et al. 2009]
- Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n + r^{1.5})$, where $r = \# \text{ sources}$.
[Abbasi, Healy, Rextin 2010]
- Many related concepts have been studied:
quasi-planarity, upward drawings of mixed graphs, upward planarity on cylinder/torus, . . .

Literature

- See [GD Ch. 6] for detailed explanation!

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets
- [Di Battista & Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
- [Garg & Tamassia '95]
On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Upward Drawings of Triconnected Digraphs
- [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giardano, Liotta '09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin '10]
Improving the running time of embedded upward planarity testing