

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part I: Characterization

Alexander Wolff

What may the direction of edges in a digraph represent?

- What may the direction of edges in a digraph represent?
 - Time

PERT diagram

Program Evaluation and Review Technique (Project management)

- What may the direction of edges in a digraph represent?
 - Time
 - Flow

PERT diagram

Program Evaluation and Review Technique (Project management)

Petri net

Place/Transition net (Modeling languages for distributed systems)

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy

PERT diagram

Program Evaluation and Review Technique (Project management)

Petri net

Place/Transition net (Modeling languages for distributed systems)

Phylogenetic network

Ancestral trees / networks (Biology)

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy
 - . . .

PERT diagram

Program Evaluation and Review Technique (Project management)

Petri net

Place/Transition net (Modeling languages for distributed systems)

Phylogenetic network

Ancestral trees / networks (Biology)

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy
 - . . .
- Would be nice to have general direction preserved in drawing.

PERT diagram

Program Evaluation and Review Technique (Project management)

Petri net

Place/Transition net (Modeling languages for distributed systems)

Phylogenetic network

Ancestral trees / networks (Biology)

- planar and

- planar and
- where each edge is drawn as an upward, y-monotone curve.

- planar and
- where each edge is drawn as an upward, y-monotone curve.

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacksquare For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

- lacktriangle For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic
 - bimodal

not bimodal

- \blacksquare For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic
 - bimodal
- ... but these conditions are not sufficient.

not bimodal

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

no crossings

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

acyclic digraph with a single source s and single sink t

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

acyclic digraph with a single source \boldsymbol{s} and single sink \boldsymbol{t}

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

acyclic digraph with a single source \boldsymbol{s} and single sink \boldsymbol{t}

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Additionally:

Embedded such that s and t are on the outer face f_0 .

no crossings

acyclic digraph with a single source \boldsymbol{s} and single sink t

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Additionally:

Embedded such that s and t are on the outer face f_0 .

or:

Edge (s, t) exists.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- (3) \Rightarrow (2) Triangulate & construct drawing:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- (3) \Rightarrow (2) Triangulate & construct drawing:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ For the proof idea, see the example.
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim. Case 1:

Can draw in chord prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim. Case 1:

Can draw in chord prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim. Case 1:

Can draw in chord prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1:

Can draw in chord prespecified triangle.

Induction on n.

Case 2: no chord

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1:

Can draw in chord prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1:

Can draw in chord prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1:

Can draw in chord prespecified triangle.

Induction on n.

Case 2: no chord

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1:

Can draw in chord prespecified triangle.

Induction on n.

Case 2: no chord

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1: Can draw in chord prespecified triangle.

Induction on n.

Case 2: no chord

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ For the proof idea, see the example.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1: Can draw in chord prespecified triangle.

Induction on n.

Case 2: no chord

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part II: Assignment Problem

Alexander Wolff

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G, it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G, it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

Given a single-source acyclic digraph G, it can be tested in $\mathcal{O}(n)$ time whether G is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G, it can be tested in $\mathcal{O}(n^2)$ time whether G is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

Given a single-source acyclic digraph G, it can be tested in $\mathcal{O}(n)$ time whether G is upward planar.

The Problem

Fixed Embedding Upward Planarity Testing.

Let G be a plane digraph, let F be the set of faces of G, and let f_0 be the outer face of G.

Test whether G is upward planar (w.r.t. to F and f_0).

The Problem

Fixed Embedding Upward Planarity Testing.

Let G be a plane digraph, let F be the set of faces of G, and let f_0 be the outer face of G. Test whether G is upward planar (w.r.t. to F and f_0).

Plan.

- \blacksquare Find property that any upward planar drawing of G satisfies.
- Formalize property.
- Find algorithm to test property.

Definitions.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- $\blacksquare S(v) \& S(f)$ for # small angles

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- \blacksquare S(v) & S(f) for # small angles
- lacksquare A(f) = # local sources w.r.t. to f

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- $\blacksquare S(v) \& S(f)$ for # small angles
- A(f) = # local sources w.r.t. to f= # local sinks w.r.t. to f

Definitions.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- $\blacksquare S(v) \& S(f)$ for # small angles
- A(f) = # local sources w.r.t. to f= # local sinks w.r.t. to f

Lemma 1. L(f) + S(f) = 2A(f)

Assignment Problem

■ Vertex v is a global source at faces f_1 and f_2 .

Assignment Problem

- Vertex v is a global source at faces f_1 and f_2 .
- Does v have a large angle in f_1 or f_2 ?

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part III:
Angle Relations

Alexander Wolff

Angle Relations

Lemma 2.
$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Angle Relations

Lemma 2.
$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

Angle Relations

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

• L(f) = 0

$$L(f)=0$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

L(f) = 0

$$L(f) \geq 1$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$\blacksquare L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$
$$- (S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2$$
 -2
 $L(f) - S(f) = L(f_1) + L(f_2) + 1$
 $-(S(f_1) + S(f_2) - 1)$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f)=0$$

 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f)=0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

$$\frac{-2}{L(f) - S(f)} = \frac{L(f_1) + L(f_2) + 1}{-(S(f_1) + S(f_2) - 1)}$$

$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

$$\begin{array}{c|c}
f_1 & f_2 \\
\hline
f_1 & f_2 \\
\hline
u & f_2
\end{array}$$

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

$$-(S(f_1) + S(f_2))$$

$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

- $(S(f_1) + S(f_2))$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

$$-(S(f_1) + S(f_2))$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

$$-(S(f_1) + S(f_2))$$

$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare vertex v that is neither source nor sink:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare vertex v that is neither source nor sink:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$\blacksquare L(f) = 0$$

 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

lacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

lacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f)=0$$

 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$
$$- (S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

lacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$

$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2$$

Otherwise "high" source u exists.

Lemma 3.

In every upward planar drawing of G, it holds that

Lemma 3.

In every upward planar drawing of G, it holds that

• for each vertex $v \in V$: L(v) =

Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & \end{cases}$

Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$
- for each face f: L(f) =

Lemma 3.

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ of each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Lemma 3.

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ of each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Lemma 3.

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ of each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ for each face f: $L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Lemma 3.

In every upward planar drawing of G, it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ of each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof.

Lemma 3.

In every upward planar drawing of G, it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$
- for each face f: $L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: L(f) + S(f) = 2A(f)

Lemma 3.

In every upward planar drawing of G, it holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: L(f) + S(f) = 2A(f)Lemma 2: $L(f) - S(f) = \pm 2$.

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1:
$$L(f) + S(f) = 2A(f)$$

Lemma 2: $L(f) - S(f) = \pm 2$.

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1:
$$L(f) + S(f) = 2A(f)$$

Lemma 2: $L(f) - S(f) = \pm 2$.

$$\Rightarrow 2L(f) = 2A(f) \pm 2$$
.

Let S be the set of sources, and let T be the set of sinks.

Let S be the set of sources, and let T be the set of sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping where

Let S be the set of sources, and let T be the set of sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping where

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms large angle}$

Let S be the set of sources, and let T be the set of sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping where

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms large angle}$

$$|\Phi^{-1}(f)| =$$

Let S be the set of sources, and let T be the set of sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping where

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms large angle}$

$$|\Phi^{-1}(f)| = L(f) =$$

Let S be the set of sources, and let T be the set of sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping where

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms large angle}$

$$|\Phi^{-1}(f)| = L(f) = egin{cases} A(f) - 1 & ext{if } f
eq f_0, \ A(f) + 1 & ext{if } f = f_0. \end{cases}$$

global sources

■ global sources & sinks

global sources & sinks

A(f) # sources / sinks of f

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part IV: Refinement Algorithm

Alexander Wolff

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

←: Idea:

 \blacksquare Construct planar st-digraph that is supergraph of G.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

←: Idea:

- \blacksquare Construct planar st-digraph that is supergraph of G.
- Apply equivalence from Theorem 1.

Refinement Algorithm: $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Refinement Algorithm: $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

Refinement Algorithm: $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- Refine outer face f_0 .

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- Refine outer face f_0 .

 \blacksquare Refine all faces. \Rightarrow G is contained in a planar st-digraph.

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- Refine outer face f_0 .

- \blacksquare Refine all faces. \Rightarrow G is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.

Theorem 2.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

Theorem 2.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

Proof.

■ Test for bimodality.

Theorem 2.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

- Test for bimodality.
- \blacksquare Test for a consistent assignment Φ (via flow network).

Theorem 2.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

- Test for bimodality.
- \blacksquare Test for a consistent assignment Φ (via flow network).
- \blacksquare If G bimodal and Φ exists, refine G to plane st-digraph H.

Theorem 2.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

- Test for bimodality.
- **Test** for a consistent assignment Φ (via flow network).
- lacksquare If G bimodal and Φ exists, refine G to plane st-digraph H.
- \blacksquare Draw H upward planar.

Theorem 2.

[Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G, we can test in $\mathcal{O}(n^2)$ time whether G is upward planar.

- Test for bimodality.
- \blacksquare Test for a consistent assignment Φ (via flow network).
- \blacksquare If G bimodal and Φ exists, refine G to plane st-digraph H.
- \blacksquare Draw H upward planar.
- Deleted edges added in refinement step.

Visualization of Graphs

Lecture 6: Upward Planar Drawings

Part V:

Finding a Consistent Assignment

Alexander Wolff

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $\blacksquare W =$
- \blacksquare E' =
- $\ell(e) =$
- u(e) =
- b(w) =

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

 $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$

- $\blacksquare W =$
- E' =
- $\ell(e) =$
- u(e) =
- b(w) =

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $lacksquare W = \{v \in V \mid v \text{ source or sink}\}$
- \blacksquare E' =
- $\ell(e) =$
- u(e) =
- b(w) =

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

 $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $\blacksquare E' =$
- $\ell(e) =$
- u(e) =
- b(w) =

Idea.

Flow (v, f) = 1 from global source $/ \sinh v$ to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) =$
- u(e) =
- b(w) =

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- b(w) =

Idea.

Flow (v, f) = 1 from global source $/ \sinh v$ to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \end{cases}$

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \end{cases}$

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \end{cases}$

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \end{cases}$

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$

Discussion

■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

Discussion

■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

■ Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n+r^{1.5})$, where r=# sources. [Abbasi, Healy, Rextin 2010]

Discussion

■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

- Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n+r^{1.5})$, where r=# sources. [Abbasi, Healy, Rextin 2010]
- Many related concepts have been studied: quasi-planarity, upward drawings of mixed graphs, upward planarity on cyclinder/torus, . . .

Literature

See [GD Ch. 6] for detailed explanation!

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets
- [Di Battista &Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
- [Garg & Tamassia '95]
 On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia '94] Upward Drawings of Triconnected Digraphs
- [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giardano, Liotta '09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin '10] Improving the running time of embedded upward planarity testing