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B What may the direction of edges in a digraph represent?
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B For a digraph GG to be upward planar, it has to be:
m planar

B acyclic
B bimodal

B ...but these conditions are not sufficient.

z bimodal vertex not bimodal
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For a digraph G the following statements are equivalent:
1. GG is upward planar.

2. G admits an upward planar straight-line drawing.
k3. (G is the spanning subgraph of a planar st-digraph.
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( NO Crossings
Additionally:
Embedded such that s and ¢
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\ a single and single sink ¢
or:
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The Problem

Fixed Embedding Upward Planarity Testing.
Let G be a plane digraph, let F' be the set of faces of G,

and let fy be the outer face of G.
Test whether G is upward planar (w.r.t. to F' and fy).

Plan.

-ind property that any upward planar drawing of GG satisfies.

-ormalize property.

-ind algorithm to test property.
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Definitions.

B A vertex v is a local source w.r.t. to a face f
if v has two outgoing edges on Of.
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Definitions.
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Definitions.

B A vertex v is a local source w.r.t. to a face f

if v has two outgoing edges on Of.

A vertex v is a local sink w.r.t. to a face f
if v has two incoming edges on Of.
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if a > 7 and small otherwise.
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Angles, Local Sources & Sinks

Definitions.

A vertex v is a local source w.r.t. to a face f
if v has two outgoing edges on Of.

A vertex v is a local sink w.r.t. to a face f
if v has two incoming edges on Of.

An angle « at a local source / sink is large
if a > 7 and small otherwise.

L(v) = # large angles at v

S(v) & S(f) for # small angles

) =

L(f) = # large angles in f
) &

A(f) =

local sources w.r.t. to f

#
= # local sinks w.r.t. to f

Lemma 1.
L(f) + S(f) = 2A(f)
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B Vertex v is a global source at faces f; and f5.

B Does v have a large angle in f; or f»?
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B Otherwise “high” source u exists.
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Definition.
A consistent assignment &: SUT — F'is a mapping where
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Assignment of Large Angles to Faces

Let S be the set of ~and let 7" be the set of sinks.

Definition.
A consistent assignment &: SUT — F'is a mapping where

®: v — incident face, where v forms large angle

such that

—1 if [ # fo,
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Result Characterization

~

‘Theorem 3.
Let G be an acyclic plane digraph with embedding given by F' and f,.

Then G is upward planar (respecting I’ and fo)

< G is bimodal and there exists a consistent assignment .

Proof.
=: As constructed before.

<: ldea:
B Construct planar st-digraph that is supergraph of G.

B Apply equivalence from Theorem 1.
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Refinement Algorithm: ©, F, fy — st-digraph

Let f be a face.

Consider the clockwise angle sequence o of L / S on local and sinks of f.
B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices
m = insert edge (2, x)
B x sink = insert edge (z, 2).
B Refine outer face fj. ¥
S

B Refine all faces. = G is contained in a planar st-digraph.

B Planarity, acyclicity, bimodality are invariants under construction.



Refinement Example




Refinement Example




Refinement Example




Refinement Example




Refinement Example




Refinement Example































Result Upward Planarity Test

‘Theorem 2. [Bertolazzi et al., 1994] )
Given a combinatorially embedded planar digraph G,

we can test in O(n?) time whether G is upward planar.

\ J

20 -



Result Upward Planarity Test

‘Theorem 2. [Bertolazzi et al., 1994] )
Given a combinatorially embedded planar digraph G,
we can test in O(n?) time whether G is upward planar.

\ J

Proof.
B Test for bimodality.

20 -



Result Upward Planarity Test

‘Theorem 2. [Bertolazzi et al., 1994] )
Given a combinatorially embedded planar digraph G,
we can test in O(n?) time whether G is upward planar.

\ J

Proof.
B Test for bimodality.

B Test for a consistent assignment ® (via flow network).

20 -



Result Upward Planarity Test

Theorem 2. [Bertolazzi et al., 1994] )
Given a combinatorially embedded planar digraph G,
we can test in O(n?) time whether G is upward planar.

\. J

Proof.
B Test for bimodality.

B Test for a consistent assignment ® (via flow network).

B If G bimodal and ® exists, refine G to plane st-digraph H.

20 -



Result Upward Planarity Test

Theorem 2. [Bertolazzi et al., 1994] )
Given a combinatorially embedded planar digraph G,
we can test in O(n?) time whether G is upward planar.

\. J

Proof.
B Test for bimodality.

B Test for a consistent assignment ® (via flow network).
B If G bimodal and ® exists, refine G to plane st-digraph H.

B Draw H upward planar.

20 -



Result Upward Planarity Test

‘Theorem 2. [Bertolazzi et al., 1994] |
Given a combinatorially embedded planar digraph G,
we can test in O(n?) time whether G is upward planar.

\. J

Proof.
B Test for bimodality.

Test for a consistent assignment ® (via flow network).
f G bimodal and ¢ exists, refine G to plane st-digraph H.

[]
[]
B Draw H upward planar.
[]

Deleted edges added in refinement step.
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Finding a Consistent Assignment

Idea.
Flow (v, f) = 1 from global source / sink v to the incident
face f its large angle gets assigned to.

Flow network. Example.
Nr 1, (G) = (W, E'); b; 4; u)
BW={velV|v source or smk} JF
<

mE ={(v,f)|v |nC|dent to f} —
B /e)=0VeeF
B ule)=1Vee F

1 YVweWVNnV
B bw) = { —(A(0) = 1) Ve P\ {fo)

“(A(0) 1) w=f
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Discussion

B There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs
with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

B Finding assighment in Theorem 2 can be sped up to O(n + r-®), where r = #
[Abbasi, Healy, Rextin 2010]

B Many related concepts have been studied:
quasi-planarity, upward drawings of mixed graphs, upward planarity on cyclinder/torus, ...
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B See [GD Ch. 6] for detailed explanation!
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B [Hutton & Lubiw '96| Upward Planar Drawing of Single-Source Acyclic Digraphs

B [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Upward Drawings of Triconnected Digraphs

m Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
B Didimo, Giardano, Liotta '09] Upward Spirality and Upward Planarity Testing

B [Abbasi, Healy, Rextin '10]
mproving the running time of embedded upward planarity testing
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