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Planar Straight-Line Drawings

Every n-vertex planar graph has a planar straight-line
drawing of size (2n — 4) x (n — 2).

‘Theorem. [Schnyder '90]
Every n-vertex planar graph has a planar straight-line
drawing of size {7 -- 2j x {r. — 2] (2n — 5) x (2n — 5).)

Idea.
B Fix outer triangle.

B Compute coordinates of inner vertices
B based on outer triangle and

B how much space there should be for other vertices

B using weighted barycentric coordinates.




Barycentric Coordinates
Recall: barycenter(xy,...,x1) = Zle x; [k

Let A, B, C form a triangle, and let = lie in AABC.

The barycentric coordinates of = with respect to
AABC are a triple (o, 3,7) € RY, such that

mao+8+~v=1and
B x=cA+ 3B +~C.
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Barycentric Representation

A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G: max{x2, Y2 }

f:V— R?’Zo,v — (v1, V2, v3) max{xs, yz }

with the following properties: /\%%\
g prop AT B

(Bl) v1 + v +wv3=1forallv eV, /7 \

(B2) for each {x,y} € E and each z € V' \ {z, y} max{z1, y1 }
there exists a k € {1,2,3} with z; < z; and yi < zi.




Barycentric Representation

A barycentric representation of a graph G = (V, F) is an
assignment of barycentric coordinates to the vertices of G:

f:V— R?’Zo,v — (v1, V2, v3)

with the following properties:
(Bl) v1 + v +wv3=1forallv eV,

(B2) for each {z,y} € E and each z € V \ {x,y}
there exists a k € {1,2,3} with z; < z; and yi < zi.

C
forbidden max{x2, Y2}
triangle
Y
max{xs, Y3}
/\/ 2\
AT—A B

max{xi,y1}



Barycentric Representations of Planar Graphs

( )
Lemma.

Let f: v — (v1,v2,03) be a barycentric representation of a
planar graph G, and let A, B, (' € R? be in general position.
Then the mapping

¢:U€Vl—>U1A+UzB—|—U30 /

/ ,’,U/
\yields a planar drawing of G inside AABC. ) u/\ X
| B

B No vertex x can lie on an edge {u,v}.

' U
B No pair of edges {u,v} and {u',v'} crosses: A ,
U,/L >uiavi /U;' >Uj,?}j Uk >u;<;7vllg (Y] >’LL2,’UZI [ How to find a
= {i, i} {k,1} =0 barycentr_lc
representation?

w.lo.g. 1 =7 =2 = u,,v5 > us, v, = separated by straight line - /
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Schnyder Labeling

Let ¢: v — (v1,v2,v3) be a barycentric representation of a
planar graph G, and let A, B, C' € R? be in general position.

r1 > Y1, 21
Yp > T2, 22

Z3 > I3,Y3




Schnyder Labeling .

Let ¢: v — (v1,v2,v3) be a barycentric representation of a
planar graph G, and let A, B, C' € R? be in general position.

We can label each angle in Azyz uniquely with k£ € {1,2,3}.

r1 > Y1, 21

Yp > T2, 22

Z3 > I3,Y3



Schnyder Labeling

Let ¢: v — (v1,v2,v3) be a barycentric representation of a
planar graph G, and let A, B, C' € R? be in general position.

We can label each angle in Azyz uniquely with k£ € {1,2,3}.

A Schnyder labeling of a plane triangulation G is a

labeling of all internal angles with labels 1, 2 and 3
such that:

Faces: The three angles of an internal face are
labeled 1, 2 and 3 in counterclockwise order.

Vertices: The ccw order of labels around each
vertex consists of

B a nonempty interval of 1's
B followed by a nonempty interval of 2's

m followed by a nonempty interval of 3's.




Schnyder Wood

A Schnyder labeling induces an edge labeling.

A Schnyder wood (or realizer) of a plane triangulation
G = (V, E) is a partition of the inner edges of F into
three sets of oriented edges 11, 15, I3 such that, for
each inner vertex v € V, it holds that




Schnyder Wood

A Schnyder labeling induces an edge labeling.

A Schnyder wood (or realizer) of a plane triangulation

G = (V, E) is a partition of the inner edges of F into

three sets of oriented edges 11, 15, I3 such that, for 1 -
each inner vertex v € V, it holds that

B v has one outgoing edge in each of 711, 15, and 75.

B The ccw order of edges around v is:
leaving in 17, entering in 13, leaving in 15,

entering in 11, leaving in 13, entering in 15. 2 11
2/3
15

- 12



Schnyder Wood — Example and Properties




Schnyder Wood — Example and Properties
13

1>
11

® All inner edges incident to a, b, and
¢ are incoming in the same color.

m 77, 75, and 15 are trees.
Each spans all inner vertices and
one outer vertex (its root).




10 -

Schnyder Wood — Existence

'Lemma. [Kampen 1976]
Let GG be a plane triangulation with vertices a, b, ¢ on the outer face.
Then there exists a contractible edge {a, 2z} in G with x & {b, c}.

- v
Y4 U3 contracting 4 Us
—I\
v {a,r} V2
(] U1
a a

... requires that a and = have exactly two common neighbors.



Schnyder Wood — Existence

Let GG be a plane triangulation with vertices a, b, ¢ on the outer face.
Then there exists a contractible edge {a, 2z} in G with x & {b, c}.

'Lemma. [Kampen 1976]

p
Theorem.

\

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Y4 U3 contracting v4 Us
—I\
v {a,r} V2
(] U1
a a

... requires that a and = have exactly two common neighbors.

10 -



Schnyder Wood — Existence

'Lemma. [Kampen 1976]
Let GG be a plane triangulation with vertices a, b, ¢ on the outer face.
Then there exists a contractible edge {a, 2z} in G with x & {b, c}.

\

p
Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

contracting
AN
{a,z}
N——

expanding

... requires that a and = have exactly two common neighbors.

10 - 15



Schnyder Wood — Existence

‘Lemma. [Kampen 1976?
Let G be a plane triangulation with vertices a, b, ¢ on the outer face.
| Then there exists a contractible edge {a,z} in G with x & {b, c}.

J
N

e
Theorem.

10 - 16

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

contracting
—\
{a,z}
N —

expanding

... requires that a and = have exactly two common neighbors.

Constructive proof
yields an algorithm
for computing a
Schnyder labeling.
It can be imple-
mented to run in
O(n) time. ..

Exercise :-)
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Schnyder Wood — More Properties

B From each vertex v there exists
a directed red path P;(v) to a,

a directed blue path (v) to b, and
a directed green path P;(v) to c.

P;(v): path from v to root of Tj;.

12 -

‘Lemma.
B P (v), P»(v), Ps(v) cross only at v.
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Schnyder Wood — More Properties

B From each vertex v there exists
a directed red path P;(v) to a,

a directed blue path (v) to b, and
a directed green path P;(v) to c.

P;(v): path from v to root of Tj;.

Ri(v): set of faces contained in P, be, Ps.
R>(v): set of faces contained in Ps, ca, P;.
R3(v): set of faces contained in Py, ab, P».

‘Lemma.
B P (v), P»(v), Ps(v) cross only at v.

m For inner vertices u # v it holds that
u € Ri(v) = Ri(u) € R;(v).
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Schnyder Wood — More Properties

B From each vertex v there exists
a directed red path P;(v) to a,

a directed blue path (v) to b, and
a directed green path P;(v) to c.

P;(v): path from v to root of Tj;.

Ri(v): set of faces contained in P, be, Ps.
R>(v): set of faces contained in Ps, ca, P;.
R3(v): set of faces contained in Py, ab, P».

( )
Lemma.

B P (v), P»(v), Ps(v) cross only at v.

m For inner vertices u # v it holds that
u € Ri(v) = Ri(u) € R;(v).
Ry (0)] + | Ra(0)] 4 |75 (0)] = 20— 5

J




Schnyder Drawing

‘Theorem. [Schnyder '90]j
For a plane triangulation GG, the mapping

frvm= (v1,02,03) = 5= (|R1(v)], |Ra2(v)], | R3(v)])

is a barycentric representation of GG (and thus yields a planar
\straight—line drawing of GG

(B].) v +1vo+v3=1forallveV v

(B2) for each {z,y} € E and each z € V \ {x,y}
there exists k € {1,2,3} with x; < z; and ¥y < 2z

T~
N0

13 -
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Schnyder Drawing

Set A=(0,0), B=(2n—5,0), and C' = (0,2n — 5).

‘Theorem. [Schnyder ’90]N
For a plane triangulation GG, the mapping

frvm= (v1,02,03) = 5= (|R1(v)], |Ra2(v)], | R3(v)])

is a barycentric representation of GG (and thus yields a planar
straight-line drawing of G on the (2n —5) x (2n — 5) grid).
(B].) v +1vo+v3=1forallveV e

(B2) for each {z,y} € E and each z € V \ {x,y}
there exists k € {1,2,3} with x; < z; and ¥y < 2z P

B {z,y} must lie in R;(z) for some i € {1,2,3} T

J
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Schnyder Drawing — Example

9<,>\C

3

3

3

3 avl bvg
> | n=7 2n—5=9 f(v) = (5,2,2)

1 f(v1) =(9,0,0) f(vs) = (1,2,6)
Ay NN LN B f(v2) =(0,9,0) f(ve) = (4,1,4)
091 2 3 4 5 6 7 8 9 flvs) =(2,6,1)  f(vr) =(0,0,9)



Schnyder Drawing — Example

a = v b= v,
n=7, 2n—5=9 f(vs4) = (5,2,2)
f(v1) =(9,0,0) f(vs) = (1,2,6)
f(v2) =(0,9,0) flve) = (4,1,4)
flvs) = (2,6,1) f(vr) =(0,0,9)

O R, N W A~ 1 OO N 00O O
@ ()




Weak Barycentric Representation

L C
A weak barycentric representation of a graph G = (V, F)) Interior
Is an assignment of barycentric coordinates to V': of trfa”gle
3 forbidden
¢:V = Ry, v+ (v1,02,03) Y
with the following properties: <
(W].) v1+vo+v3=1forall veV,
(W2) for each {z,y} € F and each z € V' \ {z, y} A 7N B

there exists a k € {1,2,3} with

(Ths Tht1) <iex (2k, 2k+1) and (Yk, Yr+1) <tex (2k5 Zh+1)- i.e., either y < zi or

Yr = 2k and Yr+1 < 241

15 -
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Weak Barycentric Representation

L C
A weak barycentric representation of a graph G = (V, F)) Interior
Is an assignment of barycentric coordinates to V': of trfa”gle
3 forbidden
¢:V = Ry, v+ (v1,02,03) Y
with the following properties: <
(W].) v1+vo+v3=1forall veV,
(W2) for each {z,y} € F and each z € V' \ {z, y} A 7N B

there exists a k € {1,2,3} with

(Ths Tht1) <iex (2k, 2k+1) and (Yk, Yr+1) <tex (2k5 Zh+1)- i.e., either y < zi or

N~ Yk = 2k and Yr+1 < Zk41

p
Lemma.

For a weak barycentric representation ¢: v — (v1, 12, v3) and
a triangle AABC', the mapping

frveVisv A4+ B+ 030
yields a planar drawing of G inside AABC.

Proof as exercise.




Counting Vertices

16 -

P;(v): path from v to root of Tj.

R1 (v): set of faces containec

v): set of faces contained
(Ri(v))] — |Pi—1(v)]
U1 = 10 -3 =7

);

( ): set of faces containec
);
Vv

in 5, be, Ps.
In P3,CCL,P1.
In Pl,ab,PQ.

U2:6—3:3
U3:8—3:5
‘Lemma. A

m For inner vertices u # v it holds that
u € Ri(v) = (ui; uir1) <iex (Vi) vit1).

= vi+vot+uv3=n-—1

18




Schnyder Drawing*

Set A=(0,0), B=(n—1,0),and C = (0,n —1).

17
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Schnyder Drawing* — Example




Results & Variations

Every n-vertex planar graph has a planar straight-line drawing of size
\(27” — 4) X (n — 2). Such a drawing can be computed in O(n) time.

‘Theorem. [De Fraysseix, Pach, Pollack ’90]\

J

Every n-vertex planar graph has a planar straight-line drawing of size

‘Theorem. [Schnyder ’90]\

k(n — 2) X (n — 2). Such a drawing can be computed in O(n) time.<

u

C C

~ Exercisel

19 -



Results & Variations

‘Theorem. [De Fraysseix, Pach, Pollack ’90]\
Every n-vertex planar graph has a planar straight-line drawing of size
k(2n —4) x (n — 2). Such a drawing can be computed in O(n) time.

‘Theorem. [Schnyder ’90]\
Every n-vertex planar graph has a planar straight-line drawing of size
k(n — 2) x (n — 2). Such a drawing can be computed in O(n) time.«———

J

‘Theorem. |[Brandenburg ’08]\
Every n-vertex planar graph has a planar straight-line drawing of size
4 2

271 X

~ Exercisel

= 1. Such a drawing can be computed in O(n) time.
\.

19 -



Results & Variations

NN\
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Results & Variations

‘Theorem. [Chrobak & Kant '97]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (n — 2) x (n — 2) where all faces are drawn convex.

Such a drawing can be computed in O(n) time. )

‘Theorem. [Felsner ’01]N
Every 3-connected planar graph with f faces has a planar straight-line

drawing of size (f — 1) x (f — 1) where all faces are drawn convex.

Such a drawing can be computed in O(n) time. )




| iterature

B [PGD Ch. 4.3] for detailed explanation of shift method

B [Sch90] “Embedding planar graphs on the grid”, Walter Schnyder, SoCG 1990 —
original paper on Schnyder realizer method.

20
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