Summer 2022

Problem Set Production and Labor Supply

1. Suppose that the household only lives for one period. The household's optimization problem is:

$$\begin{aligned} \max_{C_t, N_t} U &= \ln C_t + \theta_t \frac{(1 - N_t)^{1 - \gamma}}{1 - \gamma} \\ \text{s.t.} \quad C_t &= w_t N_t \end{aligned}$$

In this problem, the household receives no dividend from the firm.

- a) Solve for the optimality condition characterizing the household problem.
- b) From this optimality condition, what can you say about the effect of w_t on N_t ? What is your explanation for this finding?
- **2.** Suppose that you have a firm with a Cobb-Douglas production function for production in period *t*:

$$Y_t = A_t K_t^{\alpha} N_t^{1-\alpha}$$

The only twist relative to our setup in the main text is that the firm does not use labor to produce output in period t + 1. The production function in that period is:

$$Y_{t+1} = A_{t+1} K_{t+1}^{\alpha}$$

- a) Write down the optimization problem for the firm in this setup. It has to pay labor in period $t w_t$, and it discounts future dividends by $\frac{1}{1+r_t}$. It must borrow to finance its investment at r_t . The capital accumulation equation is standard.
- b) What is the terminal condition for the firm? Explain the economic logic.
- c) Using this specification of production, derive the first order optimality conditions for the optimal choices of N_t and K_{t+1} .
- d) Re-arrange the first order optimality conditions to derive explicit expression for the demand for N_t and the demand for K_{t+1} .
- e) Why is investment increasing in future productivity but is not affected by current productivity?
- f) Re-arrange your answer from the previous part, making use of the capital accumulation equation, to solve for an expression for I_t .
- 3. Consider a representative agent with the utility function

$$U = \ln C_t + \theta \ln(1 - N_t)$$

The budget constraint is

$$C_t + w_t(1 - N_t) = w_t + \Pi_t$$

where w_t is the wage and Π_t is non-wage income.

- a) Solve for the optimal quantities of consumption and labor.
- b) Suppose that the government implements a lump sum subsidy to all workers. The budget constraint is now

$$C_t + w_t(1 - N_t) = w_t + \Pi_t + T_t$$

How are the optimal quantities of C_t and N_t affected by the introduction of the subsidy? Specifically, do people consume more or less leisure? What is the economic intuition for this?

c) Instead of a lump sum subsidy, suppose the government subsidies work. With the subsidy, the workers receive an effective wage rate of $w_t(1 + \tau_t)$. The budget constraint is

$$C_t + w_t (1 + \tau_t)(1 - N_t) = w_t (1 + \tau_t) + \Pi_t$$

How are the optimal quantities of C and N affected by the introduction of the subsidy? Specifically, do people consume more or less leisure? What is the economic intuition for this?

- 4. Ricardian Equivalence
 - a) Explain the extent you agree with this statement: Ricardian Equivalence shows that government deficits do not matter.
 - b) List the assumptions of the Ricardian Equivalence theorem.

5. Further (voluntary) homework:

Suppose the economy described in question 2 and create an Excel file. Assume the following values for exogenous parameters: $\alpha = 1/3$, $\delta = 0.1$, $A_t = 1$, $A_{t+1} = 1$, and $K_t = 2$.

- a) Create a column of possible values of w_t , ranging from a low of 1 to a high of 1.5, with a step of 0.01 between entries (i.e. create a column going from 1 to 1.01 to 1.02 all the way to 1.5). For each possible value of w_t , solve for a numeric value of N_t . Plot w_t against the optimal value of N_t . Does the resulting demand curve for labor qualitatively look like Figure 12.2 in the book?
- b) Suppose that A_t increases to 1.1. Re-calculate the optimal value of N_t for each value of w_t . Plot the resulting N_t values against w_t in the same plot as what you did on the previous part. What does the increase in A_t do to the position of the labor demand curve?
- c) Go back to assuming the parameter and exogenous values we started with. Create a grid of values of r_t ranging from a low 0.02 to a high of 0.1, with a space of 0.001 between (i.e. create a column going from 0.020, to 0.021, to 0.022, and so on). For each value of r_t , solve for the optimal level of I_t . Create a graph with r_t on the vertical axis and I_t on the horizontal axis. Plot this graph. Does it qualitatively look like Figure 12.3 in the book?
- d) Suppose that A_{t+1} increases to 1.1. For each value of r_t , solve for the optimal I_t . Plot this in the same figure as on the previous part. What does the increase in A_{t+1} do to the position of the investment demand curve?