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Visualization of Graphs

Part I:
Characterization

Alexander Wolff

Lecture 6:
Upward Planar Drawings
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Upward Planar Drawings – Motivation

� What may the direction of edges in a digraph represent?

� Time

� Flow

� Hierarchy

� . . .

PERT diagram Petri net Phylogenetic network

� Would be nice to have general direction preserved in drawing.

Program Evaluation and Review Technique
(Project management)

Place/Transition net
(Modeling languages for distributed systems)

Ancestral trees / networks
(Biology)
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Upward Planarity – Necessary Conditions

� For a digraph G to be upward planar, it has to be:

� planar

� acyclic

� bimodal

bimodal vertex not bimodal

� . . . but these conditions are not sufficient.
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For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

t

︸ ︷︷ ︸︸ ︷︷ ︸
no crossings
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Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

t

︸ ︷︷ ︸︸ ︷︷ ︸
no crossings

acyclic digraph with
a single source s and single sink t

Additionally:
Embedded such that s and
t are on the outer face f0.

or:
Edge (s, t) exists.

s
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Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
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t

Proof.

(2) ⇒ (1) By definition. (1) ⇔ (3) For the proof idea, see the example.
(3) ⇒ (2) Triangulate & construct drawing:
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A(f) + 1 f = f0.
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Assignment of Large Angles to Faces

Let S be the set of sources, and let T be the set of sinks.
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16

Visualization of Graphs

Part IV:
Refinement Algorithm

Alexander Wolff

Lecture 6:
Upward Planar Drawings



17 - 1

Result Characterization

Theorem 3.
Let G be an acyclic plane digraph with embedding given by F and f0.

Then G is upward planar (respecting F and f0)
⇔ G is bimodal and there exists a consistent assignment Φ.
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Result Upward Planarity Test

Theorem 2. [Bertolazzi et al., 1994]
Given a combinatorially embedded planar digraph G,
we can test in O(n2) time whether G is upward planar.
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Visualization of Graphs

Part V:
Finding a Consistent Assignment

Alexander Wolff

Lecture 6:
Upward Planar Drawings
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Finding a Consistent Assignment

Idea.
Flow (v, f) = 1 from global source / sink v to the incident
face f its large angle gets assigned to.
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Discussion

� There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs
with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

� Finding assignment in Theorem 2 can be sped up to O(n+ r1.5), where r = # sources.
[Abbasi, Healy, Rextin 2010]

� Many related concepts have been studied:
quasi-planarity, upward drawings of mixed graphs, upward planarity on cyclinder/torus, . . .
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