Business Cycles

- Exercise 4 -

Josefine Quast
University of Würzburg

30.05.2022

Production and Labor Supply

1. Labor Supply

Question:

Suppose that the household only lives for one period. The household's optimization problem is:

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma} \quad \text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

In this problem, the household receives no dividend from the firm.
a) Solve for the optimality condition characterizing the household problem.
b) From this optimality condition, what can you say about the effect of w_{t} on N_{t} ? What is your explanation for this finding?

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\mathcal{L}=
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\mathcal{L}=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}+\lambda\left(C_{t}-w_{t} N_{t}\right)
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\begin{aligned}
\mathcal{L} & =\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}+\lambda\left(C_{t}-w_{t} N_{t}\right) \\
\frac{\partial \mathcal{L}}{\partial C_{t}} & =
\end{aligned}
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\begin{aligned}
\mathcal{L} & =\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}+\lambda\left(C_{t}-w_{t} N_{t}\right) \\
\frac{\partial \mathcal{L}}{\partial C_{t}} & =\frac{1}{C_{t}}+\lambda=0 \Rightarrow-\frac{1}{C_{t}}=\lambda
\end{aligned}
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\begin{aligned}
\mathcal{L} & =\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}+\lambda\left(C_{t}-w_{t} N_{t}\right) \\
\frac{\partial \mathcal{L}}{\partial C_{t}} & =\frac{1}{C_{t}}+\lambda=0 \Rightarrow-\frac{1}{C_{t}}=\lambda \\
\frac{\partial \mathcal{L}}{\partial N_{t}} & =
\end{aligned}
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\begin{aligned}
\mathcal{L} & =\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}+\lambda\left(C_{t}-w_{t} N_{t}\right) \\
\frac{\partial \mathcal{L}}{\partial C_{t}} & =\frac{1}{C_{t}}+\lambda=0 \Rightarrow-\frac{1}{C_{t}}=\lambda \\
\frac{\partial \mathcal{L}}{\partial N_{t}} & =-\theta_{t}(1-\gamma) \frac{\left(1-N_{t}\right)^{1-\gamma-1}}{1-\gamma}-\lambda w_{t}=0 \Rightarrow-\frac{\theta_{t}}{w_{t}\left(1-N_{t}\right)^{\gamma}}=\lambda
\end{aligned}
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\begin{aligned}
\mathcal{L} & =\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}+\lambda\left(C_{t}-w_{t} N_{t}\right) \\
\frac{\partial \mathcal{L}}{\partial C_{t}} & =\frac{1}{C_{t}}+\lambda=0 \Rightarrow-\frac{1}{C_{t}}=\lambda \\
\frac{\partial \mathcal{L}}{\partial N_{t}} & =-\theta_{t}(1-\gamma) \frac{\left(1-N_{t}\right)^{1-\gamma-1}}{1-\gamma}-\lambda w_{t}=0 \Rightarrow-\frac{\theta_{t}}{w_{t}\left(1-N_{t}\right)^{\gamma}}=\lambda \\
& -\frac{1}{C_{t}}=-\frac{\theta_{t}}{w_{t}\left(1-N_{t}\right)^{\gamma}}
\end{aligned}
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\begin{aligned}
\mathcal{L} & =\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}+\lambda\left(C_{t}-w_{t} N_{t}\right) \\
\frac{\partial \mathcal{L}}{\partial C_{t}} & =\frac{1}{C_{t}}+\lambda=0 \Rightarrow-\frac{1}{C_{t}}=\lambda \\
\frac{\partial \mathcal{L}}{\partial N_{t}} & =-\theta_{t}(1-\gamma) \frac{\left(1-N_{t}\right)^{1-\gamma-1}}{1-\gamma}-\lambda w_{t}=0 \Rightarrow-\frac{\theta_{t}}{w_{t}\left(1-N_{t}\right)^{\gamma}}=\lambda \\
& -\frac{1}{C_{t}}=-\frac{\theta_{t}}{w_{t}\left(1-N_{t}\right)^{\gamma}} \\
w_{t} & =\frac{\theta_{t} C_{t}}{\left(1-N_{t}\right)^{\gamma}}
\end{aligned}
$$

1. Labor Supply

$$
\max _{C_{t}, N_{t}} U=\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}
$$

$$
\text { s.t. } \quad C_{t}=w_{t} N_{t}
$$

Lagrange:

$$
\begin{aligned}
\mathcal{L} & =\ln C_{t}+\theta_{t} \frac{\left(1-N_{t}\right)^{1-\gamma}}{1-\gamma}+\lambda\left(C_{t}-w_{t} N_{t}\right) \\
\frac{\partial \mathcal{L}}{\partial C_{t}} & =\frac{1}{C_{t}}+\lambda=0 \Rightarrow-\frac{1}{C_{t}}=\lambda \\
\frac{\partial \mathcal{L}}{\partial N_{t}} & =-\theta_{t}(1-\gamma) \frac{\left(1-N_{t}\right)^{1-\gamma-1}}{1-\gamma}-\lambda w_{t}=0 \Rightarrow-\frac{\theta_{t}}{w_{t}\left(1-N_{t}\right)^{\gamma}}=\lambda \\
& -\frac{1}{C_{t}}=-\frac{\theta_{t}}{w_{t}\left(1-N_{t}\right)^{\gamma}} \\
w_{t} & =\frac{\theta_{t} C_{t}}{\left(1-N_{t}\right)^{\gamma}}=\frac{u_{L}}{u_{C}}
\end{aligned}
$$

1. Labor Supply

$$
w_{t}=\frac{\theta_{t} C_{t}}{\left(1-N_{t}\right)^{\gamma}}=\theta_{t} C_{t}\left(1-N_{t}\right)^{-\gamma}
$$

1. Labor Supply

$$
\begin{aligned}
w_{t} & =\frac{\theta_{t} C_{t}}{\left(1-N_{t}\right)^{\gamma}}=\theta_{t} C_{t}\left(1-N_{t}\right)^{-\gamma} \\
\left(\frac{w_{t}}{\theta_{t} C_{t}}\right)^{-\frac{1}{\gamma}} & =\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}}=1-N_{t}
\end{aligned}
$$

1. Labor Supply

$$
\begin{aligned}
w_{t} & =\frac{\theta_{t} C_{t}}{\left(1-N_{t}\right)^{\gamma}}=\theta_{t} C_{t}\left(1-N_{t}\right)^{-\gamma} \\
\left(\frac{w_{t}}{\theta_{t} C_{t}}\right)^{-\frac{1}{\gamma}} & =\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}}=1-N_{t} \\
1-\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}} & =N_{t}=N^{S}\left(C_{t}, w_{t}, \theta_{t}\right)
\end{aligned}
$$

1. Labor Supply

$$
\begin{aligned}
w_{t} & =\frac{\theta_{t} C_{t}}{\left(1-N_{t}\right)^{\gamma}}=\theta_{t} C_{t}\left(1-N_{t}\right)^{-\gamma} \\
\left(\frac{w_{t}}{\theta_{t} C_{t}}\right)^{-\frac{1}{\gamma}} & =\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}}=1-N_{t} \\
1-\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}} & =N_{t}=N^{S}(\underbrace{C_{t}}_{-}, \underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-})
\end{aligned}
$$

$$
\begin{aligned}
w_{t} & =\frac{\theta_{t} C_{t}}{\left(1-N_{t}\right)^{\gamma}}=\theta_{t} C_{t}\left(1-N_{t}\right)^{-\gamma} \\
\left(\frac{w_{t}}{\theta_{t} C_{t}}\right)^{-\frac{1}{\gamma}} & =\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}}=1-N_{t} \\
1-\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}} & =N_{t}=N^{S}(\underbrace{C_{t}}_{-}, \underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-})
\end{aligned}
$$

- Substitution effect dominates income effect

$$
\begin{aligned}
w_{t} & =\frac{\theta_{t} C_{t}}{\left(1-N_{t}\right)^{\gamma}}=\theta_{t} C_{t}\left(1-N_{t}\right)^{-\gamma} \\
\left(\frac{w_{t}}{\theta_{t} C_{t}}\right)^{-\frac{1}{\gamma}} & =\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}}=1-N_{t} \\
1-\left(\frac{\theta_{t} C_{t}}{w_{t}}\right)^{\frac{1}{\gamma}} & =N_{t}=N^{S}(\underbrace{C_{t}}_{-}, \underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-})
\end{aligned}
$$

- Substitution effect dominates income effect
- Upward-sloping labor supply curve

2. Labor Demand and Production

Question:

Suppose that you have a firm with a Cobb-Douglas production function for production in period t :

$$
Y_{t}=A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}
$$

The only twist relative to our setup in the main text is that the firm does not use labor to produce output in period $t+1$. The production function in that period is:

$$
Y_{t+1}=A_{t+1} K_{t+1}^{\alpha}
$$

a) Write down the optimization problem for the firm in this setup. It has to pay labor in period $t w_{t}$, and it discounts future dividends by $\frac{1}{1+r_{t}}$. It must borrow to finance its investment at r_{t}. The capital accumulation equation is standard.
b) What is the terminal condition for the firm? Explain the economic logic.
c) Using this specification of production, derive the first order optimality conditions for the optimal choices of N_{t} and K_{t+1}.

2. Labor Demand and Production

$$
\max V_{t}=D_{t}+\frac{D_{t+1}}{1+r_{t}}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-w_{t+1} N_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right]
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right]
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\max V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right]
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\max V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\text { s.t. } \quad K_{t+1} & =I_{t}+(1-\delta) K_{t} \\
B_{t}^{I} & =I_{t}
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\max V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\text { s.t. } \quad K_{t+1} & =I_{t}+(1-\delta) K_{t} \\
B_{t}^{I} & =I_{t} \\
K_{t+2} & =I_{t+1}+(1-\delta) K_{t+1}
\end{aligned}
$$

Economic Intuition?

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\max V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\text { s.t. } \quad K_{t+1} & =I_{t}+(1-\delta) K_{t} \\
B_{t}^{I} & =I_{t} \\
K_{t+2} & =I_{t+1}+(1-\delta) K_{t+1}=0
\end{aligned}
$$

Economic Intuition?

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\max V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right]
\end{aligned}
$$

$$
\text { s.t. } \quad B_{t}^{I}=K_{t+1}-(1-\delta) K_{t}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\max V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right]
\end{aligned}
$$

$$
\begin{aligned}
\text { s.t. } \quad B_{t}^{I} & =K_{t+1}-(1-\delta) K_{t} \\
I_{t+1} & =-(1-\delta) K_{t+1}
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max V_{t} & =D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
& =Y_{t}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[Y_{t+1}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right] \\
\max V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha}-I_{t+1}-\left(1+r_{t}\right) B_{t}^{I}\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { s.t. } B_{t}^{I}=K_{t+1}-(1-\delta) K_{t} \\
I_{t+1}=-(1-\delta) K_{t+1} \\
\max _{N_{t}, K_{t+1}} V_{t}=A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha} \cdots\right. \\
\left.\ldots+(1-\delta) K_{t+1}-\left(1+r_{t}\right) K_{t+1}+\left(1+r_{t}\right)(1-\delta) K_{t}\right]
\end{gathered}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max _{N_{t}, K_{t+1}} V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha} \cdots\right. \\
& \left.\ldots+(1-\delta) K_{t+1}-\left(1+r_{t}\right) K_{t+1}+\left(1+r_{t}\right)(1-\delta) K_{t}\right]
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max _{N_{t}, K_{t+1}} V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha} \cdots\right. \\
& \left.\cdots+(1-\delta) K_{t+1}-\left(1+r_{t}\right) K_{t+1}+\left(1+r_{t}\right)(1-\delta) K_{t}\right]
\end{aligned}
$$

$$
\frac{\partial V_{t}}{\partial N_{t}}=
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max _{N_{t}, K_{t+1}} V_{t} & =A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha} \cdots\right. \\
& \left.\ldots+(1-\delta) K_{t+1}-\left(1+r_{t}\right) K_{t+1}+\left(1+r_{t}\right)(1-\delta) K_{t}\right] \\
\frac{\partial V_{t}}{\partial N_{t}}= & (1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha}-w_{t}=0 \Rightarrow w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha}
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max _{N_{t}, K_{t+1}} V_{t}= & A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha} \cdots\right. \\
& \left.\ldots+(1-\delta) K_{t+1}-\left(1+r_{t}\right) K_{t+1}+\left(1+r_{t}\right)(1-\delta) K_{t}\right] \\
\frac{\partial V_{t}}{\partial N_{t}}= & (1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha}-w_{t}=0 \Rightarrow w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha} \\
\frac{\partial V_{t}}{\partial K_{t+1}}= &
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max _{N_{t}, K_{t+1}} V_{t}= & A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha} \cdots\right. \\
& \left.\ldots+(1-\delta) K_{t+1}-\left(1+r_{t}\right) K_{t+1}+\left(1+r_{t}\right)(1-\delta) K_{t}\right] \\
\frac{\partial V_{t}}{\partial N_{t}}= & (1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha}-w_{t}=0 \Rightarrow w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha} \\
\frac{\partial V_{t}}{\partial K_{t+1}}= & \frac{1}{1+r_{t}}\left[\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)-\left(1+r_{t}\right)\right]=0
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max _{N_{t}, K_{t+1}} V_{t}= & A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha} \cdots\right. \\
& \left.\ldots+(1-\delta) K_{t+1}-\left(1+r_{t}\right) K_{t+1}+\left(1+r_{t}\right)(1-\delta) K_{t}\right] \\
\frac{\partial V_{t}}{\partial N_{t}}= & (1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha}-w_{t}=0 \Rightarrow w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha} \\
\frac{\partial V_{t}}{\partial K_{t+1}}= & \frac{1}{1+r_{t}}\left[\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)-\left(1+r_{t}\right)\right]=0 \\
& \frac{1}{1+r_{t}}\left[\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right]=1
\end{aligned}
$$

2. Labor Demand and Production

$$
\begin{aligned}
\max _{N_{t}, K_{t+1}} V_{t}= & A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-w_{t} N_{t}+\frac{1}{1+r_{t}}\left[A_{t+1} K_{t+1}^{\alpha} \cdots\right. \\
& \left.\ldots+(1-\delta) K_{t+1}-\left(1+r_{t}\right) K_{t+1}+\left(1+r_{t}\right)(1-\delta) K_{t}\right] \\
\frac{\partial V_{t}}{\partial N_{t}}= & (1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha}-w_{t}=0 \Rightarrow w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha} \\
\frac{\partial V_{t}}{\partial K_{t+1}}= & \frac{1}{1+r_{t}}\left[\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)-\left(1+r_{t}\right)\right]=0 \\
& \frac{1}{1+r_{t}}\left[\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right]=1 \\
& {\left[\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right]=1+r_{t} }
\end{aligned}
$$

2. Labor Demand and Production

d) Re-arrange the first order optimality conditions to derive explicit expression for the demand for N_{t} and the demand for K_{t+1}.

$$
\frac{\partial V_{t}}{\partial N_{t}}: \quad w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha}
$$

2. Labor Demand and Production

d) Re-arrange the first order optimality conditions to derive explicit expression for the demand for N_{t} and the demand for K_{t+1}.

$$
\begin{aligned}
\frac{\partial V_{t}}{\partial N_{t}}: \quad w_{t} & =(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha} \\
N_{t} & =\left(\frac{1-\alpha}{w_{t}} A_{t} K_{t}^{\alpha}\right)^{\frac{1}{\alpha}}=\left(\frac{1-\alpha}{w_{t}} A_{t}\right)^{\frac{1}{\alpha}} K_{t}
\end{aligned}
$$

2. Labor Demand and Production

d) Re-arrange the first order optimality conditions to derive explicit expression for the demand for N_{t} and the demand for K_{t+1}.

$$
\begin{aligned}
\frac{\partial V_{t}}{\partial N_{t}}: & w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha} \\
N_{t} & =\left(\frac{1-\alpha}{w_{t}} A_{t} K_{t}^{\alpha}\right)^{\frac{1}{\alpha}}=\left(\frac{1-\alpha}{w_{t}} A_{t}\right)^{\frac{1}{\alpha}} K_{t} \\
\frac{\partial V_{t}}{\partial K_{t+1}}: & 1+r_{t}=\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)
\end{aligned}
$$

2. Labor Demand and Production

d) Re-arrange the first order optimality conditions to derive explicit expression for the demand for N_{t} and the demand for K_{t+1}.

$$
\begin{array}{cl}
\frac{\partial V_{t}}{\partial N_{t}}: & w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha} \\
N_{t}=\left(\frac{1-\alpha}{w_{t}} A_{t} K_{t}^{\alpha}\right)^{\frac{1}{\alpha}}=\left(\frac{1-\alpha}{w_{t}} A_{t}\right)^{\frac{1}{\alpha}} K_{t} \\
\frac{\partial V_{t}}{\partial K_{t+1}}: & 1+r_{t}=\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta) \\
K_{t+1}^{\alpha-1}=\frac{\left(1+r_{t}\right)-(1-\delta)}{\alpha A_{t+1}}=\frac{r_{t}+\delta}{\alpha A_{t+1}}
\end{array}
$$

2. Labor Demand and Production

d) Re-arrange the first order optimality conditions to derive explicit expression for the demand for N_{t} and the demand for K_{t+1}.

$$
\begin{gathered}
\frac{\partial V_{t}}{\partial N_{t}}: \quad w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{N_{t}}\right)^{\alpha} \\
N_{t}=\left(\frac{1-\alpha}{w_{t}} A_{t} K_{t}^{\alpha}\right)^{\frac{1}{\alpha}}=\left(\frac{1-\alpha}{w_{t}} A_{t}\right)^{\frac{1}{\alpha}} K_{t} \\
\frac{\partial V_{t}}{\partial K_{t+1}}: \quad 1+r_{t}=\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta) \\
K_{t+1}^{\alpha-1}=\frac{\left(1+r_{t}\right)-(1-\delta)}{\alpha A_{t+1}}=\frac{r_{t}+\delta}{\alpha A_{t+1}} \\
K_{t+1}=\left(\frac{r_{t}+\delta}{\alpha A_{t+1}}\right)^{\frac{1}{\alpha-1}}=\left(\frac{\alpha A_{t+1}}{r_{t}+\delta}\right)^{\frac{1}{1-\alpha}}
\end{gathered}
$$

2. Labor Demand and Production

$$
K_{t+1}=\left(\frac{\alpha A_{t+1}}{r_{t}+\delta}\right)^{\frac{1}{1-\alpha}}
$$

e) Why is investment increasing in future productivity but is not affected by current productivity?

2. Labor Demand and Production

$$
K_{t+1}=\left(\frac{\alpha A_{t+1}}{r_{t}+\delta}\right)^{\frac{1}{1-\alpha}}
$$

e) Why is investment increasing in future productivity but is not affected by current productivity?

$$
K_{t+1}=K^{d}(? ?)
$$

2. Labor Demand and Production

$$
K_{t+1}=\left(\frac{\alpha A_{t+1}}{r_{t}+\delta}\right)^{\frac{1}{1-\alpha}}
$$

e) Why is investment increasing in future productivity but is not affected by current productivity?

$$
K_{t+1}=K^{d}\left(r_{t}, A_{t+1}\right)
$$

2. Labor Demand and Production

$$
K_{t+1}=\left(\frac{\alpha A_{t+1}}{r_{t}+\delta}\right)^{\frac{1}{1-\alpha}}
$$

e) Why is investment increasing in future productivity but is not affected by current productivity?

$$
K_{t+1}=K^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+})
$$

2. Labor Demand and Production

$$
K_{t+1}=\left(\frac{\alpha A_{t+1}}{r_{t}+\delta}\right)^{\frac{1}{1-\alpha}}
$$

e) Why is investment increasing in future productivity but is not affected by current productivity?

$$
\begin{aligned}
K_{t+1} & =K^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+}) \\
I_{t} & =I^{d}\left(r_{t}, A_{t+1}, K_{t}\right)
\end{aligned}
$$

2. Labor Demand and Production

$$
K_{t+1}=\left(\frac{\alpha A_{t+1}}{r_{t}+\delta}\right)^{\frac{1}{1-\alpha}}
$$

e) Why is investment increasing in future productivity but is not affected by current productivity?

$$
\begin{aligned}
K_{t+1} & =K^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+}) \\
I_{t} & =I^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_{t}}_{-})
\end{aligned}
$$

2. Labor Demand and Production

f) Re-arrange your answer from the previous part, making use of the capital accumulation equation, to solve for an expression for I_{t}.

$$
I_{t}=
$$

2. Labor Demand and Production

f) Re-arrange your answer from the previous part, making use of the capital accumulation equation, to solve for an expression for I_{t}.

$$
I_{t}=K_{t+1}-(1-\delta) K_{t}=
$$

2. Labor Demand and Production

f) Re-arrange your answer from the previous part, making use of the capital accumulation equation, to solve for an expression for I_{t}.

$$
I_{t}=K_{t+1}-(1-\delta) K_{t}=\left(\frac{\alpha A_{t+1}}{r_{t}+\delta}\right)^{\frac{1}{1-\alpha}}-(1-\delta) K_{t}
$$

Question:

Consider a representative agent with the utility function

$$
U=\ln C_{t}+\theta \ln \left(1-N_{t}\right)
$$

The budget constraint is

$$
C_{t}+w_{t}\left(1-N_{t}\right)=w_{t}+\Pi_{t}
$$

where w_{t} is the wage and Π_{t} is non-wage income.
a) Solve for the optimal quantities of consumption and labor.

Household problem:

$$
\begin{array}{rl}
\max _{C_{t}, N_{t}} & U=\ln C_{t}+\theta \ln \left(1-N_{t}\right) \\
\text { s.t. } & C_{t}+w_{t}\left(1-N_{t}\right)=w_{t}+\Pi_{t}
\end{array}
$$

Household problem:

$$
\begin{aligned}
\max _{C_{t}, N_{t}} U & =\ln C_{t}+\theta \ln \left(1-N_{t}\right) \\
\text { s.t. } & C_{t}+w_{t}\left(1-N_{t}\right)=w_{t}+\Pi_{t}
\end{aligned}
$$

Reformulate:

$$
\begin{aligned}
\max _{C_{t}, L_{t}} U & =\ln C_{t}+\theta \ln L_{t} \\
\text { s.t. } & C_{t}+w_{t} L_{t}=w_{t}+\Pi_{t}
\end{aligned}
$$

Household problem:

$$
\begin{array}{rl}
\max _{C_{t}, N_{t}} & U=\ln C_{t}+\theta \ln \left(1-N_{t}\right) \\
\text { s.t. } & C_{t}+w_{t}\left(1-N_{t}\right)=w_{t}+\Pi_{t}
\end{array}
$$

Reformulate:

$$
\begin{array}{rl}
\max _{C_{t}, L_{t}} & U=\ln C_{t}+\theta \ln L_{t} \\
\text { s.t. } & C_{t}+w_{t} L_{t}=w_{t}+\Pi_{t}
\end{array}
$$

Lagrange:

$$
\mathcal{L}=\ln C_{t}+\theta \ln L_{t}+\lambda\left(C_{t}+w_{t} L_{t}-w_{t}-\Pi_{t}\right)
$$

Household problem:

$$
\begin{array}{rl}
\max _{C_{t}, N_{t}} & U=\ln C_{t}+\theta \ln \left(1-N_{t}\right) \\
\text { s.t. } & C_{t}+w_{t}\left(1-N_{t}\right)=w_{t}+\Pi_{t}
\end{array}
$$

Reformulate:

$$
\begin{array}{rl}
\max _{C_{t}, L_{t}} & U=\ln C_{t}+\theta \ln L_{t} \\
\text { s.t. } & C_{t}+w_{t} L_{t}=w_{t}+\Pi_{t}
\end{array}
$$

Lagrange:

$$
\mathcal{L}=\ln C_{t}+\theta \ln L_{t}+\lambda\left(C_{t}+w_{t} L_{t}-w_{t}-\Pi_{t}\right)
$$

Solution:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
C_{t}+w_{t} L_{t}=w_{t}+\Pi_{t}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{aligned}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t} \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t}
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{aligned}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t} \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t} \\
C_{t} & =\frac{w_{t}+\Pi_{t}}{1+\theta}
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{aligned}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t} \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t} \\
C_{t} & =\frac{w_{t}+\Pi_{t}}{1+\theta}
\end{aligned}
$$

Leisure/labor supply:

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{aligned}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t} \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t} \\
C_{t} & =\frac{w_{t}+\Pi_{t}}{1+\theta}
\end{aligned}
$$

Leisure/labor supply:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}=\frac{\theta}{w_{t}}\left(\frac{w_{t}+\Pi_{t}}{1+\theta}\right)=\frac{\theta}{1+\theta}\left(\frac{w_{t}+\Pi_{t}}{w_{t}}\right)
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{aligned}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t} \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t} \\
C_{t} & =\frac{w_{t}+\Pi_{t}}{1+\theta}
\end{aligned}
$$

Leisure/labor supply:

$$
\begin{aligned}
& L_{t}=\frac{\theta}{w_{t}} C_{t}=\frac{\theta}{w_{t}}\left(\frac{w_{t}+\Pi_{t}}{1+\theta}\right)=\frac{\theta}{1+\theta}\left(\frac{w_{t}+\Pi_{t}}{w_{t}}\right) \\
& N_{t}=1-L_{t}=1-\frac{\theta}{1+\theta}\left(\frac{w_{t}+\Pi_{t}}{w_{t}}\right)
\end{aligned}
$$

Question:

Consider a representative agent with the utility function

$$
U=\ln C_{t}+\theta \ln \left(1-N_{t}\right)
$$

The budget constraint is

$$
C_{t}+w_{t}\left(1-N_{t}\right)=w_{t}+\Pi_{t}
$$

where w_{t} is the wage and Π_{t} is non-wage income.
b) Suppose that the government implements a lump sum subsidy to all workers. The budget constraint is now

$$
C_{t}+w_{t}\left(1-N_{t}\right)=w_{t}+\Pi_{t}+T_{t}
$$

How are the optimal quantities of C_{t} and N_{t} affected by the introduction of the subsidy? Specifically, do people consume more or less leisure? What is the economic intuition for this?

Optimality condition:

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
C_{t}+w_{t} L_{t}=w_{t}+\Pi_{t}+T_{t}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{aligned}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t}+T_{t} \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t}+T_{t}
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{aligned}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t}+T_{t} \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t}+T_{t} \\
C_{t} & =\frac{w_{t}+\Pi_{t}+T_{t}}{1+\theta} \\
L_{t} & =\frac{\theta}{w_{t}} \frac{w_{t}+\Pi_{t}+T_{t}}{1+\theta}
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{array}{rlr}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t}+T_{t} \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t}+T_{t} \\
C_{t} & =\frac{w_{t}+\Pi_{t}+T_{t}}{1+\theta} & >\frac{w_{t}+\Pi_{t}}{1+\theta} \\
L_{t} & =\frac{\theta}{1+\theta}\left(\frac{w_{t}+\Pi_{t}+T_{t}}{w_{t}}\right) &
\end{array}
$$

Economic Intuition?

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}} C_{t}
$$

Plugging into budget constraint:

$$
\begin{array}{rlrlr}
C_{t}+w_{t} L_{t} & =w_{t}+\Pi_{t}+T_{t} & & \\
C_{t}+w_{t} \frac{\theta}{w_{t}} C_{t} & =w_{t}+\Pi_{t}+T_{t} & & \\
C_{t} & =\frac{w_{t}+\Pi_{t}+T_{t}}{1+\theta} & & >\frac{w_{t}+\Pi_{t}}{1+\theta} & \mid T_{t}>0 \\
L_{t} & =\frac{\theta}{1+\theta}\left(\frac{w_{t}+\Pi_{t}+T_{t}}{w_{t}}\right) & & >\frac{\theta}{1+\theta}\left(\frac{w_{t}+\Pi_{t}}{w_{t}}\right) & \mid T_{t}>0
\end{array}
$$

Economic Intuition?

- Pure income effect!

Question:

Consider a representative agent with the utility function

$$
U=\ln C_{t}+\theta \ln \left(1-N_{t}\right)
$$

The budget constraint is

$$
C_{t}+w_{t}\left(1-N_{t}\right)=w_{t}+\Pi_{t}
$$

where w_{t} is the wage and Π_{t} is non-wage income.
c) Instead of a lump sum subsidy, suppose the government subsidies work. With the subsidy, the workers receive an effective wage rate of $w_{t}\left(1+\tau_{t}\right)$. The budget constraint is

$$
C_{t}+w_{t}\left(1+\tau_{t}\right)\left(1-N_{t}\right)=w_{t}\left(1+\tau_{t}\right)+\Pi_{t}
$$

How are the optimal quantities of C and N affected by the introduction of the subsidy? Specifically, do people consume more or less leisure? What is the economic intuition for this?

Household problem:

$$
\begin{array}{rl}
\max _{C_{t}, L_{t}} & U=\ln C_{t}+\theta \ln L_{t} \\
\text { s.t. } & C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t}=w_{t}\left(1+\tau_{t}\right)+\Pi_{t}
\end{array}
$$

Household problem:

$$
\begin{aligned}
\max _{C_{t}, L_{t}} U & =\ln C_{t}+\theta \ln L_{t} \\
\text { s.t. } & C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t}=w_{t}\left(1+\tau_{t}\right)+\Pi_{t}
\end{aligned}
$$

Lagrange:

$$
\mathcal{L}=\ln C_{t}+\theta \ln L_{t}+\lambda\left(C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t}-w_{t}\left(1+\tau_{t}\right)-\Pi_{t}\right)
$$

Household problem:

$$
\begin{aligned}
\max _{C_{t}, L_{t}} U & =\ln C_{t}+\theta \ln L_{t} \\
\text { s.t. } & C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t}=w_{t}\left(1+\tau_{t}\right)+\Pi_{t}
\end{aligned}
$$

Lagrange:

$$
\mathcal{L}=\ln C_{t}+\theta \ln L_{t}+\lambda\left(C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t}-w_{t}\left(1+\tau_{t}\right)-\Pi_{t}\right)
$$

Optimality condition:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial C_{t}} & =\frac{1}{C_{t}}+\lambda=0 \\
\frac{\partial \mathcal{L}}{\partial L_{t}} & =\frac{\theta}{L_{t}}+\lambda w_{t}\left(1+\tau_{t}\right)=0 \\
L_{t} & =\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Plugging into budget constraint: C_{t}

$$
C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t}=w_{t}\left(1+\tau_{t}\right)+\Pi_{t}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Plugging into budget constraint: C_{t}

$$
\begin{aligned}
C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t} & =w_{t}\left(1+\tau_{t}\right)+\Pi_{t} \\
C_{t}+w_{t}\left(1+\tau_{t}\right) \frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t} & =w_{t}\left(1+\tau_{t}\right)+\Pi_{t}
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Plugging into budget constraint: C_{t}

$$
\begin{aligned}
C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t} & =w_{t}\left(1+\tau_{t}\right)+\Pi_{t} \\
C_{t}+w_{t}\left(1+\tau_{t}\right) \frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t} & =w_{t}\left(1+\tau_{t}\right)+\Pi_{t} \\
C_{t} & =\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{1+\theta}
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Plugging into budget constraint: C_{t}

$$
\begin{aligned}
C_{t}+w_{t}\left(1+\tau_{t}\right) L_{t} & =w_{t}\left(1+\tau_{t}\right)+\Pi_{t} \\
C_{t}+w_{t}\left(1+\tau_{t}\right) \frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t} & =w_{t}\left(1+\tau_{t}\right)+\Pi_{t} \\
C_{t} & \left.=\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{1+\theta}>\frac{w_{t}+\Pi_{t}}{1+\theta} \quad \right\rvert\, \tau_{t}>0
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Optimal L_{t} :

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Optimal L_{t} :

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)}\left(\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{1+\theta}\right)
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Optimal L_{t} :

$$
\begin{aligned}
L_{t} & =\frac{\theta}{w_{t}\left(1+\tau_{t}\right)}\left(\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{1+\theta}\right) \\
L_{t} & =\frac{\theta}{1+\theta}\left(\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{w_{t}\left(1+\tau_{t}\right)}\right)
\end{aligned}
$$

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Optimal L_{t} :

$$
\begin{aligned}
L_{t} & =\frac{\theta}{w_{t}\left(1+\tau_{t}\right)}\left(\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{1+\theta}\right) \\
L_{t} & \left.=\frac{\theta}{1+\theta}\left(\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{w_{t}\left(1+\tau_{t}\right)}\right)<\frac{\theta}{1+\theta}\left(\frac{w_{t}+\Pi_{t}}{w_{t}}\right) \quad \right\rvert\, \tau_{t}>0
\end{aligned}
$$

Economic Intuition?

Optimality condition:

$$
L_{t}=\frac{\theta}{w_{t}\left(1+\tau_{t}\right)} C_{t}
$$

Optimal L_{t} :

$$
\begin{aligned}
L_{t} & =\frac{\theta}{w_{t}\left(1+\tau_{t}\right)}\left(\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{1+\theta}\right) \\
L_{t} & \left.=\frac{\theta}{1+\theta}\left(\frac{w_{t}\left(1+\tau_{t}\right)+\Pi_{t}}{w_{t}\left(1+\tau_{t}\right)}\right)<\frac{\theta}{1+\theta}\left(\frac{w_{t}+\Pi_{t}}{w_{t}}\right) \quad \right\rvert\, \tau_{t}>0
\end{aligned}
$$

Economic Intuition?

- Substitution effect

4. Ricardian Equivalence

Question:

Ricardian Equivalence
a) Explain the extent you agree with this statement: Ricardian Equivalence shows that government deficits do not matter.
b) List the assumptions of the Ricardian Equivalence theorem.

4. Ricardian Equivalence

IBC of the government:

$$
G_{t}+\frac{G_{t+1}}{1+r_{t}}=T_{t}+\frac{T_{t+1}}{1+r_{t}}
$$

IBC of the households:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}-T_{t}+D_{t}+\frac{w_{t+1} N_{t+1}-T_{t+1}+D_{t+1}}{1+r_{t}}
$$

4. Ricardian Equivalence

IBC of the government:

$$
G_{t}+\frac{G_{t+1}}{1+r_{t}}=T_{t}+\frac{T_{t+1}}{1+r_{t}}
$$

IBC of the households:

$$
\begin{aligned}
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}-T_{t}+D_{t}+\frac{w_{t+1} N_{t+1}-T_{t+1}+D_{t+1}}{1+r_{t}} \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}+D_{t}+\frac{w_{t+1} N_{t+1}+D_{t+1}}{1+r_{t}}-\left[T_{t}+\frac{T_{t+1}}{1+r_{t}}\right]
\end{aligned}
$$

4. Ricardian Equivalence

IBC of the government:

$$
G_{t}+\frac{G_{t+1}}{1+r_{t}}=T_{t}+\frac{T_{t+1}}{1+r_{t}}
$$

IBC of the households:

$$
\begin{aligned}
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}-T_{t}+D_{t}+\frac{w_{t+1} N_{t+1}-T_{t+1}+D_{t+1}}{1+r_{t}} \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}+D_{t}+\frac{w_{t+1} N_{t+1}+D_{t+1}}{1+r_{t}}-\left[T_{t}+\frac{T_{t+1}}{1+r_{t}}\right] \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}+D_{t}+\frac{w_{t+1} N_{t+1}+D_{t+1}}{1+r_{t}}-\left[G_{t}+\frac{G_{t+1}}{1+r_{t}}\right]
\end{aligned}
$$

4. Ricardian Equivalence

IBC of the government:

$$
G_{t}+\frac{G_{t+1}}{1+r_{t}}=T_{t}+\frac{T_{t+1}}{1+r_{t}}
$$

IBC of the households:

$$
\begin{aligned}
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}-T_{t}+D_{t}+\frac{w_{t+1} N_{t+1}-T_{t+1}+D_{t+1}}{1+r_{t}} \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}+D_{t}+\frac{w_{t+1} N_{t+1}+D_{t+1}}{1+r_{t}}-\left[T_{t}+\frac{T_{t+1}}{1+r_{t}}\right] \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}+D_{t}+\frac{w_{t+1} N_{t+1}+D_{t+1}}{1+r_{t}}-\left[G_{t}+\frac{G_{t+1}}{1+r_{t}}\right] \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}-G_{t}+D_{t}+\frac{w_{t+1} N_{t+1}-G_{t+1}+D_{t+1}}{1+r_{t}}
\end{aligned}
$$

4. Ricardian Equivalence

IBC of the government:

$$
G_{t}+\frac{G_{t+1}}{1+r_{t}}=T_{t}+\frac{T_{t+1}}{1+r_{t}}
$$

IBC of the households:

$$
\begin{aligned}
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}-T_{t}+D_{t}+\frac{w_{t+1} N_{t+1}-T_{t+1}+D_{t+1}}{1+r_{t}} \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}+D_{t}+\frac{w_{t+1} N_{t+1}+D_{t+1}}{1+r_{t}}-\left[T_{t}+\frac{T_{t+1}}{1+r_{t}}\right] \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}+D_{t}+\frac{w_{t+1} N_{t+1}+D_{t+1}}{1+r_{t}}-\left[G_{t}+\frac{G_{t+1}}{1+r_{t}}\right] \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}-G_{t}+D_{t}+\frac{w_{t+1} N_{t+1}-G_{t+1}+D_{t+1}}{1+r_{t}}
\end{aligned}
$$

- From household's perspective: the government balances its budget every period

4. Ricardian Equivalence

Equilibrium conditions (demand side):

$$
\begin{aligned}
C_{t} & =C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right) \\
Y_{t} & =C_{t}+I_{t}+G_{t}
\end{aligned}
$$

4. Ricardian Equivalence

Equilibrium conditions (demand side):

$$
\begin{aligned}
C_{t} & =C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right) \\
Y_{t} & =C_{t}+I_{t}+G_{t}
\end{aligned}
$$

- Taxes and government debt do not appear in equilibrium conditions \Rightarrow only G_{t} and G_{t+1} are relevant for the determination of equilibrium prices and quantities

4. Ricardian Equivalence

Equilibrium conditions (demand side):

$$
\begin{aligned}
C_{t} & =C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right) \\
Y_{t} & =C_{t}+I_{t}+G_{t}
\end{aligned}
$$

- Taxes and government debt do not appear in equilibrium conditions \Rightarrow only G_{t} and G_{t+1} are relevant for the determination of equilibrium prices and quantities
- Ricardian Equivalence: the method of how the government is financing G_{t} and G_{t+1} is irrelevant for understanding the effects of changes in government expenditures

4. Ricardian Equivalence

Equilibrium conditions (demand side):

$$
\begin{aligned}
C_{t} & =C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right) \\
Y_{t} & =C_{t}+I_{t}+G_{t}
\end{aligned}
$$

- Taxes and government debt do not appear in equilibrium conditions \Rightarrow only G_{t} and G_{t+1} are relevant for the determination of equilibrium prices and quantities
- Ricardian Equivalence: the method of how the government is financing G_{t} and G_{t+1} is irrelevant for understanding the effects of changes in government expenditures
- Corollary: the level of government debt is irrelevant for understanding the equilibrium behavior of the economy

4. Ricardian Equivalence

Assumptions:

- Lump sum taxes
- No liquidity constraints
- Households are forward looking and they believe that the government's intertemporal budget constraint must hold
- Government and households have the same lifespan

