

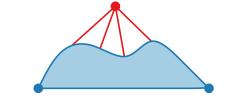
Visualization of Graphs

Lecture 3:

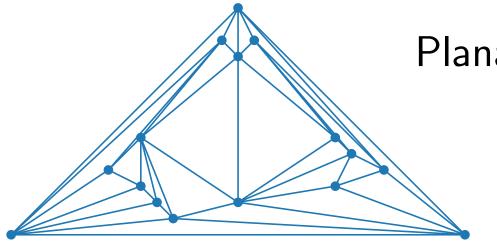
Straight-Line Drawings of Planar Graphs I: Canonical Ordering and the Shift Method

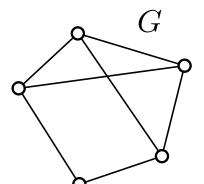
Part I:

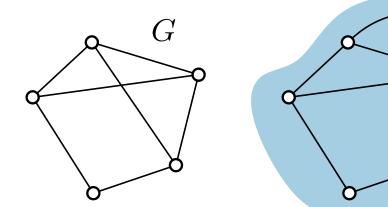
Planar Straight-Line Drawings

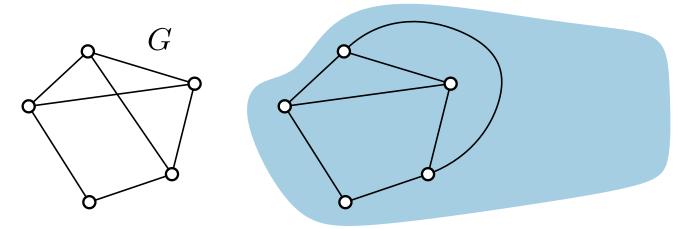


Alexander Wolff



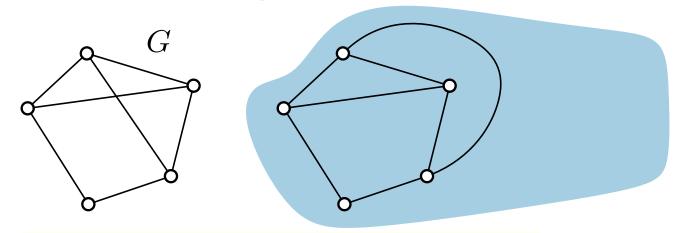






G is **planar**:

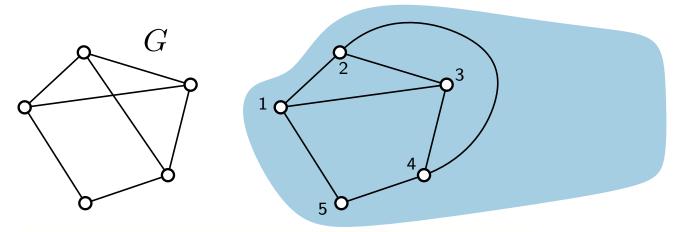
it can be drawn in such a way that no edges cross each other.



G is planar:

it can be drawn in such a way that no edges cross each other.

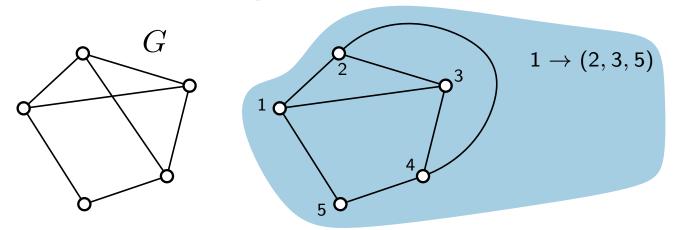
planar embedding:



G is **planar**:

it can be drawn in such a way that no edges cross each other.

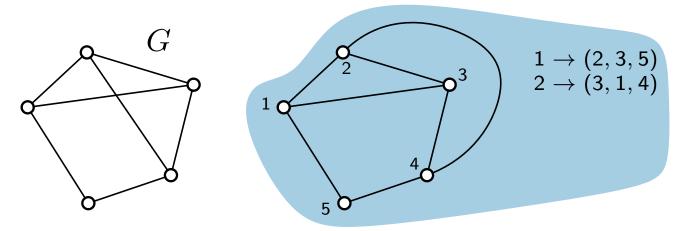
planar embedding:



G is **planar**:

it can be drawn in such a way that no edges cross each other.

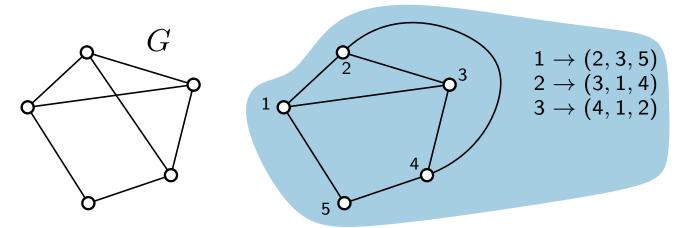
planar embedding:



G is **planar**:

it can be drawn in such a way that no edges cross each other.

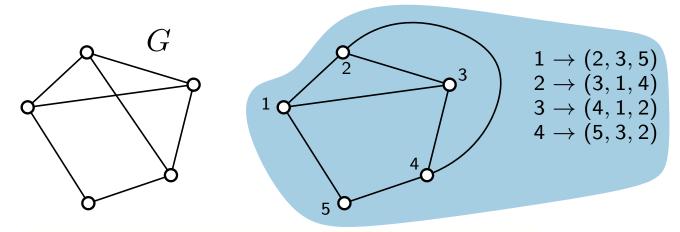
planar embedding:



G is **planar**:

it can be drawn in such a way that no edges cross each other.

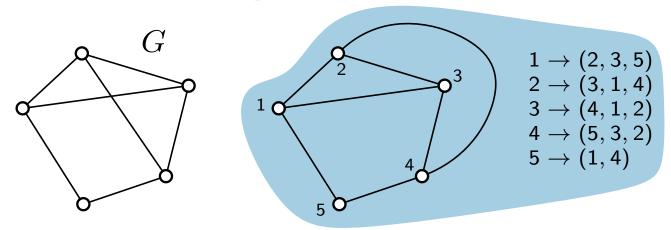
planar embedding:



G is planar:

it can be drawn in such a way that no edges cross each other.

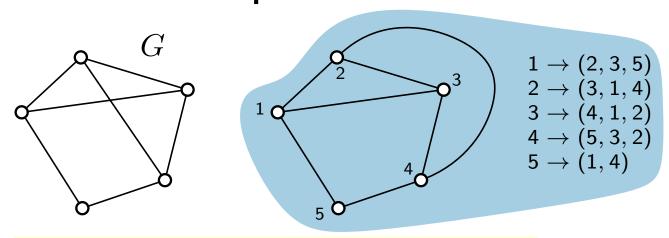
planar embedding:

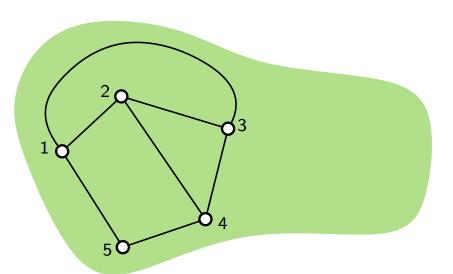


G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:





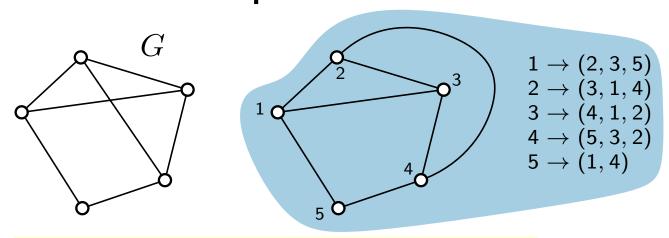
G is planar:

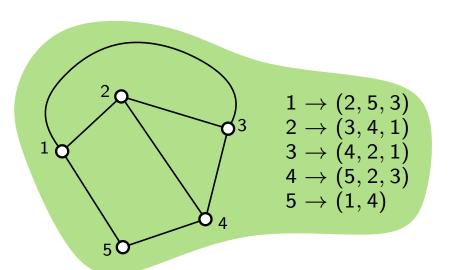
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.





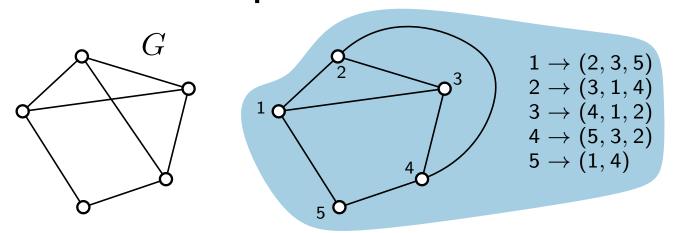
G is planar:

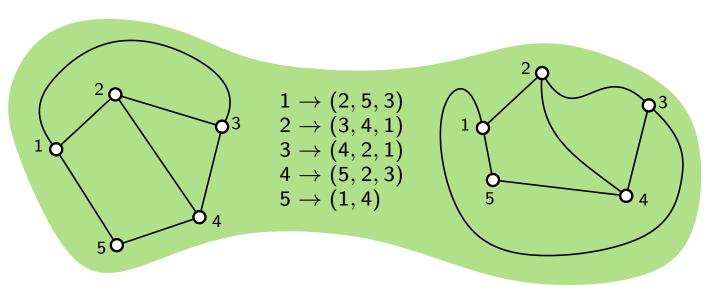
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.





G is planar:

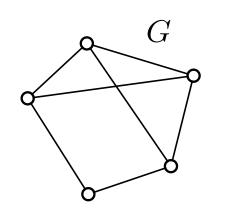
it can be drawn in such a way that no edges cross each other.

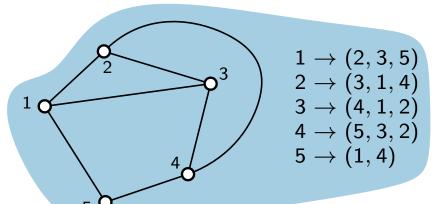
planar embedding:

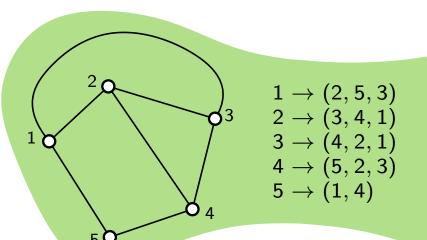
Clockwise orientation of adjacent vertices around each vertex.

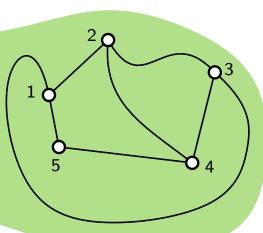
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!









G is planar:

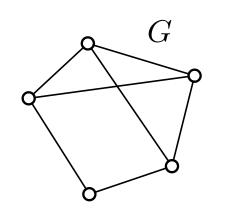
it can be drawn in such a way that no edges cross each other.

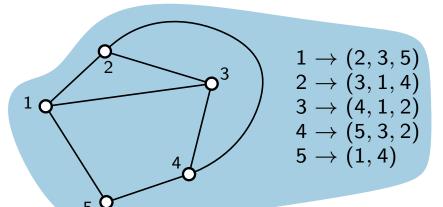
planar embedding:

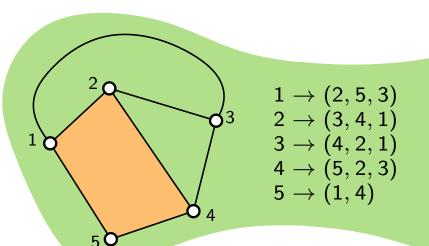
Clockwise orientation of adjacent vertices around each vertex.

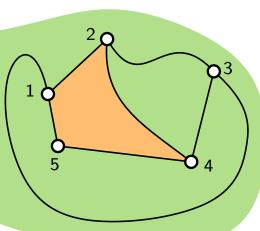
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!









G is planar:

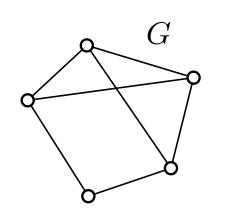
it can be drawn in such a way that no edges cross each other.

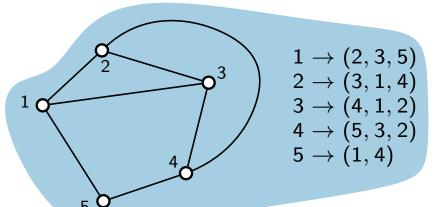
planar embedding:

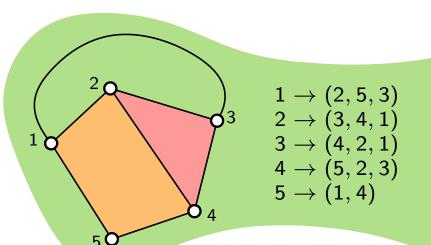
Clockwise orientation of adjacent vertices around each vertex.

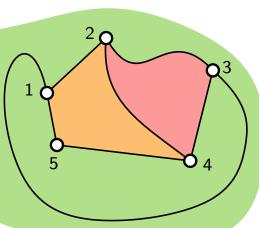
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!









G is planar:

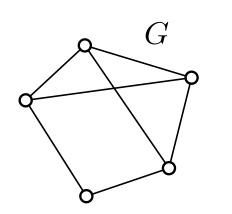
it can be drawn in such a way that no edges cross each other.

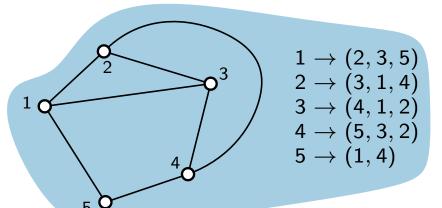
planar embedding:

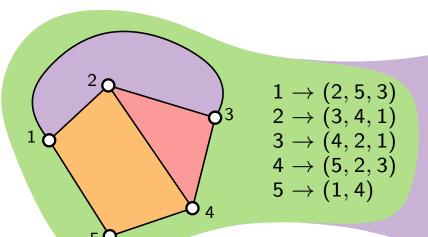
Clockwise orientation of adjacent vertices around each vertex.

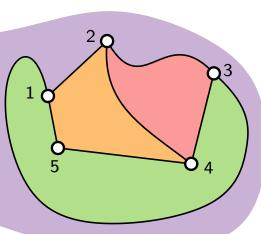
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!









G is planar:

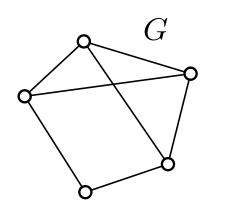
it can be drawn in such a way that no edges cross each other.

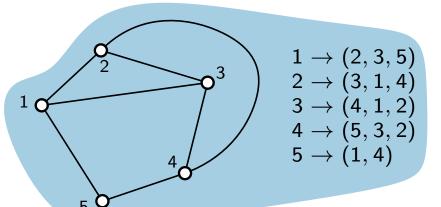
planar embedding:

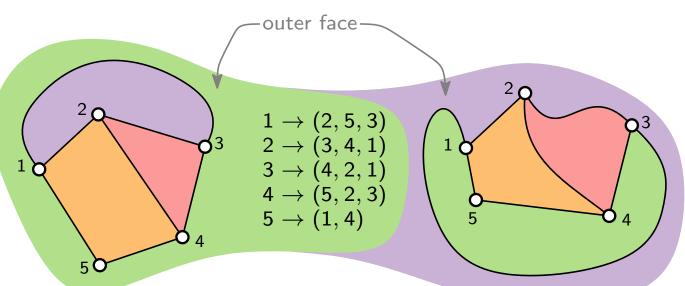
Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!







G is planar:

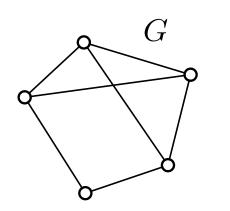
it can be drawn in such a way that no edges cross each other.

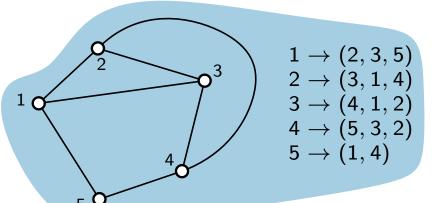
planar embedding:

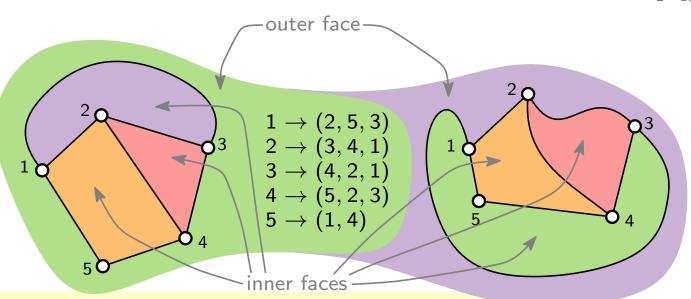
Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!







G is planar:

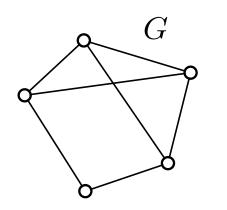
it can be drawn in such a way that no edges cross each other.

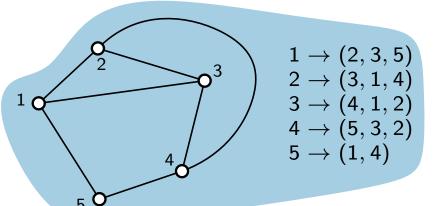
planar embedding:

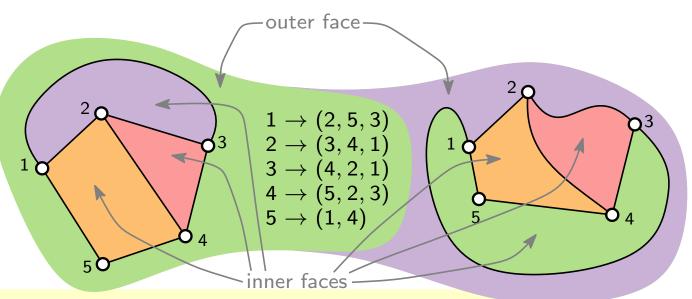
Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

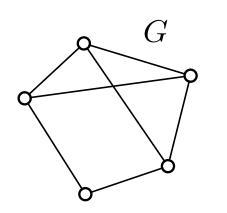
A planar graph can have many planar embeddings.

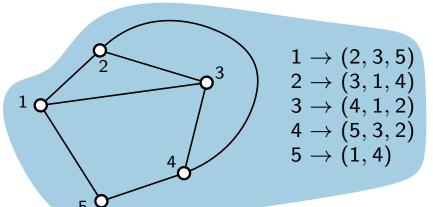
A planar embedding can have many planar drawings!

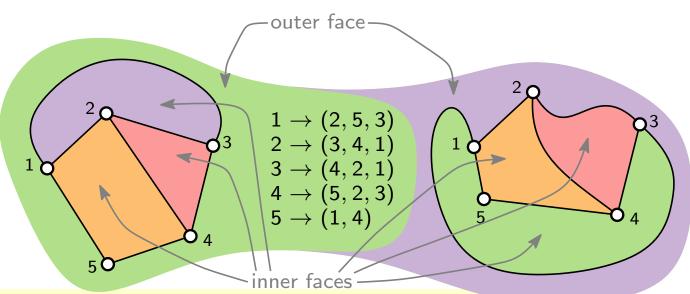
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

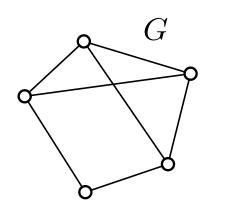
A planar embedding can have many planar drawings!

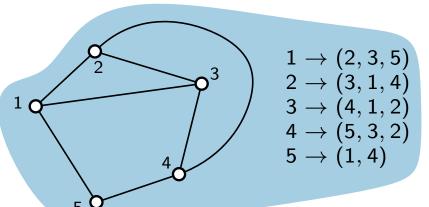
faces: Connected region of the plane bounded by edges

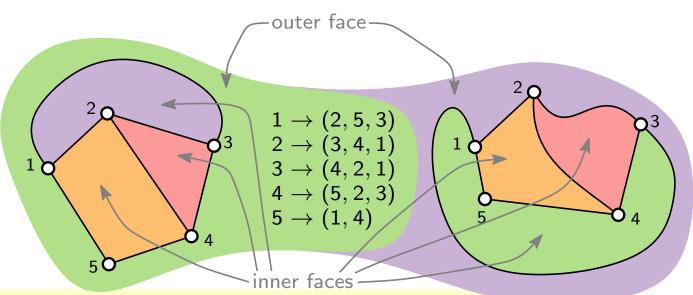
Euler's polyhedra formula.

$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

Proof.







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

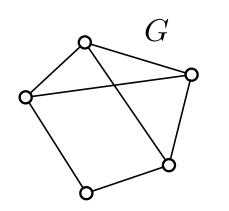
A planar embedding can have many planar drawings!

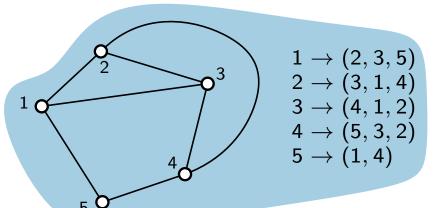
faces: Connected region of the plane bounded by edges

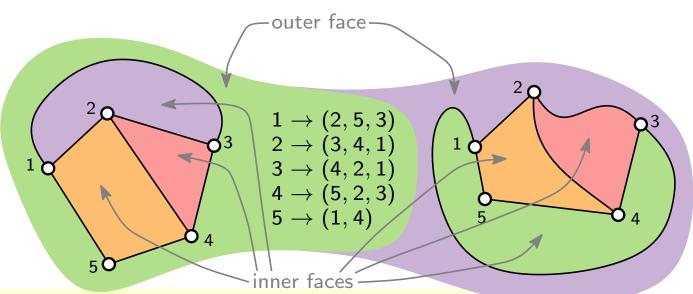
Euler's polyhedra formula.

$$\# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1$$

$$f - m + n = c + 1$$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

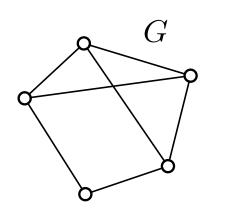
A planar embedding can have many planar drawings!

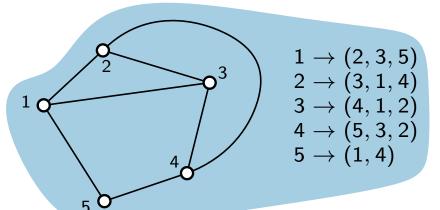
faces: Connected region of the plane bounded by edges

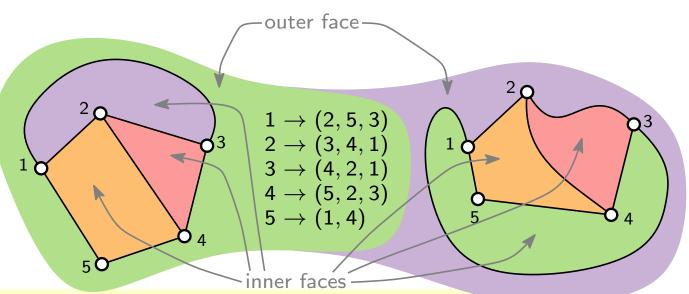
Euler's polyhedra formula.

$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

$$m = 0 \Rightarrow$$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

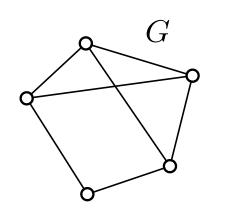
faces: Connected region of the plane bounded by edges

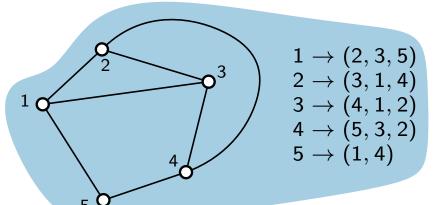
Euler's polyhedra formula.

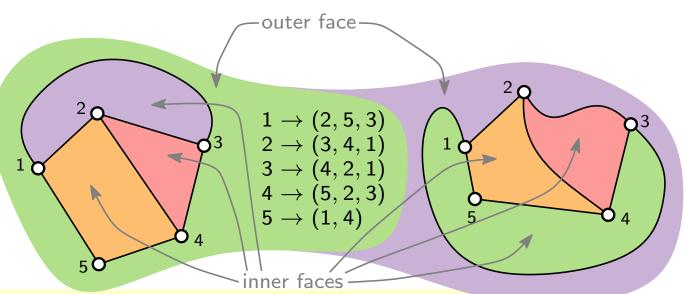
$$\# \text{faces} - \# \text{edges} + \# \text{vertices} = \# \text{conn.comp.} + 1$$

$$f - m + n = c + 1$$

$$m=0 \Rightarrow f=?$$
 and $c=?$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

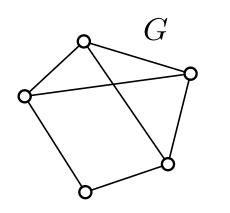
A planar embedding can have many planar drawings!

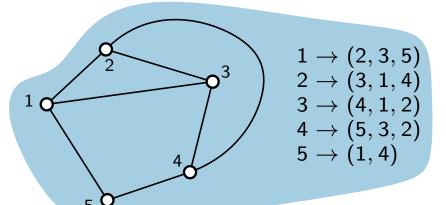
faces: Connected region of the plane bounded by edges

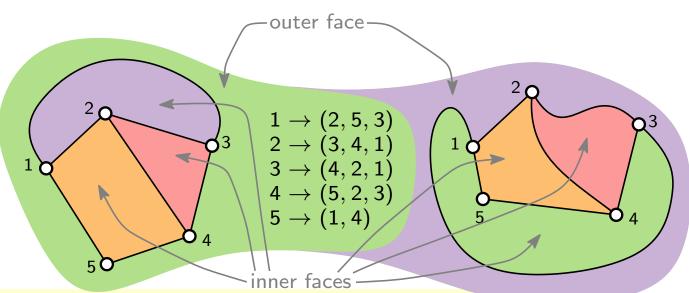
Euler's polyhedra formula.

$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

$$m=0 \Rightarrow f=1 \text{ and } c=n$$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

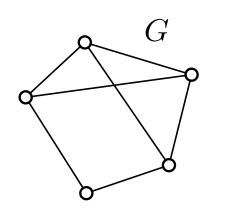
Euler's polyhedra formula.

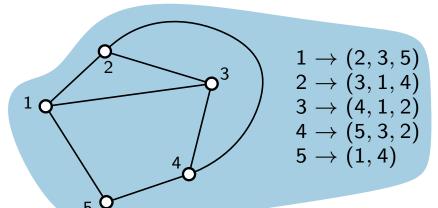
$$\# \text{faces} - \# \text{edges} + \# \text{vertices} = \# \text{conn.comp.} + 1$$

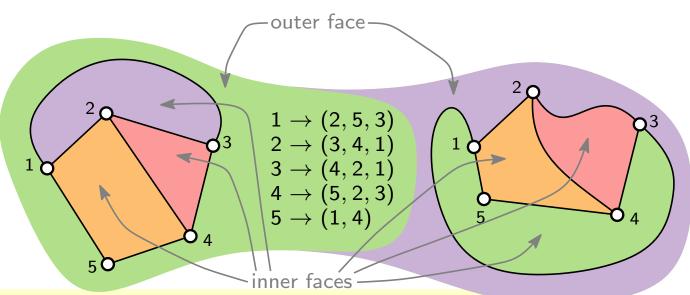
$$f - m + n = c + 1$$

$$m = 0 \Rightarrow f = 1 \text{ and } c = n$$

 $\Rightarrow 1 - 0 + n = n + 1$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

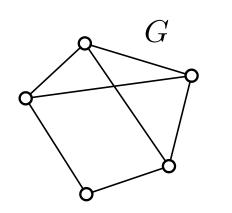
Euler's polyhedra formula.

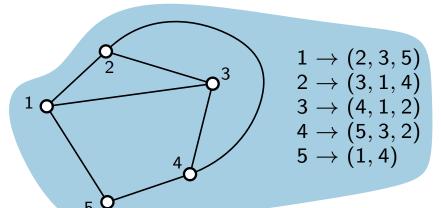
$$\# \text{faces} - \# \text{edges} + \# \text{vertices} = \# \text{conn.comp.} + 1$$

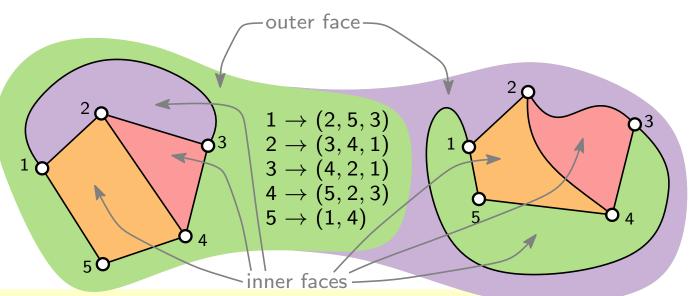
$$f - m + n = c + 1$$

$$m = 0 \Rightarrow f = 1 \text{ and } c = n$$

 $\Rightarrow 1 - 0 + n = n + 1 \checkmark$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

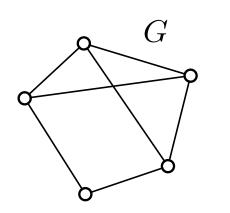
Euler's polyhedra formula.

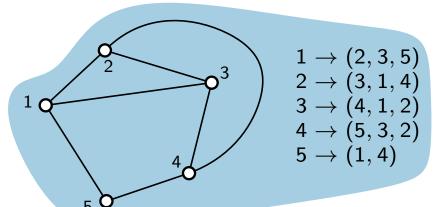
$$\# \text{faces} - \# \text{edges} + \# \text{vertices} = \# \text{conn.comp.} + 1$$

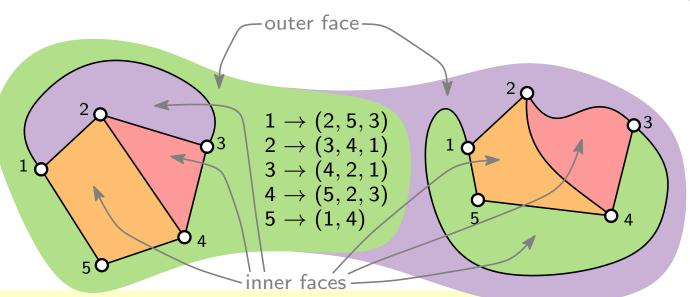
$$f - m + n = c + 1$$

$$m=0 \Rightarrow f=1 \text{ and } c=n$$

 $\Rightarrow 1-0+n=n+1$ \checkmark
 $m\geq 1 \Rightarrow$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

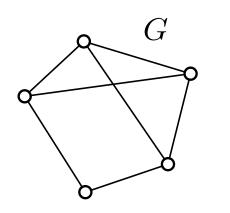
$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

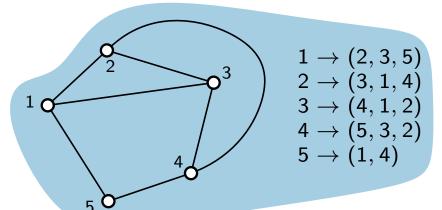
Proof. By induction on m:

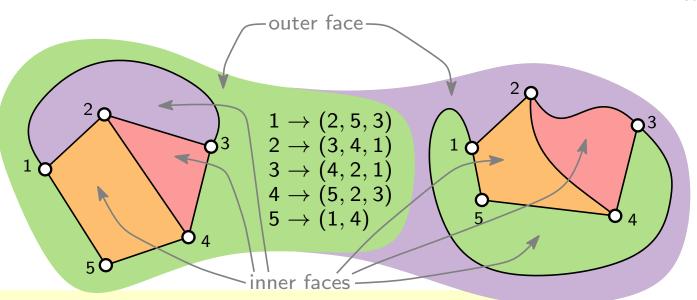
$$m = 0 \Rightarrow f = 1 \text{ and } c = n$$

 $\Rightarrow 1 - 0 + n = n + 1 \checkmark$

 $m \geq 1 \Rightarrow \text{ remove some edge } e$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

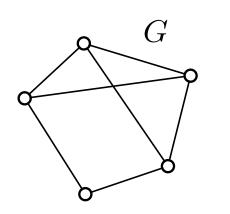
faces: Connected region of the plane bounded by edges

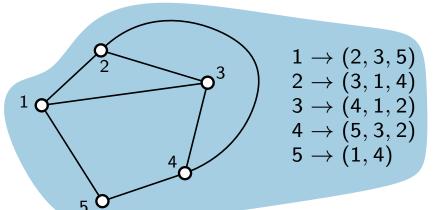
Euler's polyhedra formula.

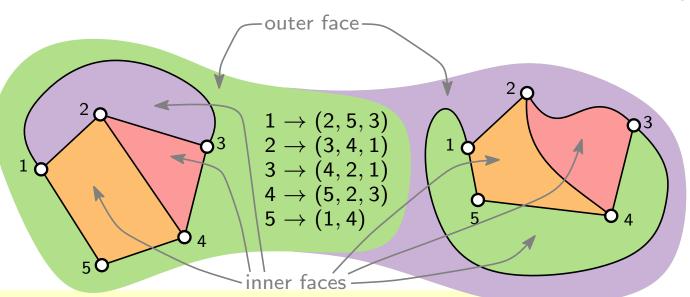
$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

Proof. By induction on m:

$$m=0 \Rightarrow f=1 \text{ and } c=n \ \Rightarrow 1-0+n=n+1 \checkmark$$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

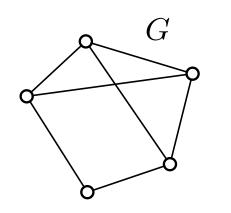
$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

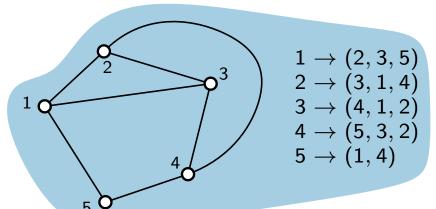
Proof. By induction on m:

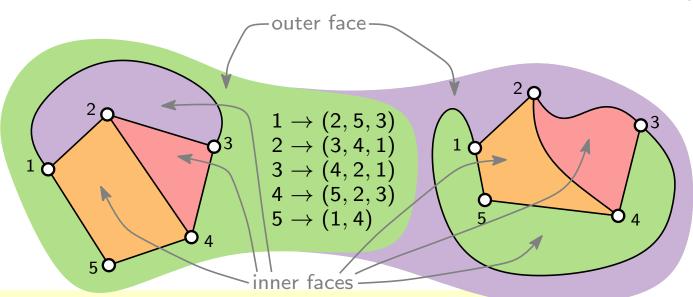
$$m=0 \Rightarrow f=1 \text{ and } c=n$$

 $\Rightarrow 1-0+n=n+1 \checkmark$

$$\Rightarrow$$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

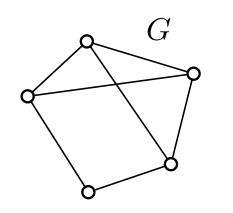
Euler's polyhedra formula.

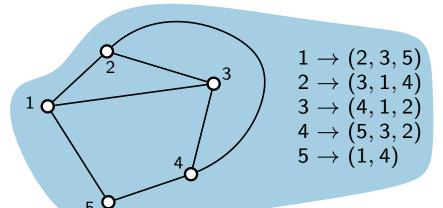
$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

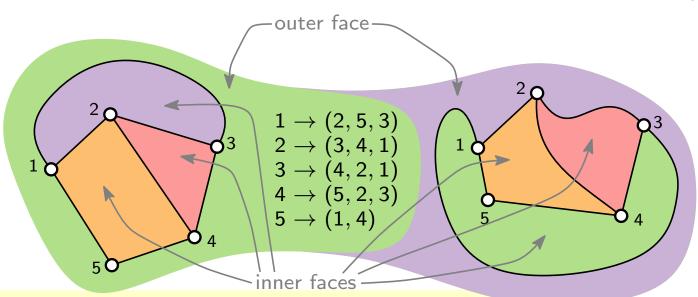
Proof. By induction on m:

$$m=0 \Rightarrow f=1 \text{ and } c=n \ \Rightarrow 1-0+n=n+1 \checkmark$$

$$\Rightarrow c \rightarrow c+1$$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

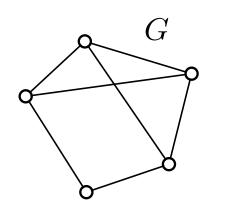
$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

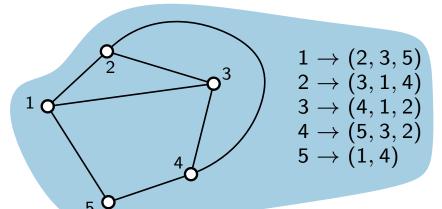
Proof. By induction on m:

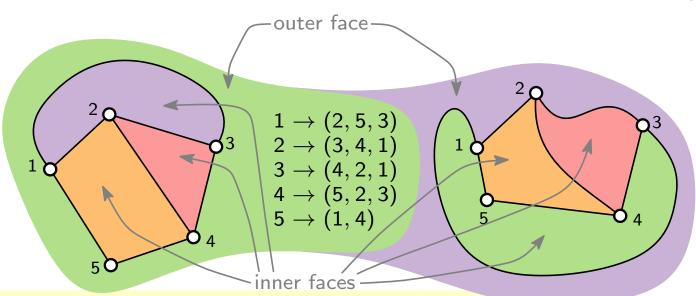
$$m=0 \Rightarrow f=1 \text{ and } c=n$$

 $\Rightarrow 1-0+n=n+1 \checkmark$

$$\Rightarrow c \rightarrow c + 1$$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

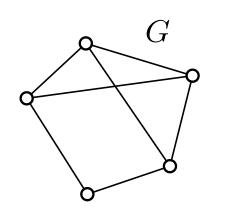
Euler's polyhedra formula.

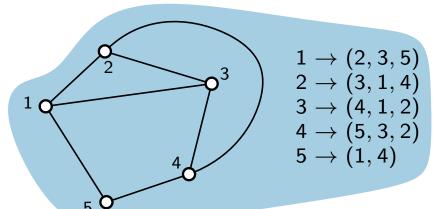
$$\label{eq:faces} \begin{array}{lll} \# \mathsf{faces} - \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f - m + n & = c + 1 \end{array}$$

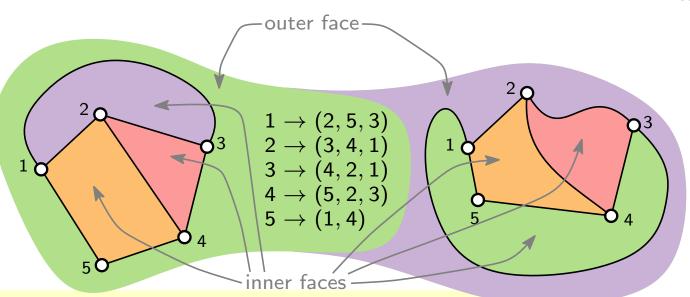
Proof. By induction on m:

$$m = 0 \Rightarrow f = 1 \text{ and } c = n$$

 $\Rightarrow 1 - 0 + n = n + 1 \checkmark$







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$\# \text{faces} - \# \text{edges} + \# \text{vertices} = \# \text{conn.comp.} + 1$$

$$f - m + n = c + 1$$

Proof. By induction on m:

$$m = 0 \Rightarrow f = 1 \text{ and } c = n$$

 $\Rightarrow 1 - 0 + n = n + 1 \checkmark$

$$\Rightarrow c \rightarrow c + 1$$
 $\Rightarrow f \rightarrow f - 1$

Euler's polyhedra formula.

```
\# faces - \# edges + \# vertices = \# conn.comp. + 1
f - m + n = c + 1
```

Euler's polyhedra formula.

```
\# faces - \# edges + \# vertices = \# conn.comp. + 1
f - m + n = c + 1
```

Theorem. G simple planar graph with $n \geq 3$ vtc.

Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \le 3n - 6$$

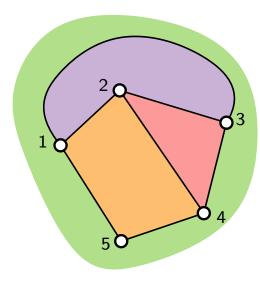
Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \le 3n - 6$$

Proof. 1.



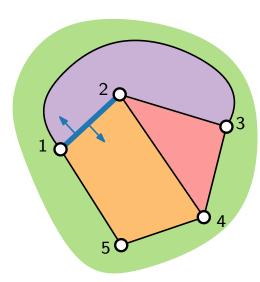
Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \le 3n - 6$$

Proof. 1. Every edge incident to ≤ 2 faces



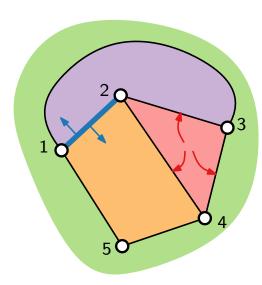
Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$

$$f - m + n = c + 1$$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \leq 3n - 6$$



Euler's polyhedra formula.

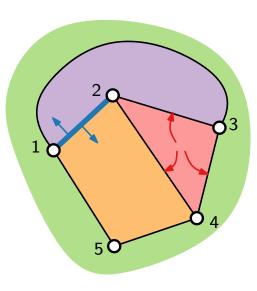
$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$

$$f - m + n = c + 1$$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \leq 3n - 6$$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges $\Rightarrow 3f + 2m$



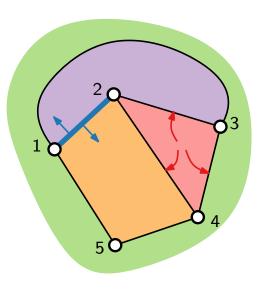
Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \leq 3n - 6$$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges $\Rightarrow 3f \leq 2m$



Euler's polyhedra formula.

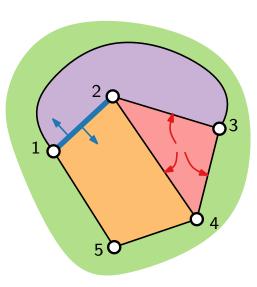
$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \leq 3n - 6$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow$$
 $3c+3 \leq 3f-3m+3n$



Euler's polyhedra formula.

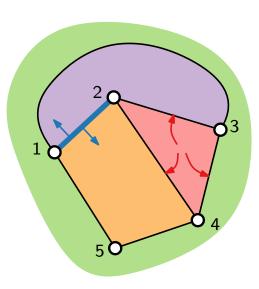
$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \leq 3n - 6$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow \overline{\leq 3c + 3} \leq 3f - 3m + 3n$$



Euler's polyhedra formula.

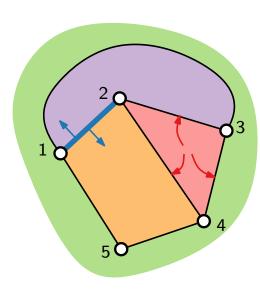
$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \leq 3n - 6$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow$$
 6 \leq 3 c + 3 \leq 3 f - 3 m + 3 n



Euler's polyhedra formula.

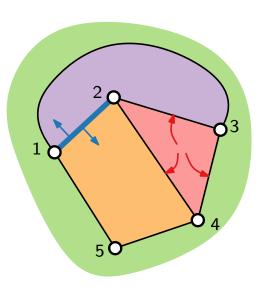
$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \le 3n - 6$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \leq 3c + 3 \leq 3f - 3m + 3n$$



Euler's polyhedra formula.

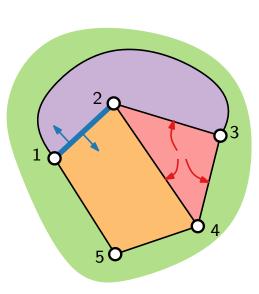
$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m < 3n - 6$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n$$



Euler's polyhedra formula.

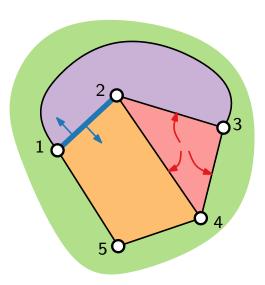
$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \le 3n - 6$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$



Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

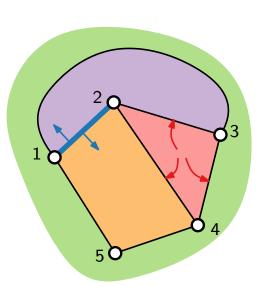
Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \le 3n - 6$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$



Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

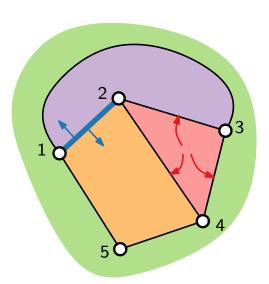
1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

2.
$$f \leq 2n - 4$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$



Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

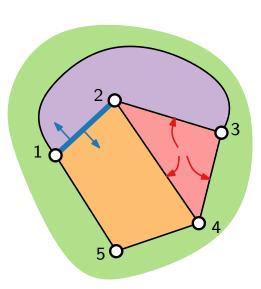
2.
$$f \leq 2n - 4$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \leq 2m$$



Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

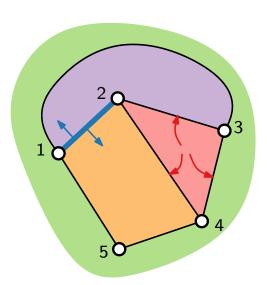
2.
$$f \leq 2n - 4$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \leq 2m \leq 6n - 12$$



Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m < 3n - 6$$
 2. $f < 2n - 4$

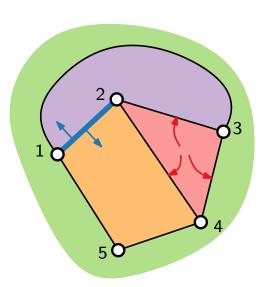
2.
$$f \leq 2n - 4$$

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \implies f \le 2n - 4$$



Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m < 3n - 6$$

1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

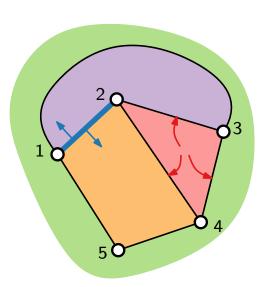
3. There is a vertex of degree at most 5.

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \implies f \le 2n - 4$$



Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

- 1. $m \le 3n 6$ 2. $f \le 2n 4$
- 3. There is a vertex of degree at most 5.
- **Proof.** 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

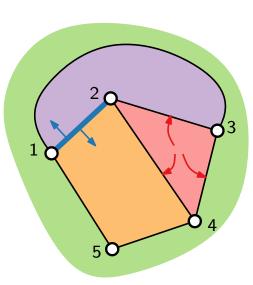
$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \implies f \le 2n - 4$$

3.
$$\sum_{v \in V} \deg(v)$$



Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m < 3n - 6$$

1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

3. There is a vertex of degree at most 5.

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

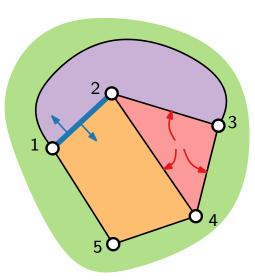
$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \Rightarrow f \le 2n - 4$$
 $\sum_{v \in V} \deg(v) = 2|E|$

3.
$$\sum_{v \in V} \deg(v)$$



$$-3m + 3n = 3n - n$$

$$\sum_{v \in V} \deg(v) = 2|E|$$

Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m < 3n - 6$$

1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

3. There is a vertex of degree at most 5.

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

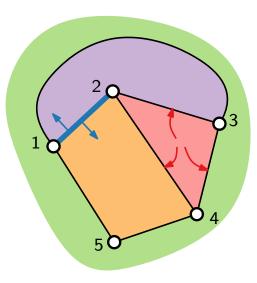
$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \Rightarrow f \le 2n - 4$$
 $\sum_{v \in V} \deg(v) = 2|E|$

3.
$$\sum_{v \in V} \deg(v) = 2m$$



$$-3m + 3n = 3n - n$$

$$\sum_{v \in V} \deg(v) = 2|E|$$

Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m < 3n - 6$$

1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

3. There is a vertex of degree at most 5.

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to > 3 edges

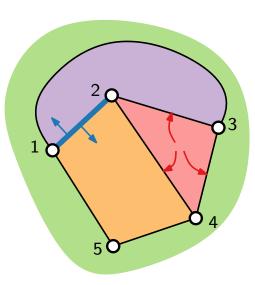
$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \Rightarrow f \le 2n - 4$$
 $\sum_{v \in V} \deg(v) = 2|E|$

3.
$$\sum_{v \in V} \deg(v) = 2m \le 6n - 12$$



$$-3m + 3n = 3n - m$$

$$\sum_{v \in V} \deg(v) = 2|E|$$

Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m < 3n - 6$$

1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

3. There is a vertex of degree at most 5.

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \Rightarrow f \le 2n - 4$$
 $\sum_{v \in V} \deg(v) = 2|E|$

3.
$$\sum_{v \in V} \deg(v) = 2m \le 6n - 12$$
$$\Rightarrow \min_{v \in V} \deg(v)$$



$$-3m + 3n = 3n - m$$

$$\sum_{v \in V} \deg(v) = 2|E|$$

Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

- 1. $m \le 3n 6$ 2. $f \le 2n 4$
- 3. There is a vertex of degree at most 5.
- **Proof.** 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$\Rightarrow$$
 3 $f \leq 2m$

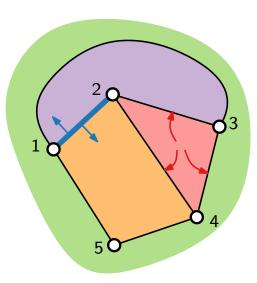
$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \Rightarrow f \le 2n - 4$$
 $\sum_{v \in V} \deg(v) = 2|E|$

3.
$$\sum_{v \in V} \deg(v) = 2m \le 6n - 12$$

 $\Rightarrow \min_{v \in V} \deg(v) \le \text{average degree}(G)$



$$-3m + 3n = 3n - m$$

$$\sum_{v \in V} \deg(v) = 2|E|$$

Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$
 $f - m + n = c + 1$

Theorem. G simple planar graph with $n \geq 3$ vtc.

1.
$$m < 3n - 6$$

1.
$$m \le 3n - 6$$
 2. $f \le 2n - 4$

3. There is a vertex of degree at most 5.

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$\Rightarrow$$
 3 $f \leq 2m$

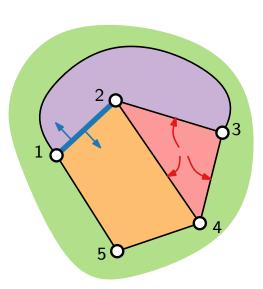
$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \Rightarrow f \le 2n - 4$$
 $\sum_{v \in V} \deg(v) = 2|E|$

3.
$$\sum_{v \in V} \deg(v) = 2m \le 6n - 12$$

$$\Rightarrow \mathsf{min}_{v \in V} \mathsf{deg}(v) \leq \mathsf{average} \; \mathsf{degree}(G) = 1/n \sum_{v \in V} \mathsf{deg}(v)$$



$$-3m + 3n = 3n - m$$

$$\sum_{v \in V} \deg(v) = 2|E|$$

Euler's polyhedra formula.

$$\# faces - \# edges + \# vertices = \# conn.comp. + 1$$

$$f - m + n = c + 1$$

Theorem. G simple planar graph with $n \geq 3$ vtc.

- 1. $m \le 3n 6$ 2. $f \le 2n 4$
- 3. There is a vertex of degree at most 5.
- **Proof.** 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$\Rightarrow$$
 3 $f \leq 2m$

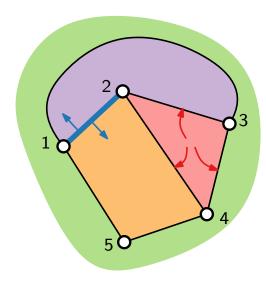
$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \Rightarrow f \le 2n - 4$$
 $\sum_{v \in V} \deg(v) = 2|E|$

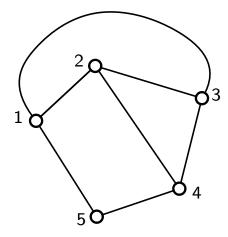
3.
$$\sum_{v \in V} \deg(v) = 2m \le 6n - 12$$

$$\Rightarrow \min_{v \in V} \deg(v) \le \text{average degree}$$

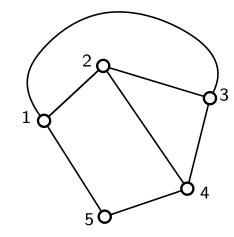


$$\Rightarrow \min_{v \in V} \deg(v) = 2m \le m$$

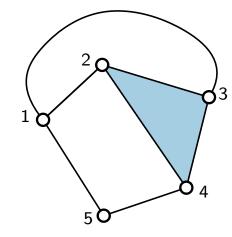
$$\Rightarrow \min_{v \in V} \deg(v) \le \text{average degree}(G) = 1/n \sum_{v \in V} \deg(v) < 6$$



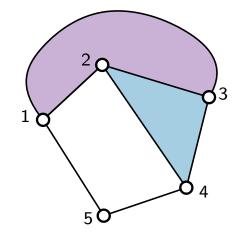
with planar embedding



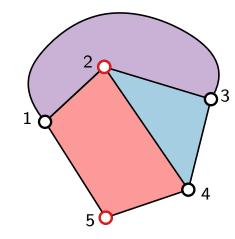
with planar embedding



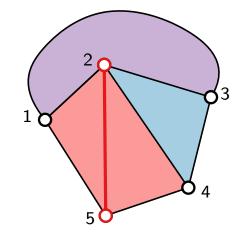
with planar embedding



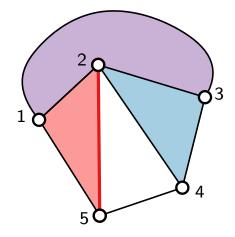
with planar embedding



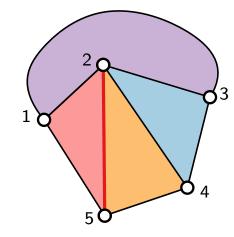
with planar embedding



with planar embedding

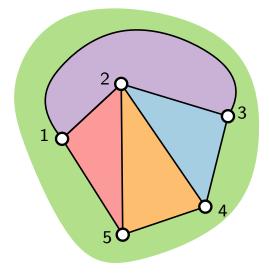


with planar embedding



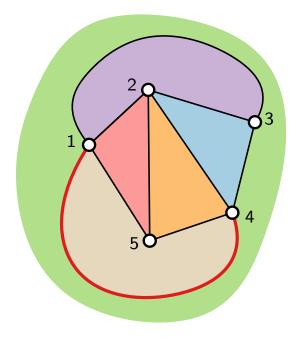
with planar embedding

A plane triangulation is a plane graph where every face is a triangle.



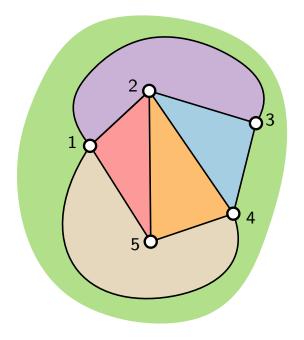
with planar embedding

A plane triangulation is a plane graph where every face is a triangle.



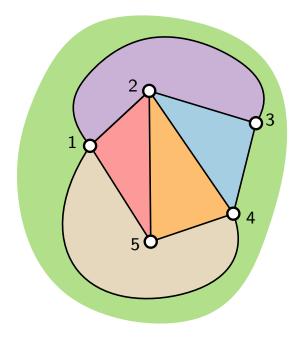
with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.



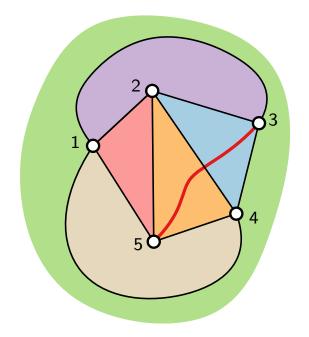
with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.



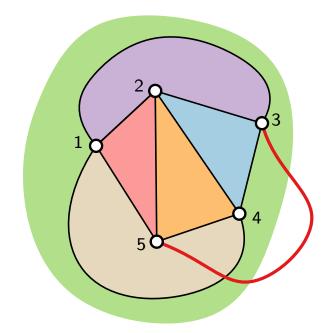
with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.



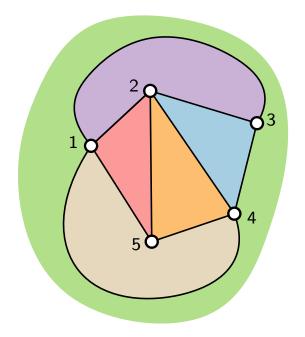
with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.



with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.



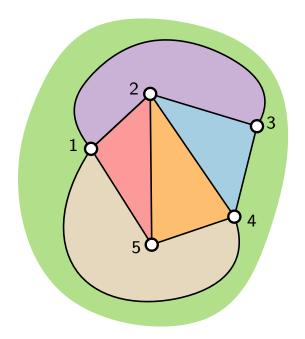
with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.



with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

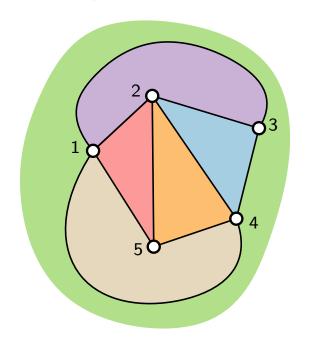
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

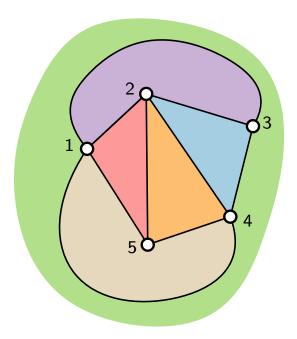
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

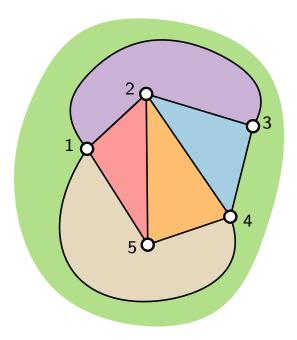
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

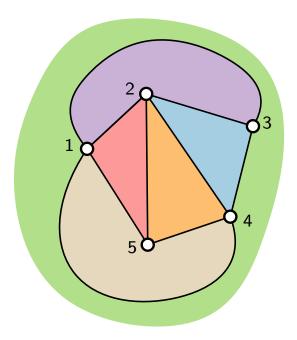
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

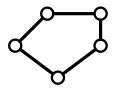
Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.



with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

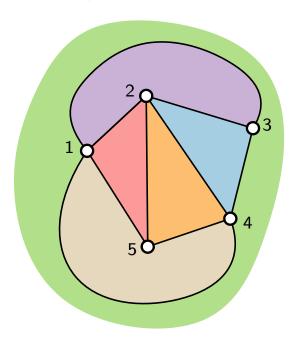
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

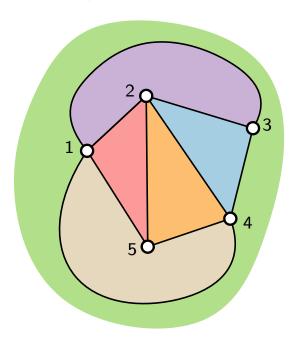
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

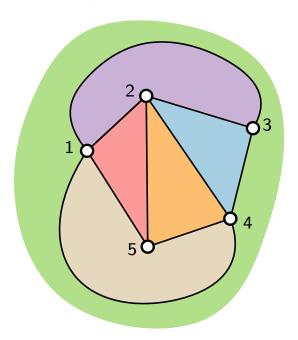
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

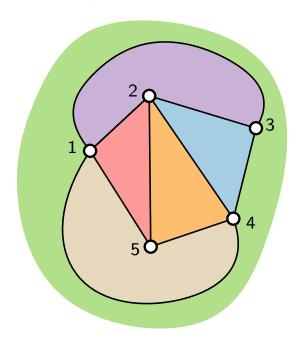
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

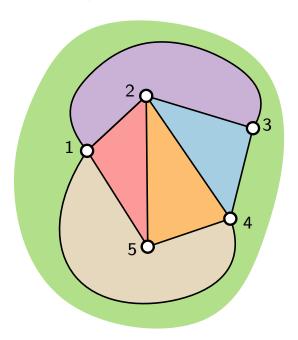
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

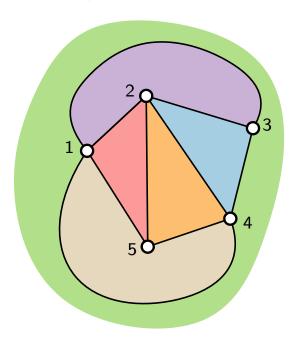
A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

Why planar and straight-line?

Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to *minimize the number of edge crossings* in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Drawing conventions

- \blacksquare No crossings \Rightarrow planar
- \blacksquare No bends \Rightarrow straight-line

Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Drawing conventions

- \blacksquare No crossings \Rightarrow planar
- \blacksquare No bends \Rightarrow straight-line

Drawing aestethics

Area

Characterization

Characterization

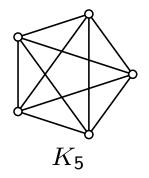
Recognition

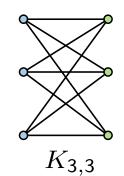
Characterization

Recognition

Theorem. [Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G





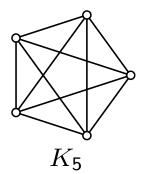
Characterization

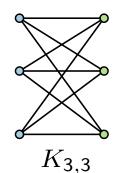
Recognition

Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G





Characterization

Theorem.

[Hopcroft & Tarjan 1974]

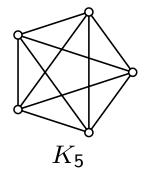
Let G be a graph with n vertices. There is an $\mathcal{O}(n)$ -time algorithm to test whether G is planar.

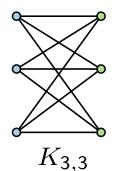
Recognition

Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G





Characterization

Theorem.

[Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an $\mathcal{O}(n)$ -time algorithm to test whether G is planar.

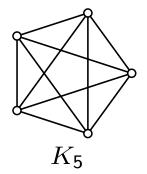
Also computes a planar embedding in $\mathcal{O}(n)$ time.

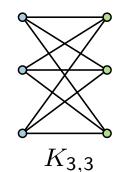
Recognition

Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G





Characterization

Theorem.

[Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an $\mathcal{O}(n)$ -time algorithm to test whether G is planar.

Also computes a planar embedding in $\mathcal{O}(n)$ time.

Theorem.

[Wagner 1936, Fáry 1948, Stein 1951]

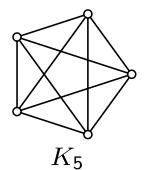
Every planar graph has a planar drawing where the edges are straight-line segments.

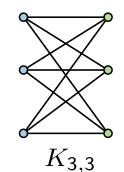
Recognition

Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G





Characterization

Theorem.

[Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an $\mathcal{O}(n)$ -time algorithm to test whether G is planar.

Also computes a planar embedding in $\mathcal{O}(n)$ time.

Theorem.

[Wagner 1936, Fáry 1948, Stein 1951]

Every planar graph has a planar drawing where the edges are straight-line segments.

The algorithms implied by these theorems produce drawings whose area is **not** bounded by any polynomial in n.

Recognition

Planar straight-line drawings

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Planar straight-line drawings

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Planar straight-line drawings

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Idea.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Idea.

■ Start with singe edge (v_1, v_2) . Let this be G_2 .

Theorem.

[Schnyder '90]

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Idea.

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .

Theorem.

[Schnyder '90]

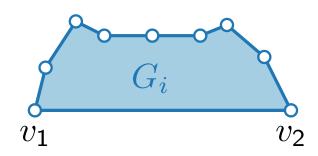
Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Idea.

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .



Theorem.

[Schnyder '90]

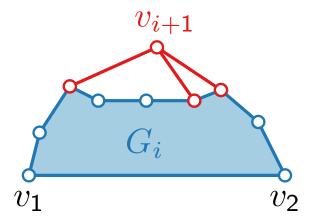
Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Idea.

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .



Theorem.

[Schnyder '90]

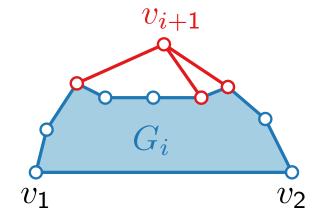
Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Idea.

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .
- Neighbours of v_{i+1} in G_i have to form path of length at least two.



Theorem.

[Schnyder '90]

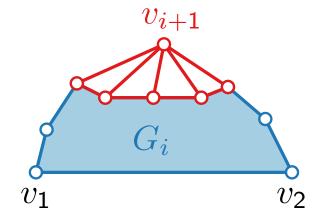
Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Idea.

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .
- Neighbours of v_{i+1} in G_i have to form path of length at least two.



Theorem.

[Schnyder '90]

Visualization of Graphs

Lecture 3:

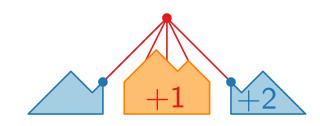
Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method

Part II:

Canonical Order

Alexander Wolff



Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices.

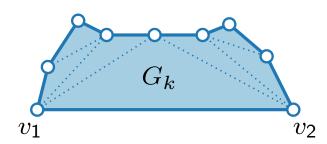
Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An ordering $\pi = (v_1, v_2, \dots, v_n)$ of V is called a **canonical order** if the following conditions hold for each $k \in \{3, 4, \dots, n\}$:

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An ordering $\pi = (v_1, v_2, \dots, v_n)$ of V is called a **canonical order** if the following conditions hold for each $k \in \{3, 4, \dots, n\}$:

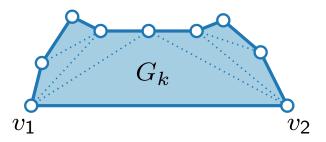
(C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .



Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An ordering $\pi = (v_1, v_2, \dots, v_n)$ of V is called a **canonical order** if the following conditions hold for each $k \in \{3, 4, \dots, n\}$:

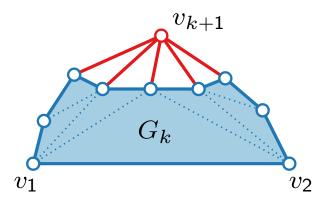
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .

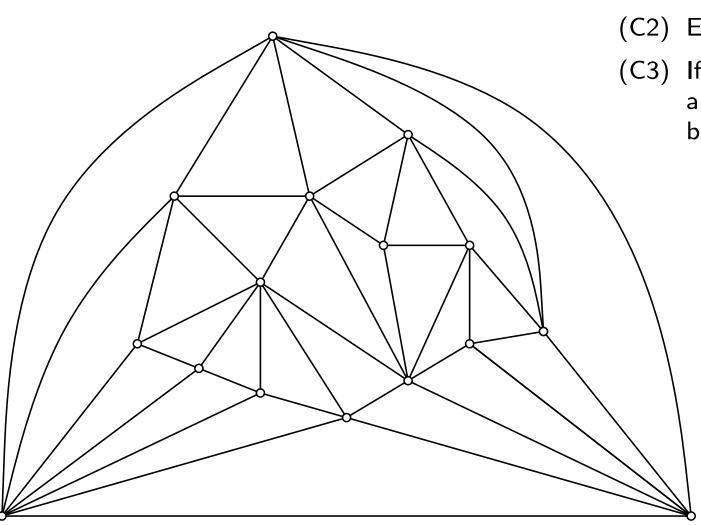


Definition.

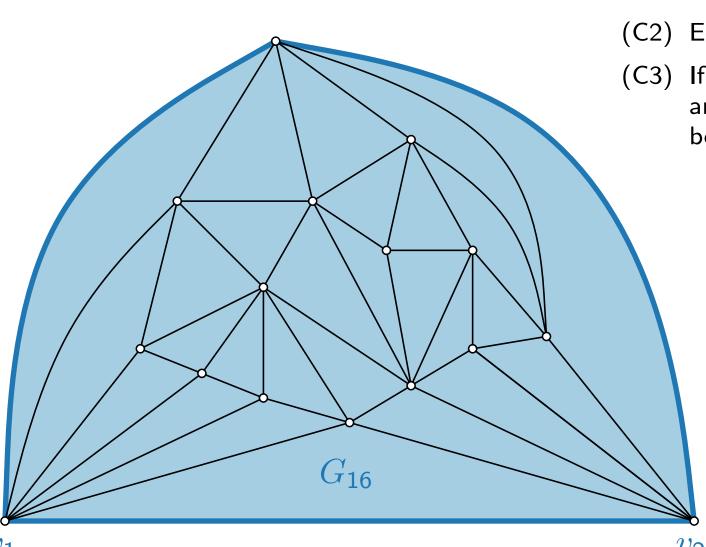
Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An ordering $\pi = (v_1, v_2, \dots, v_n)$ of V is called a **canonical order** if the following conditions hold for each $k \in \{3, 4, \dots, n\}$:

- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

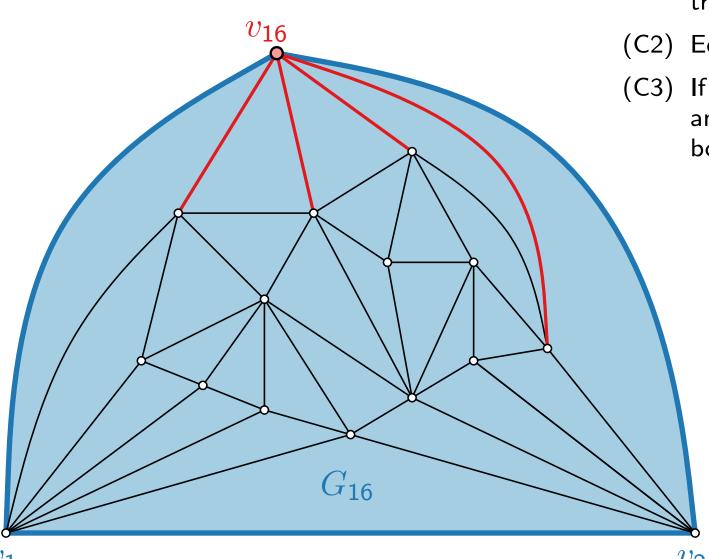




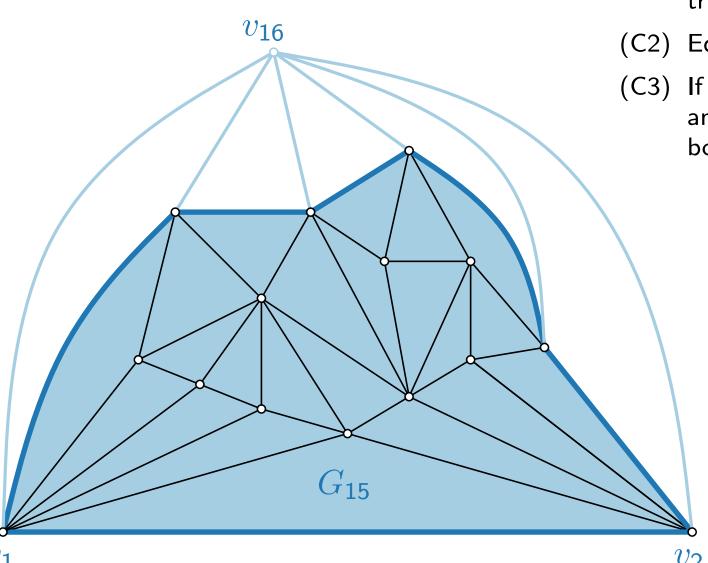
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



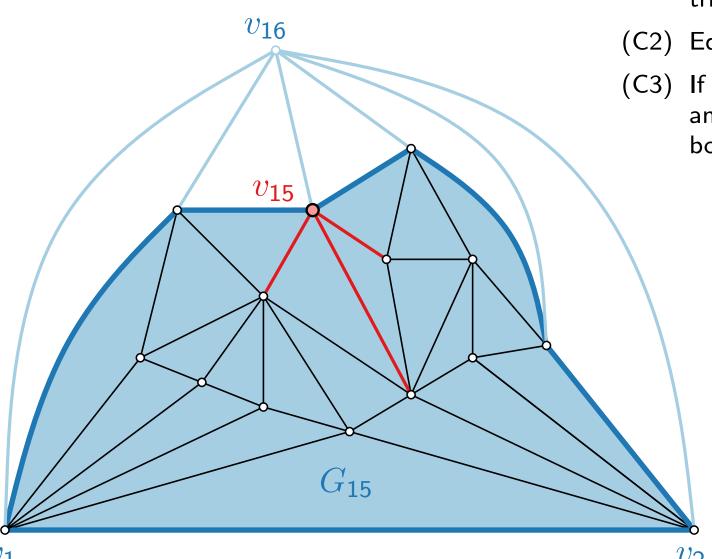
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



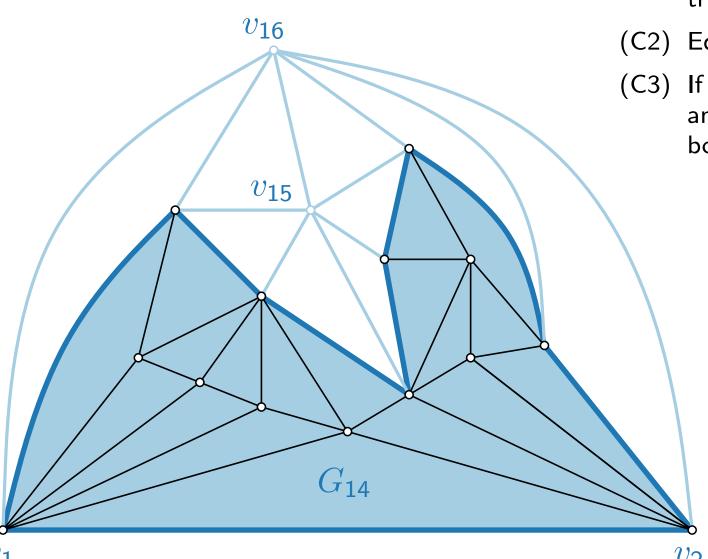
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



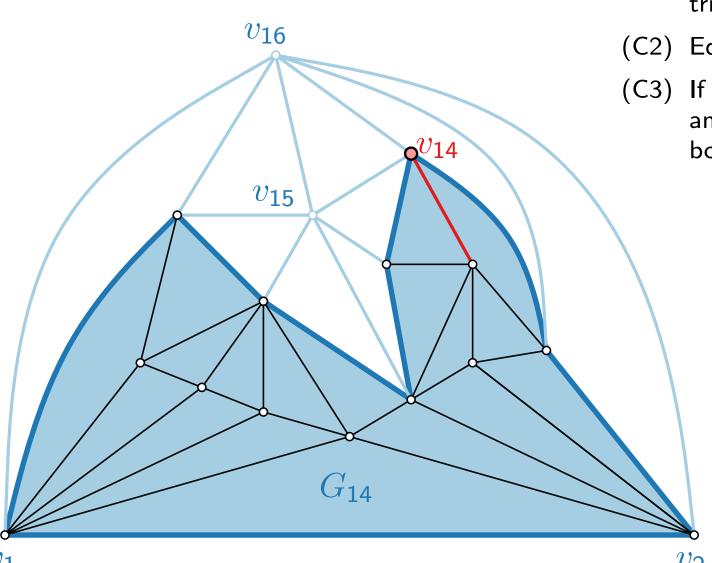
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



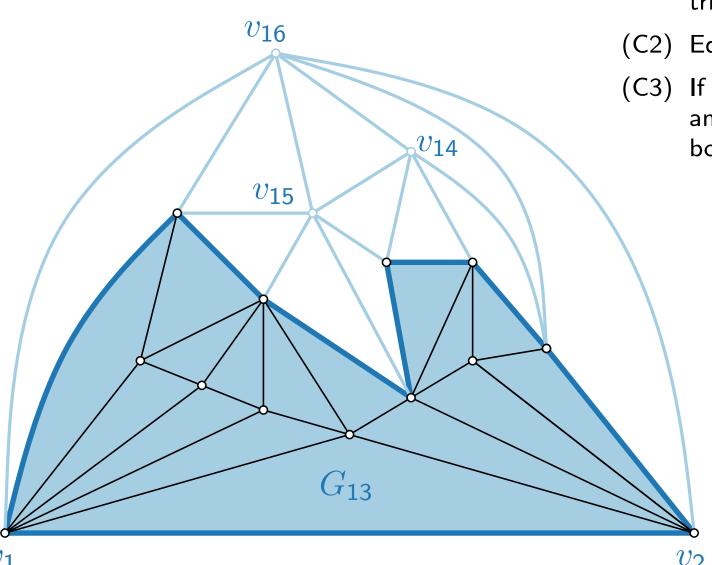
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



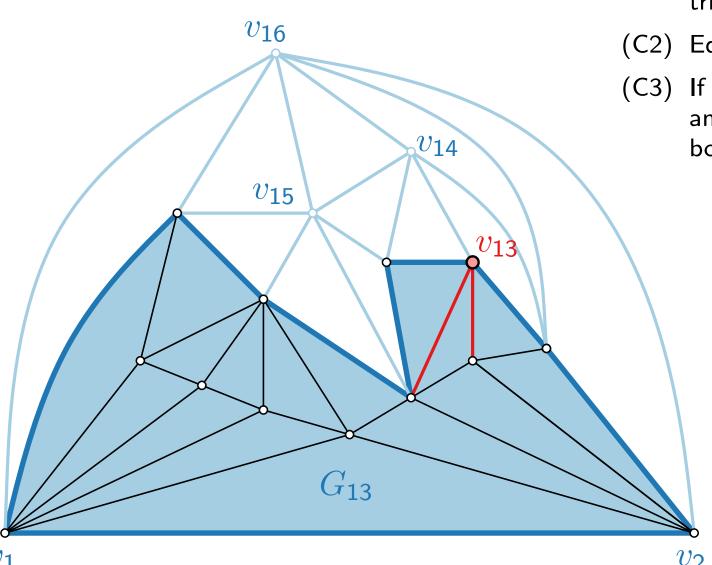
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



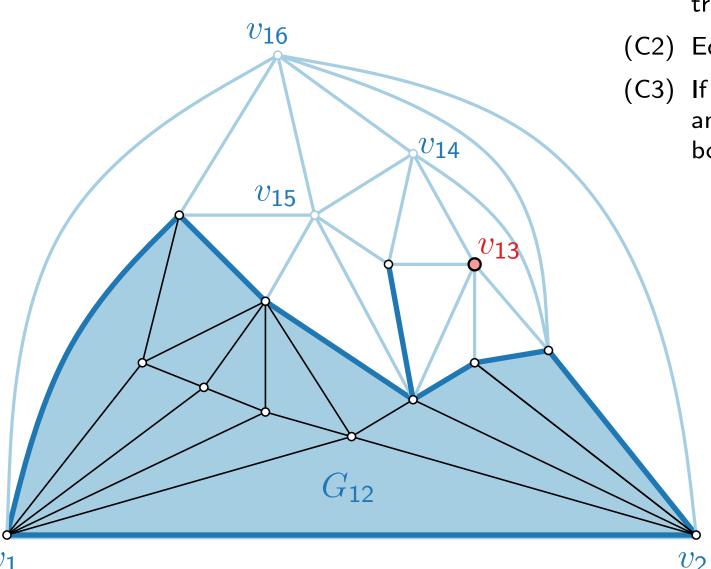
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



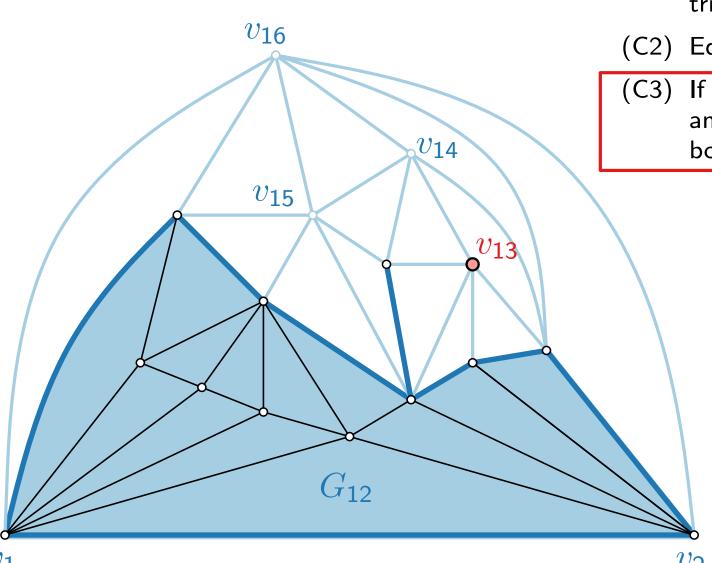
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



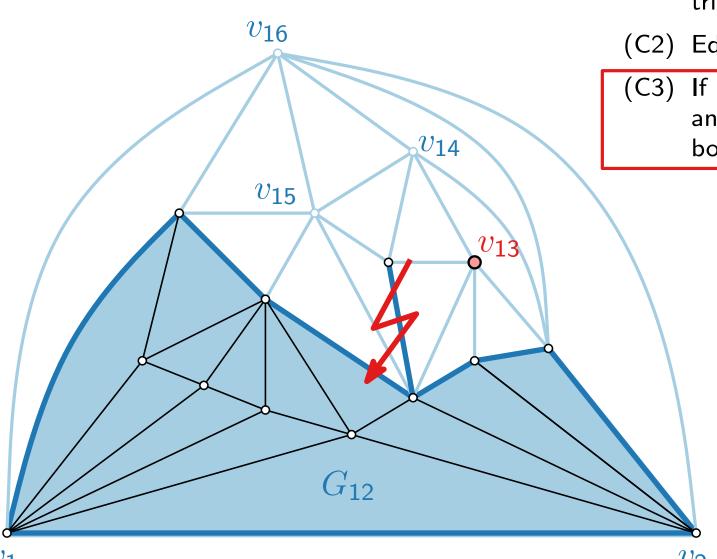
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



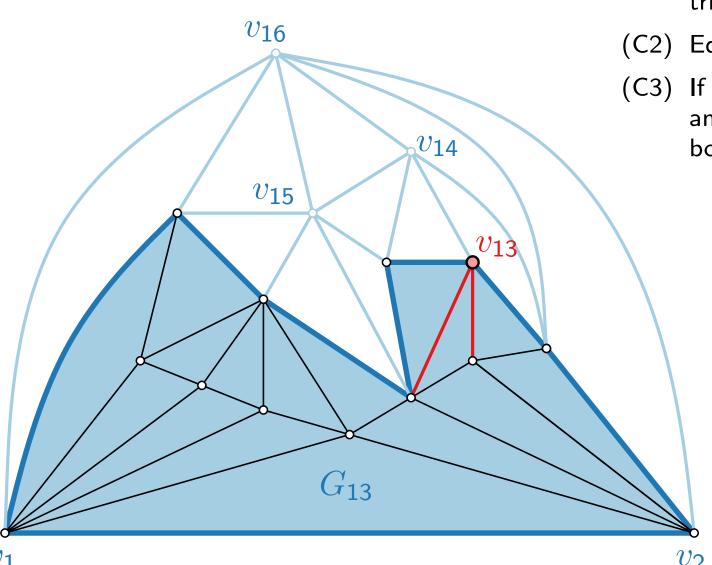
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



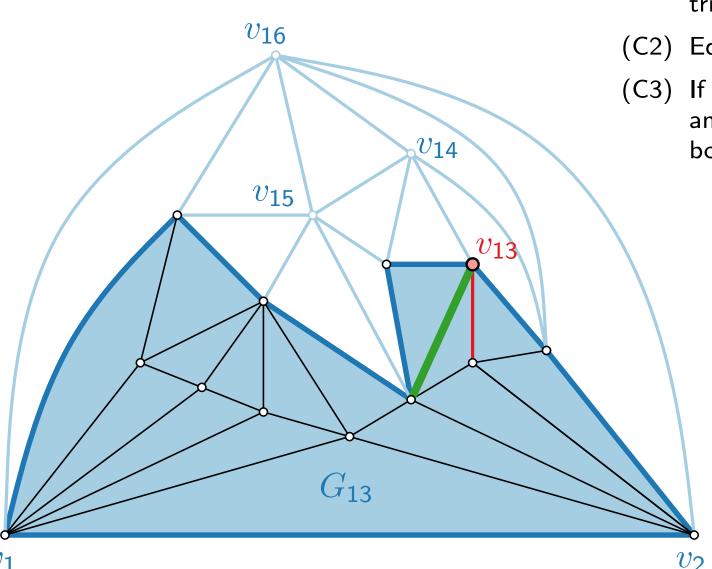
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



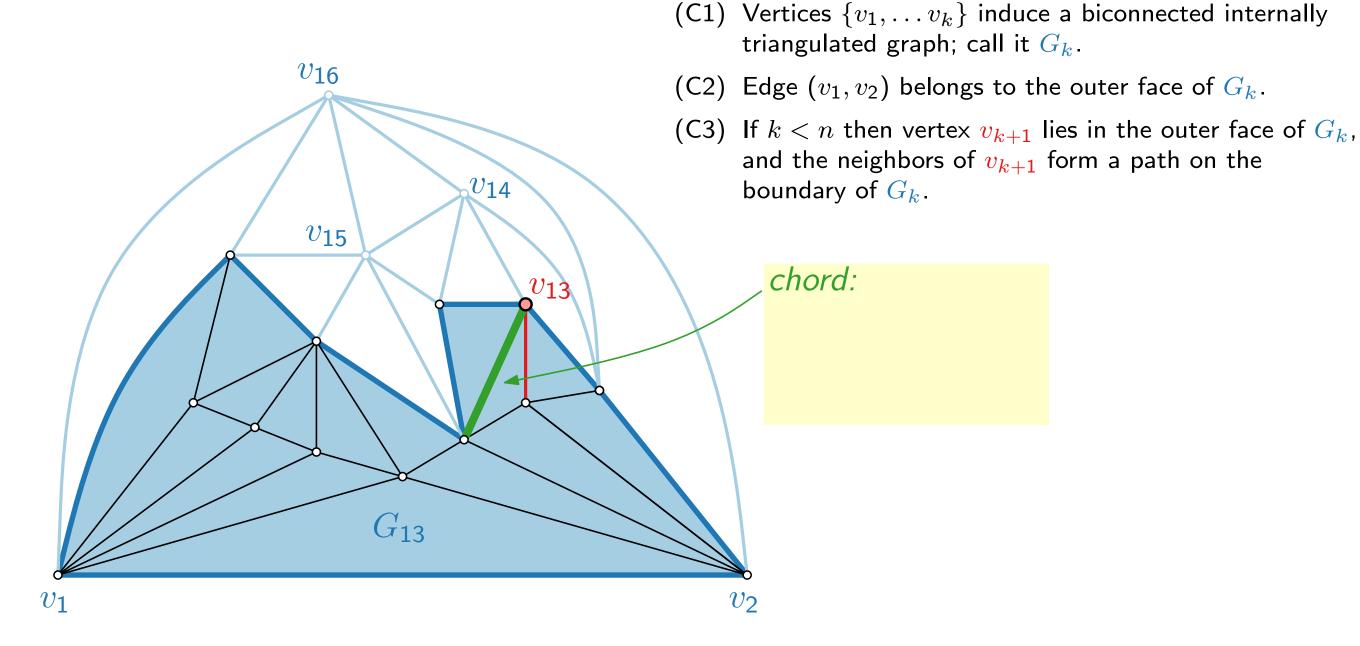
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

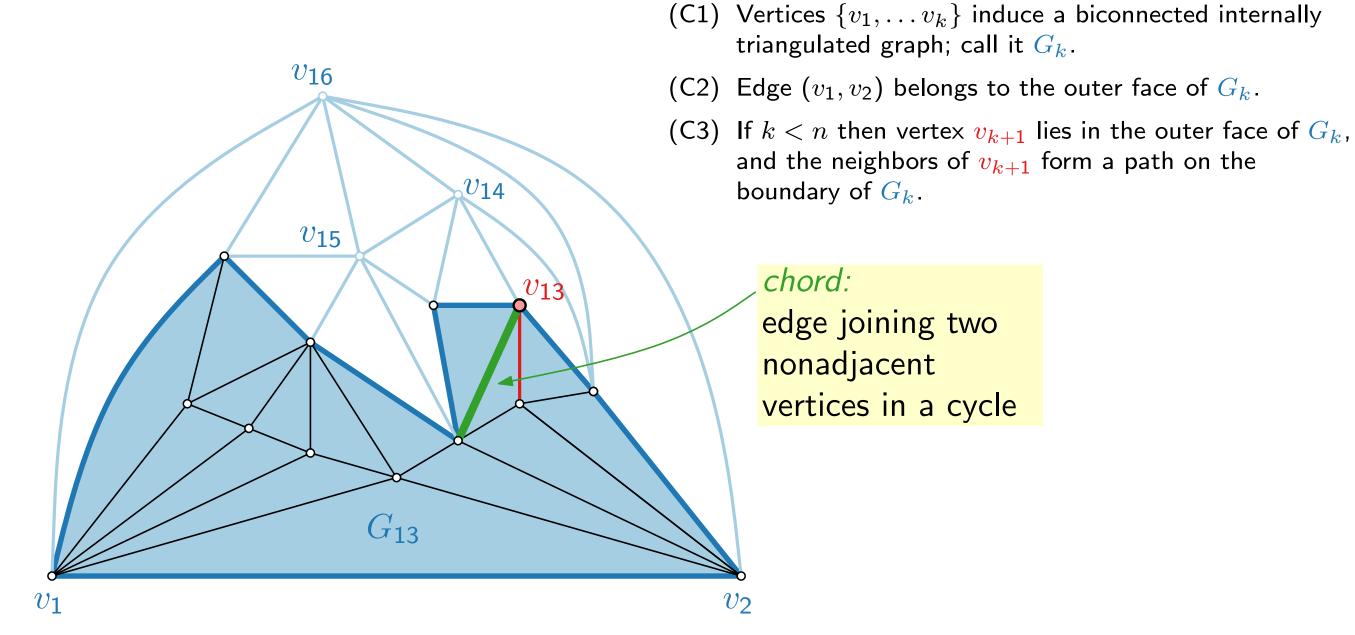


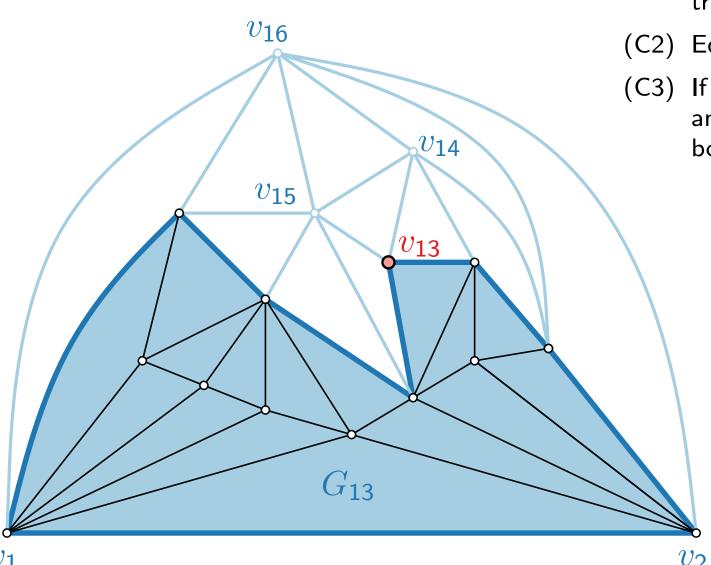
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



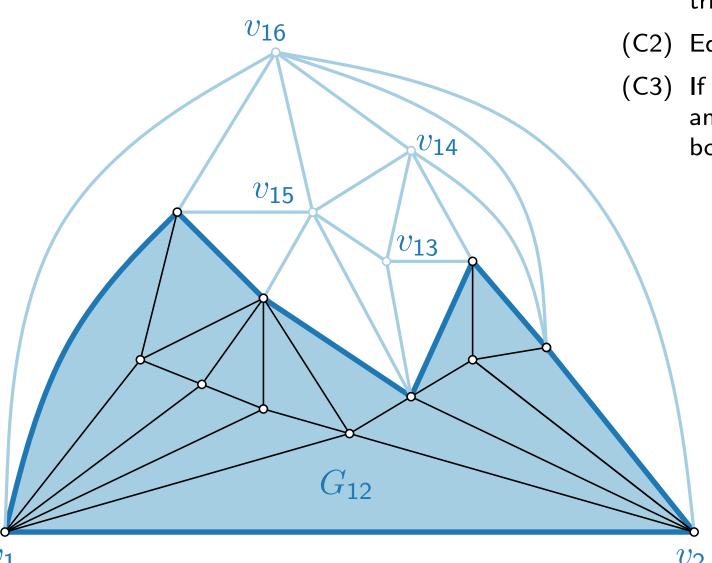
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



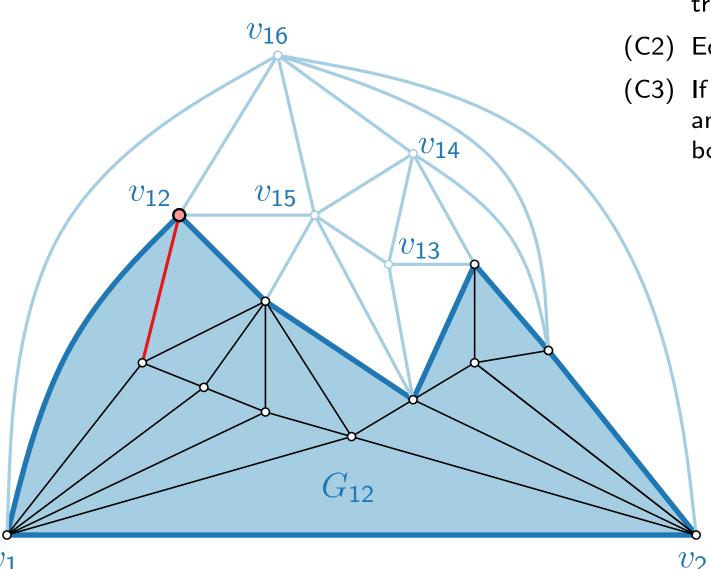




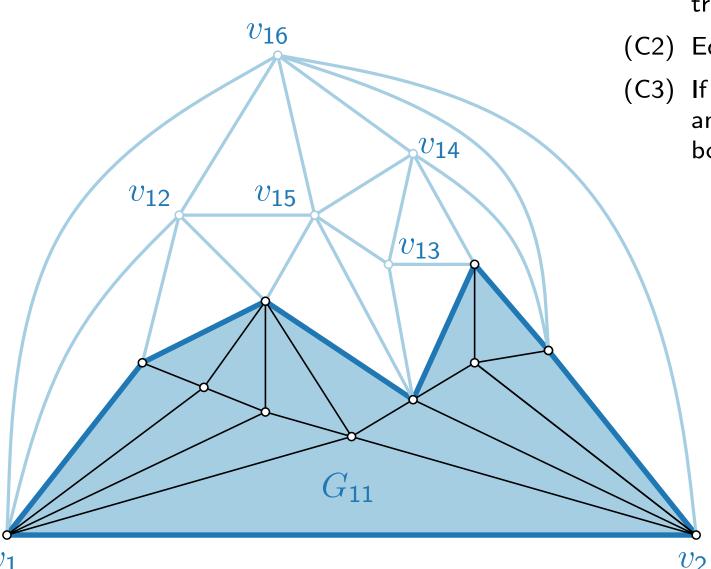
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



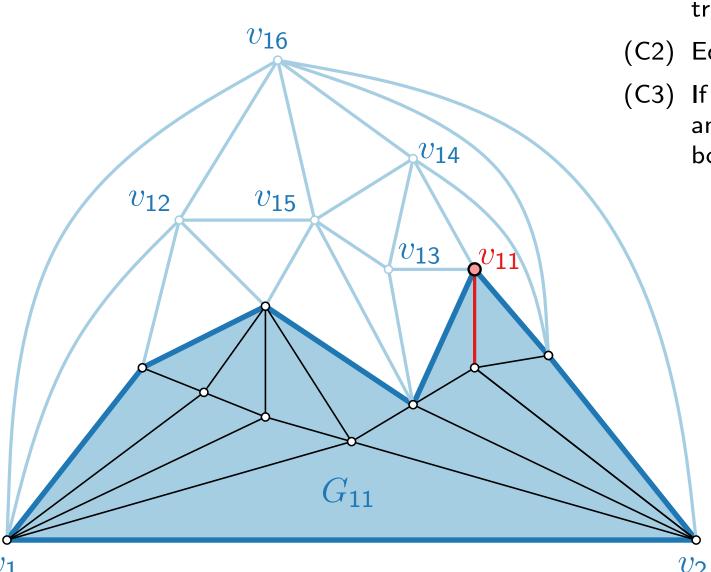
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



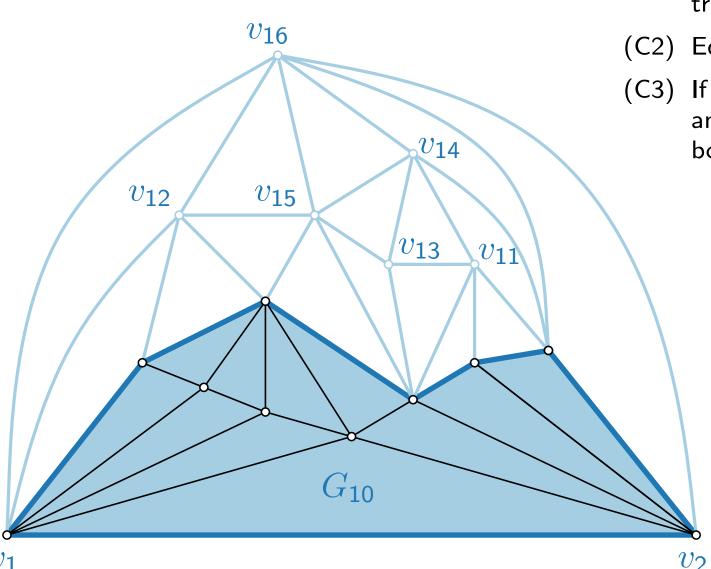
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



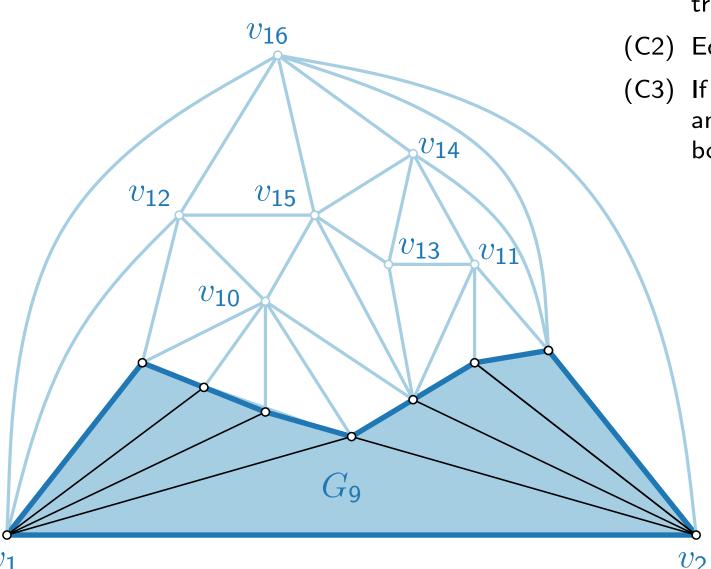
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



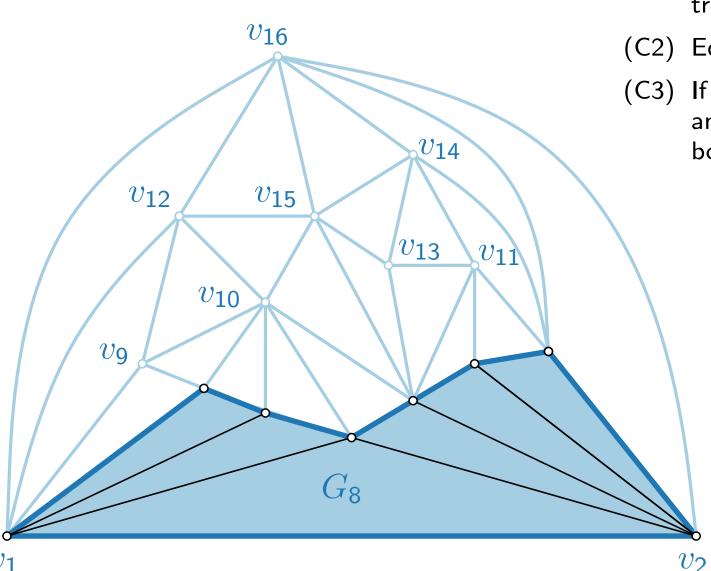
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



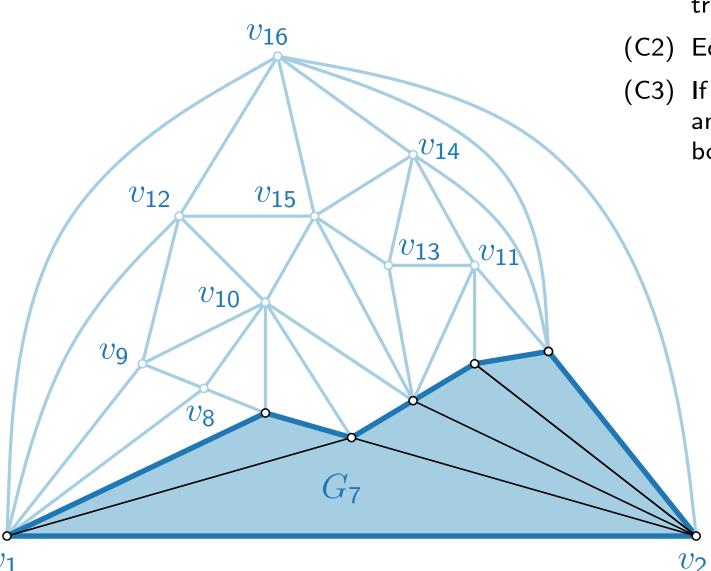
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



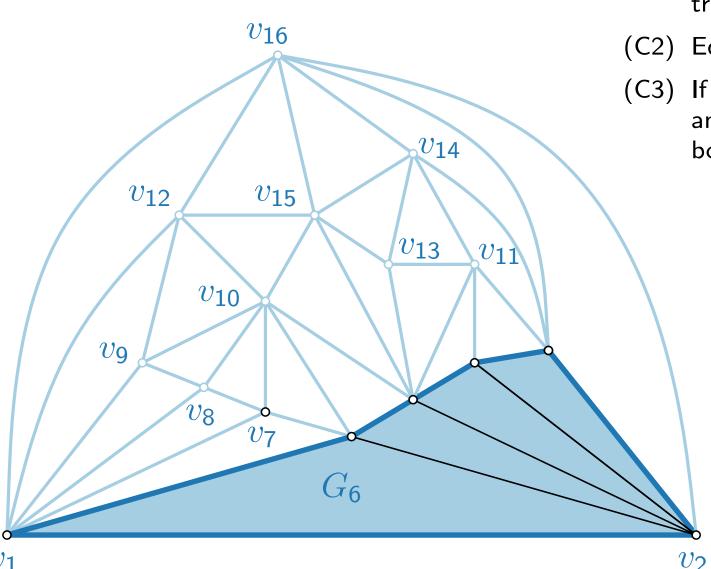
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



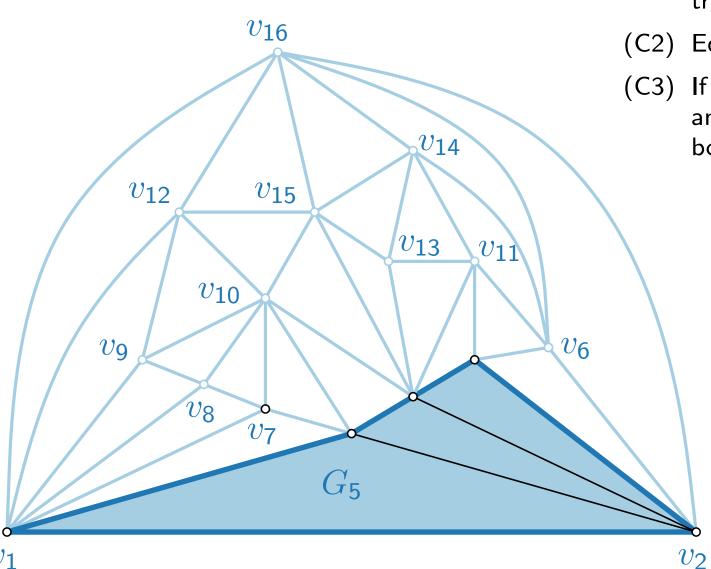
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



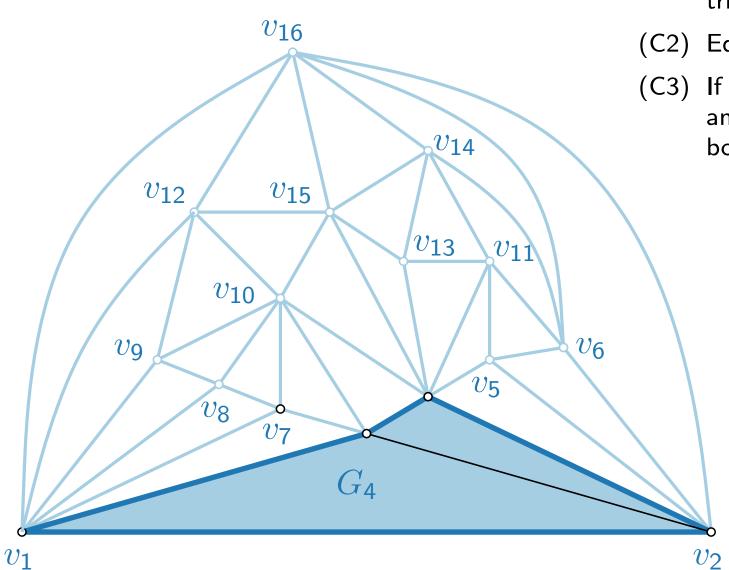
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



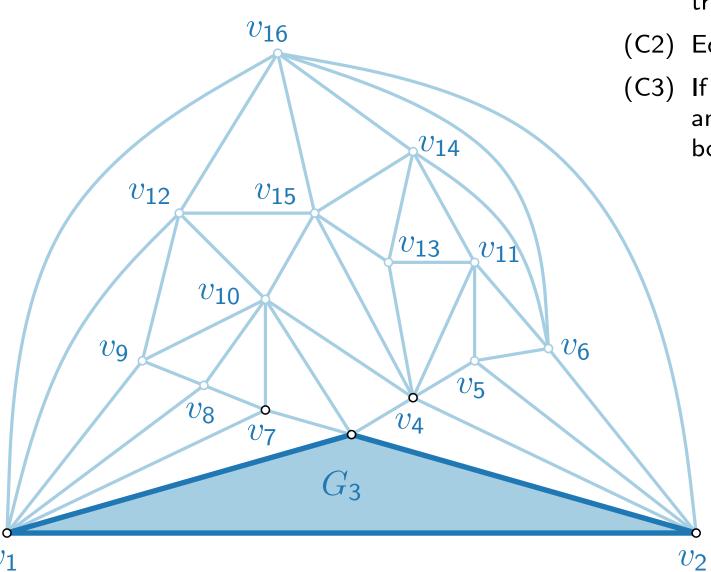
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



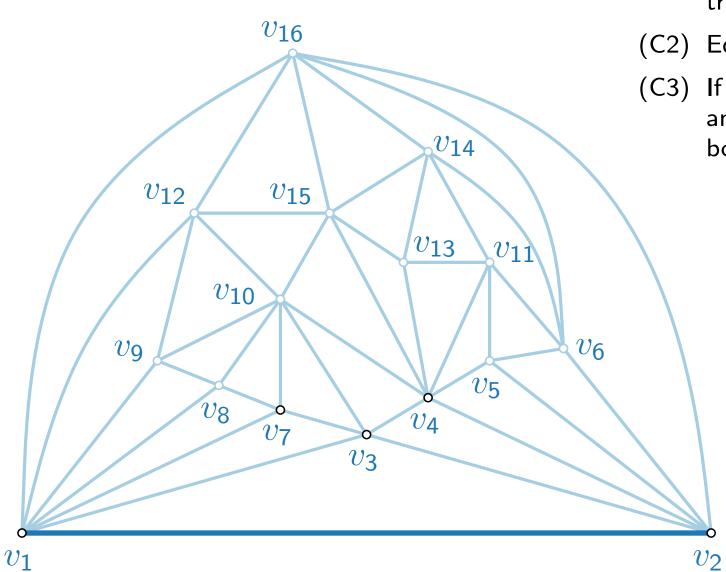
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



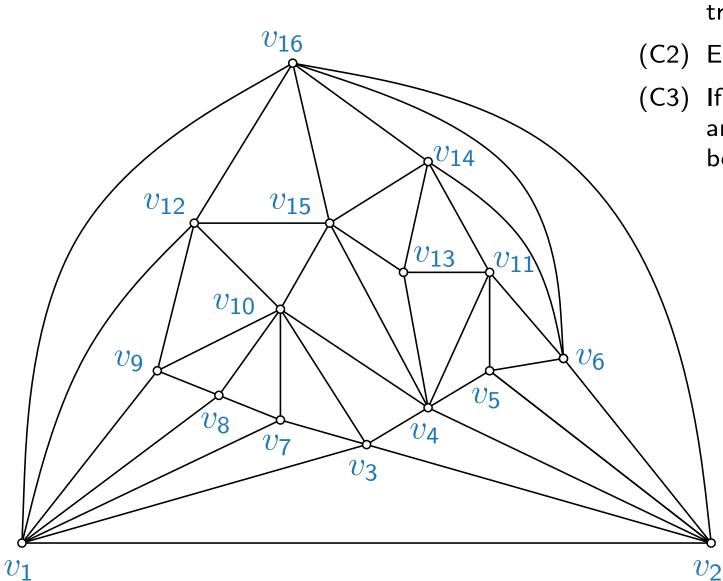
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .



- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

Lemma.

Every triangulated plane graph has a canonical order.

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Induction hypothesis:

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n .

Induction hypothesis:

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n .

Induction hypothesis:

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n .

Induction hypothesis:

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n .

Induction hypothesis:

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

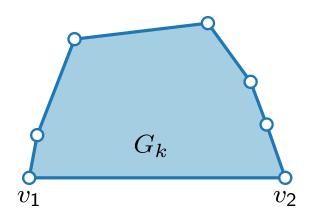
Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.

Induction step: Consider G_k .



- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

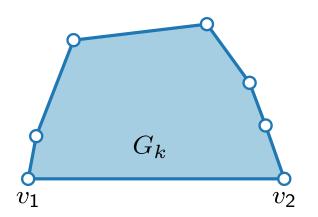
Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.



- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

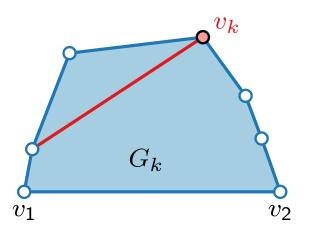
Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.



- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

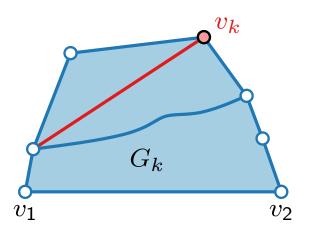
Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.



- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

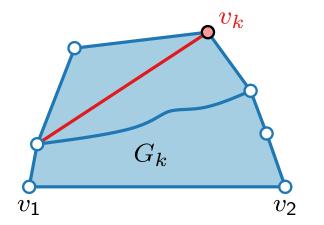
Every triangulated plane graph has a canonical order.

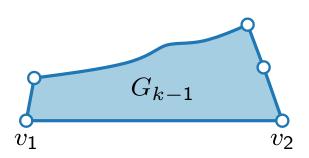
Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.





- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

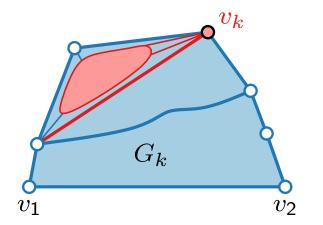
Every triangulated plane graph has a canonical order.

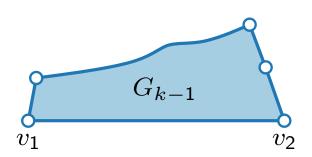
Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.





- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

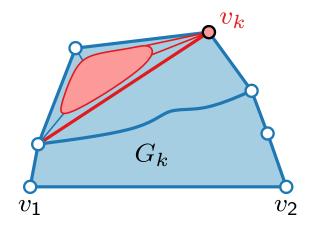
Every triangulated plane graph has a canonical order.

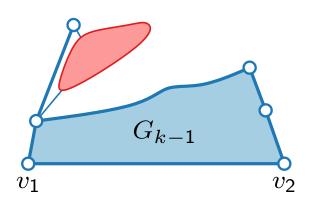
Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.





- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

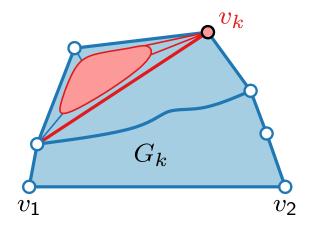
Every triangulated plane graph has a canonical order.

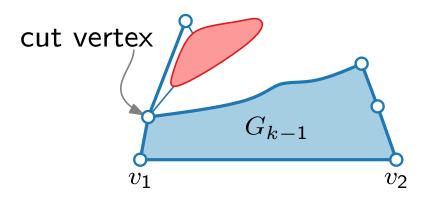
Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.





- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

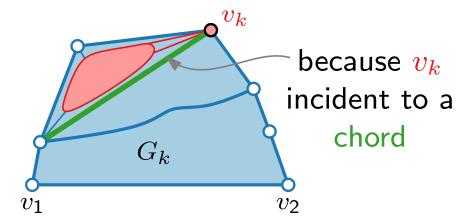
Every triangulated plane graph has a canonical order.

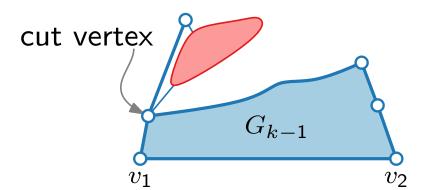
Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.





- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Lemma.

Every triangulated plane graph has a canonical order.

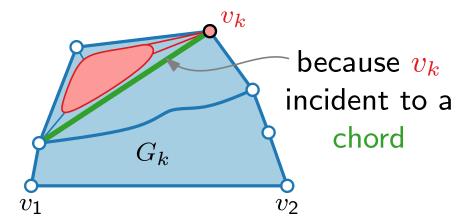
Base Case:

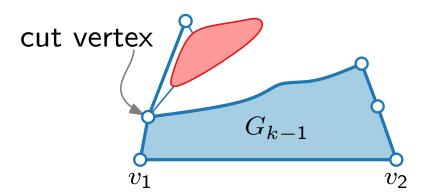
Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.

Induction step: Consider G_k . We search for v_k .





- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Have to show:

Lemma.

Every triangulated plane graph has a canonical order.

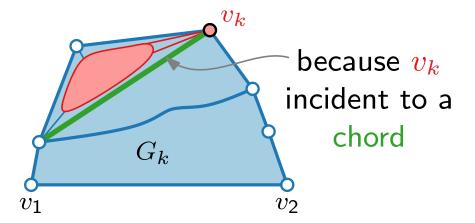
Base Case:

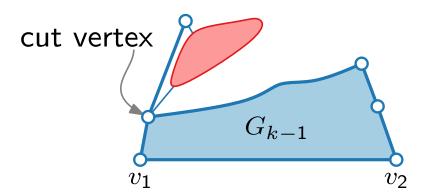
Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.

Induction step: Consider G_k . We search for v_k .





- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Have to show:

1. v_k not incident to chord is sufficient

Lemma.

Every triangulated plane graph has a canonical order.

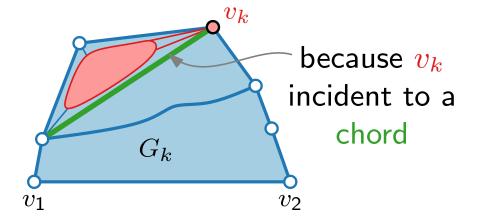
Base Case:

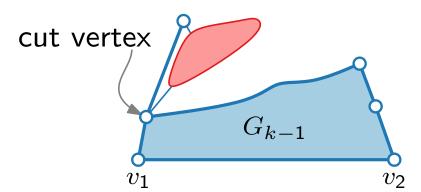
Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \le i \le n$.

Induction step: Consider G_k . We search for v_k .





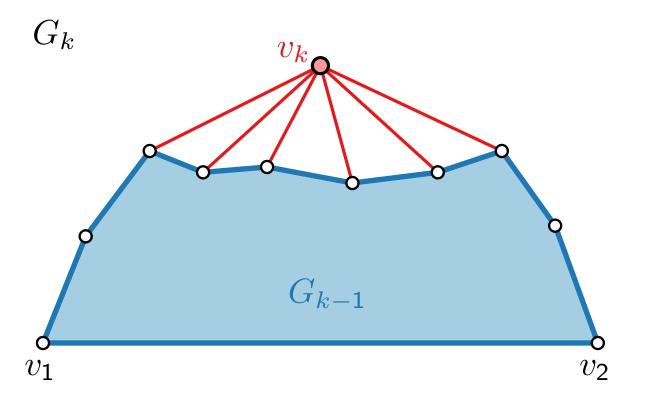
- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Have to show:

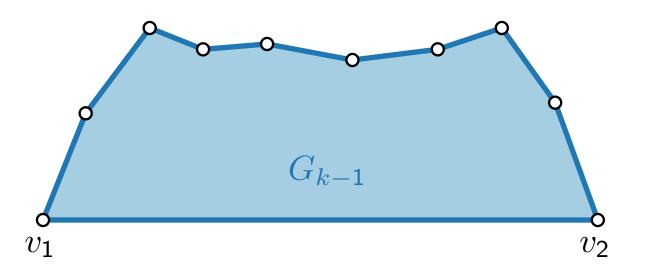
- 1. v_k not incident to chord is sufficient
- 2. Such v_k exists

Claim 1.

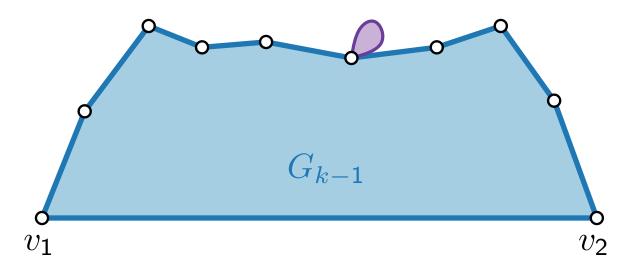
Claim 1.



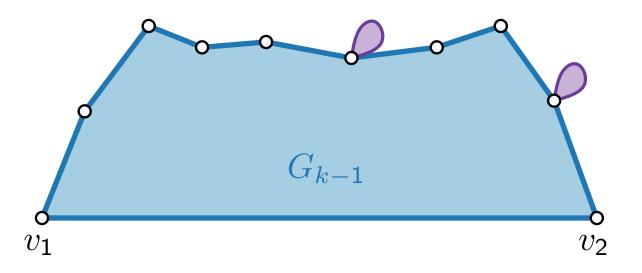
Claim 1.



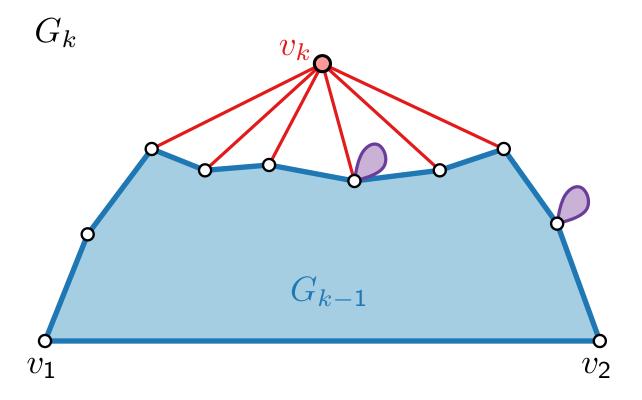
Claim 1.



Claim 1.



Claim 1.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

Contradiction to neighbors of v_k forming a path on $\partial G_{k-1}!$ G_k G_{k-1} v_1 v_2

Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

Contradiction to neighbors of v_k forming a path on $\partial G_{k-1}!$ G_k G_{k-1} v_1 v_2

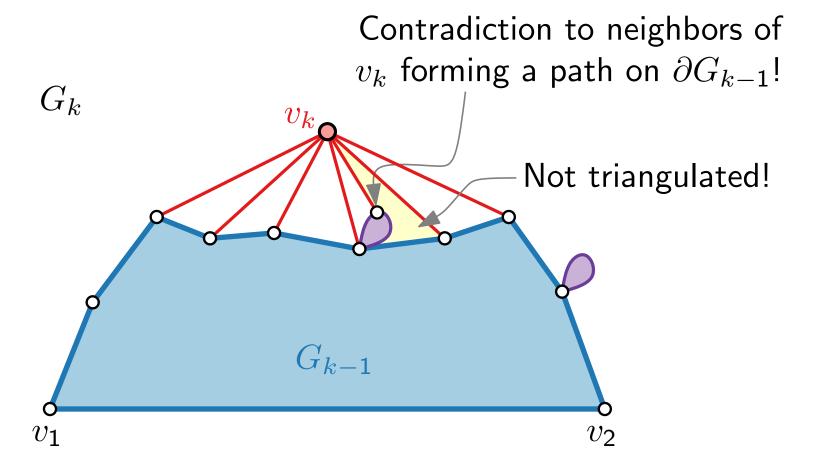
Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

Contradiction to neighbors of v_k forming a path on $\partial G_{k-1}!$ G_k G_{k-1} v_1 v_2

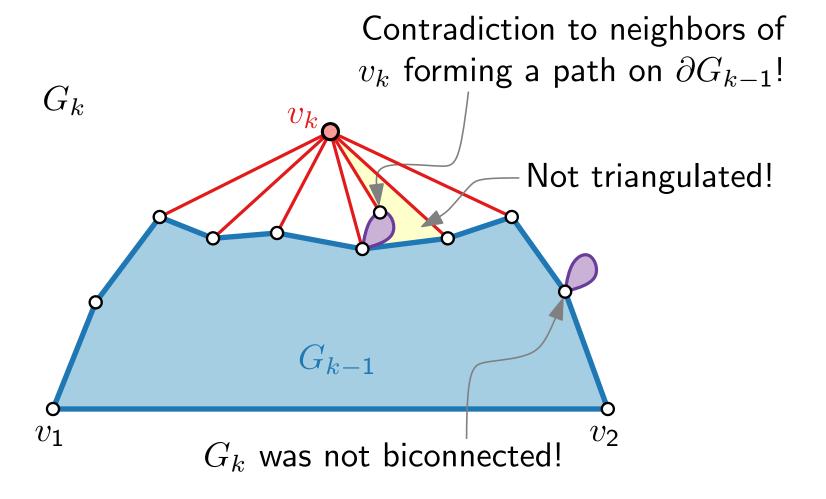
Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.



Claim 1.

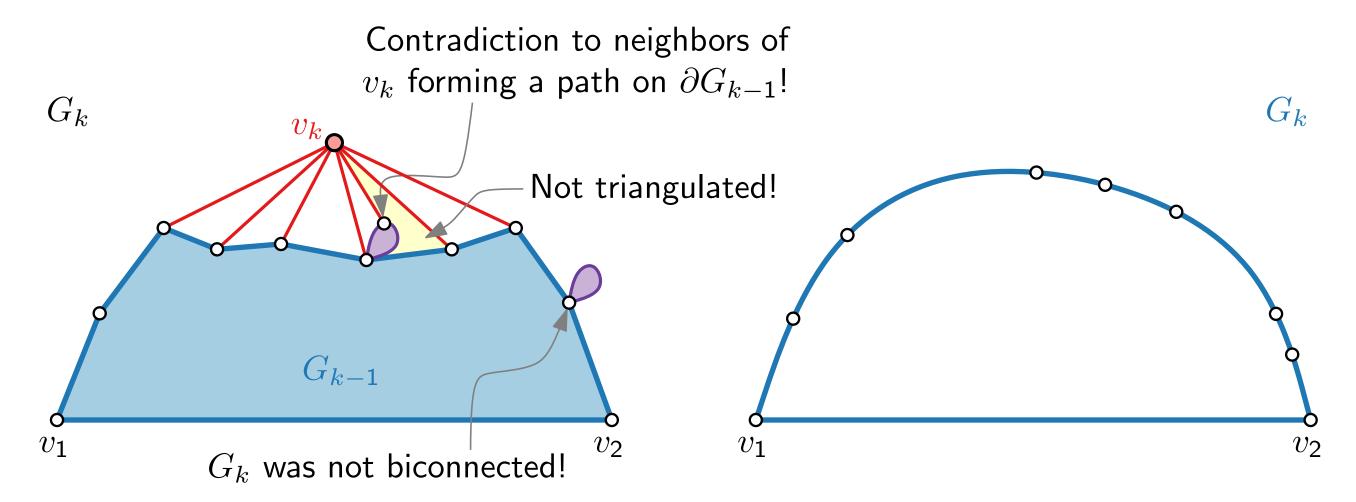
If v_k is not incident to a chord, then G_{k-1} is biconnected.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

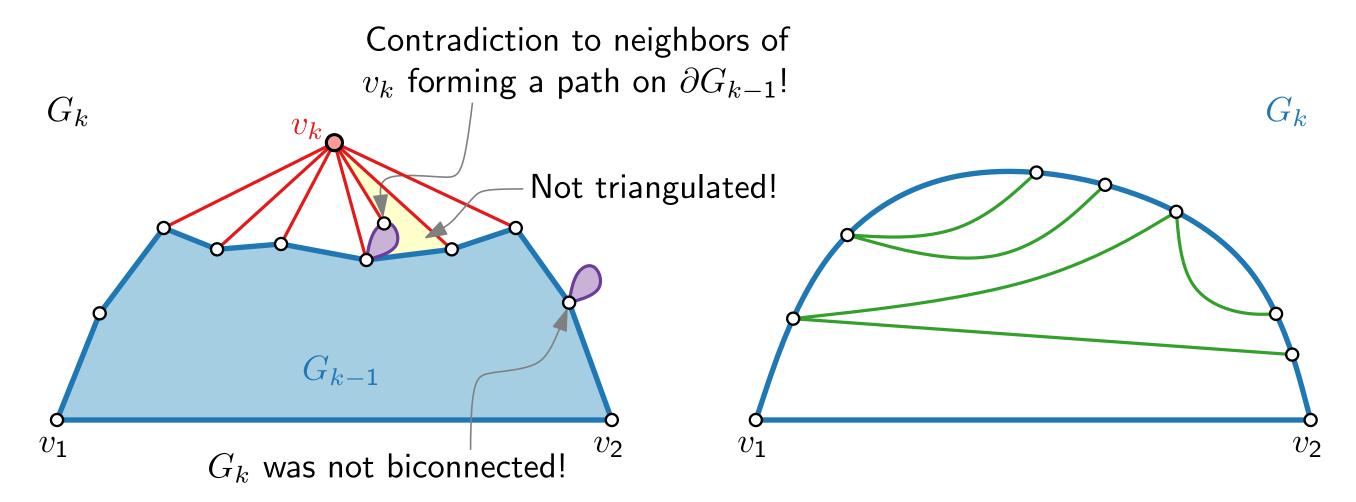
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

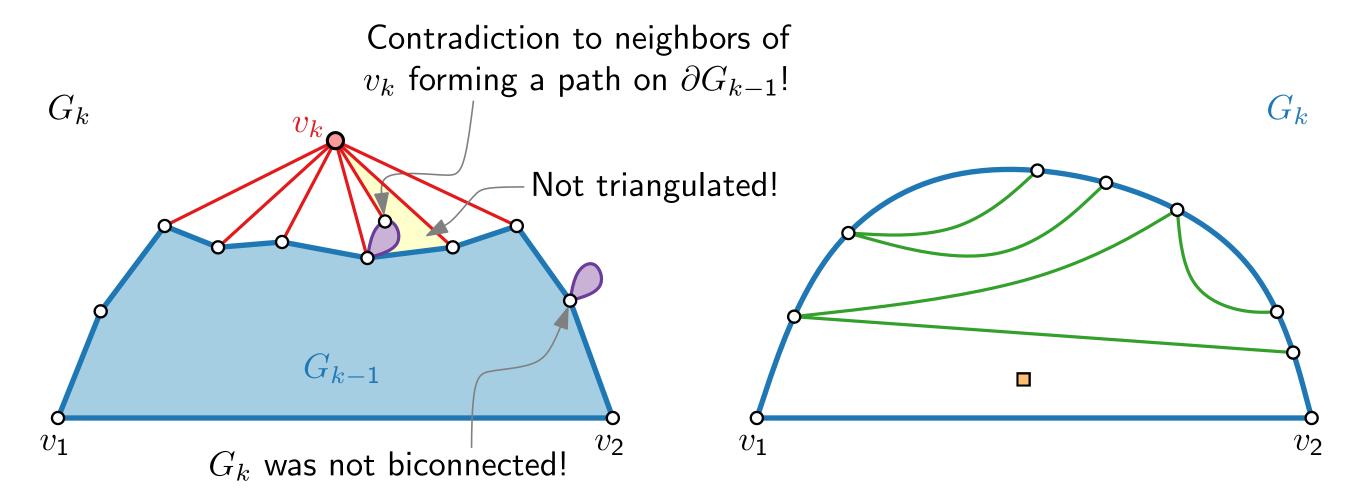
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

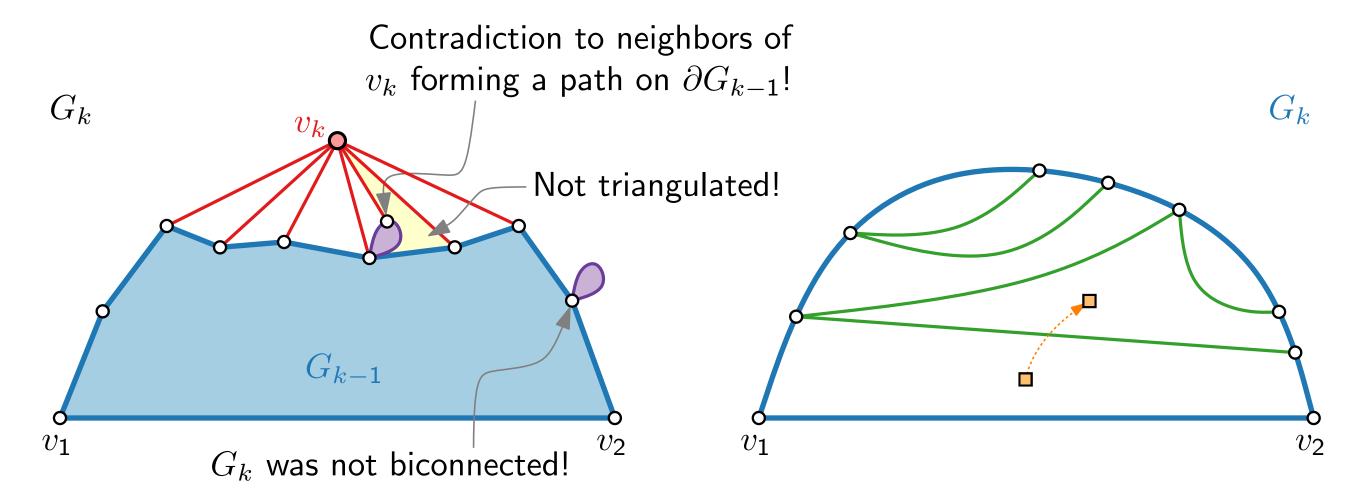
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

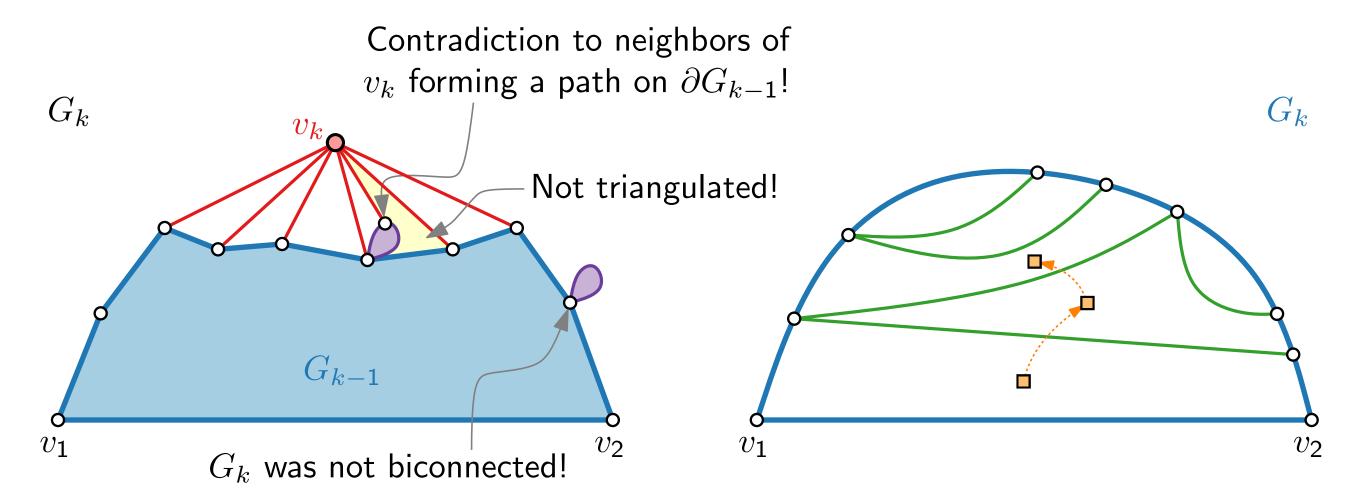
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

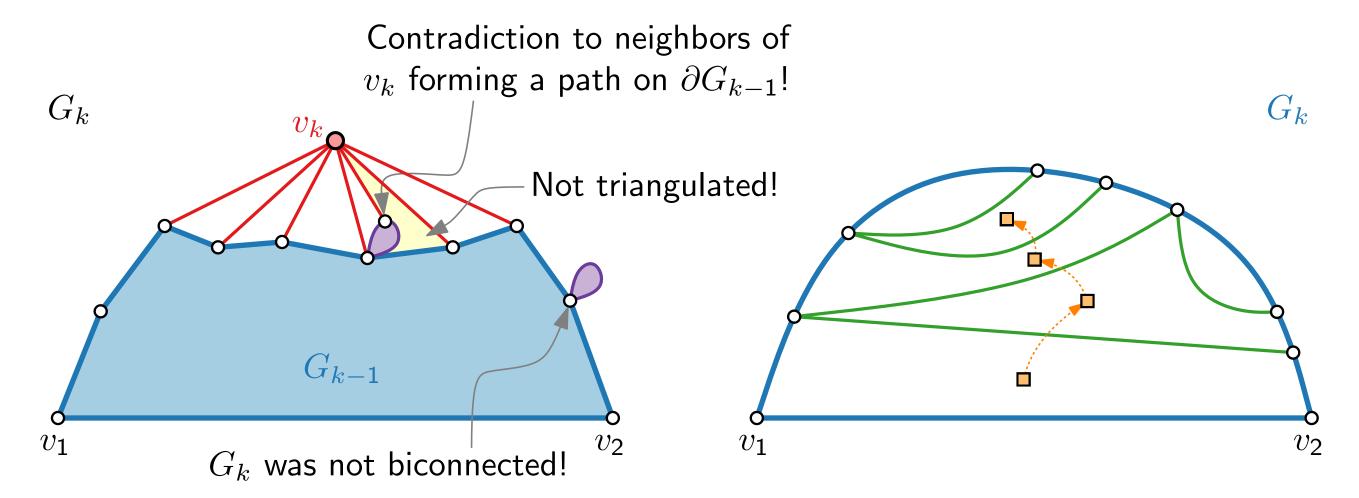
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

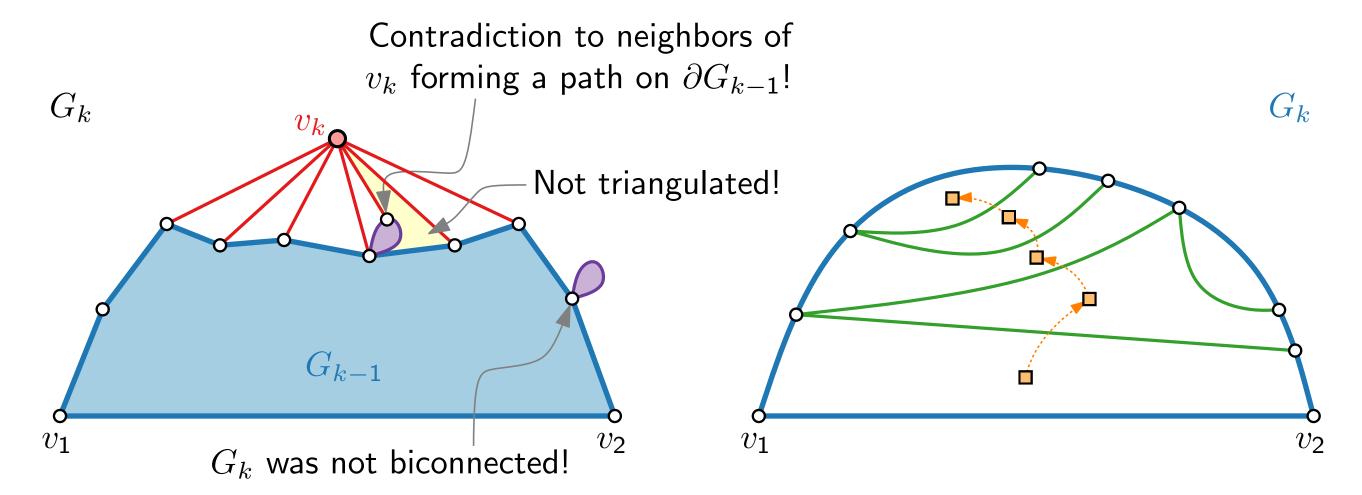
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

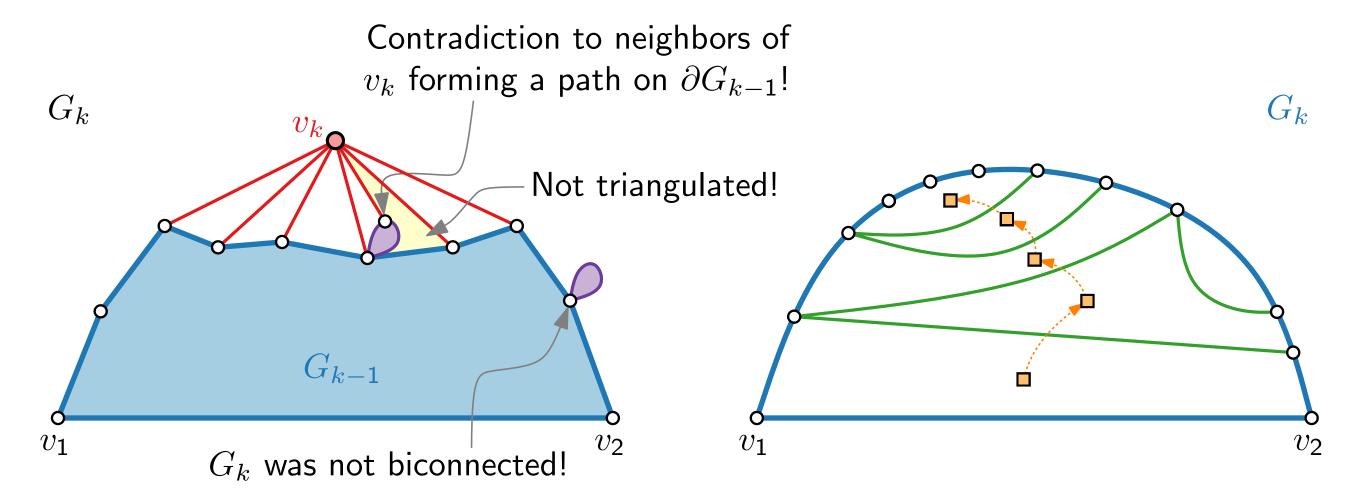
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

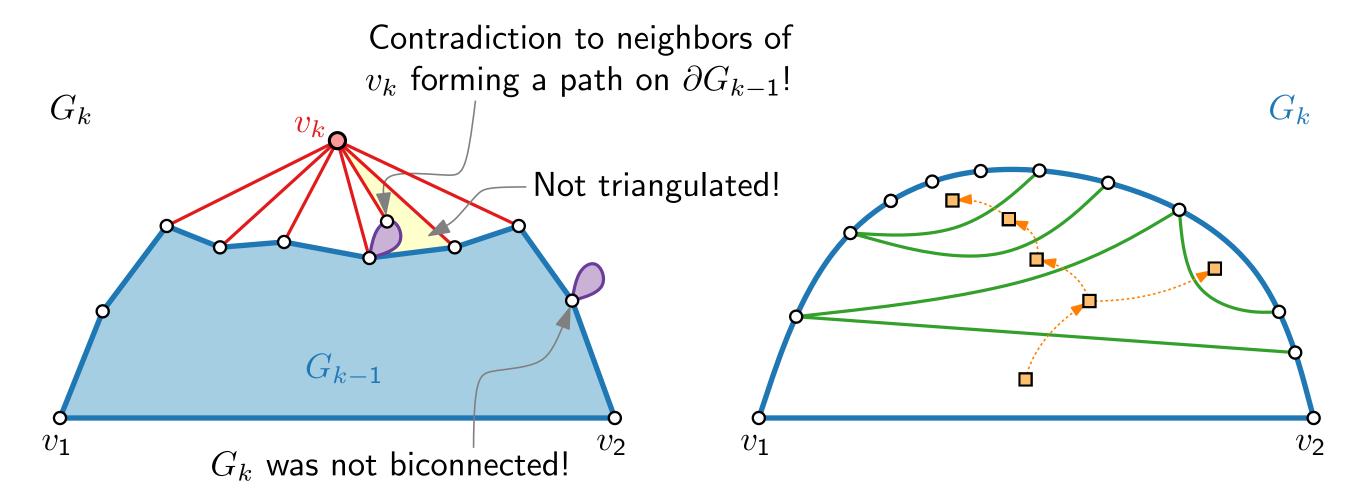
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

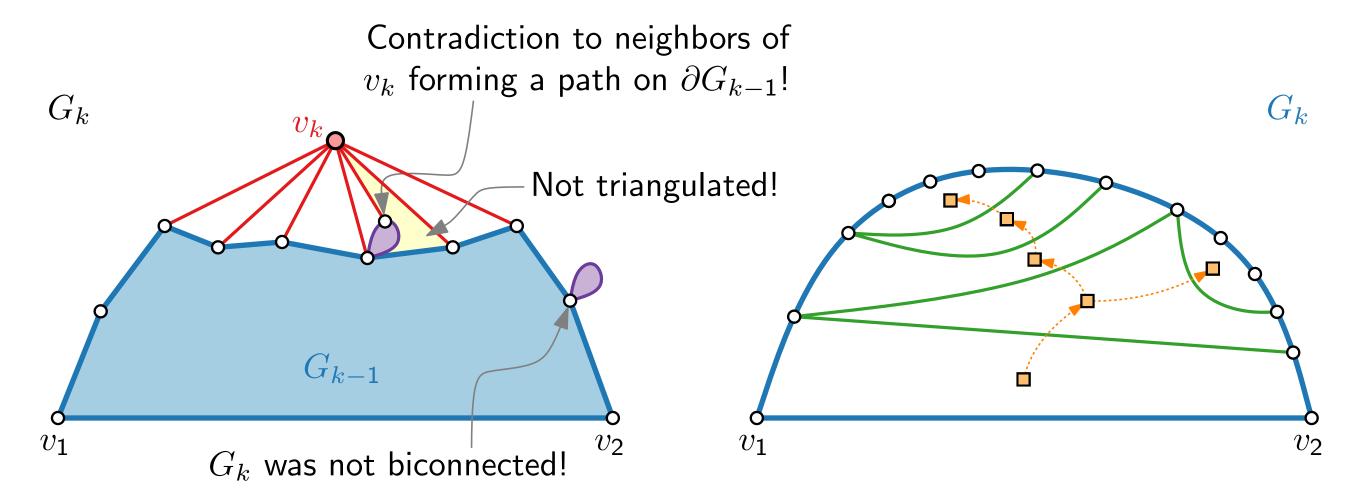
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

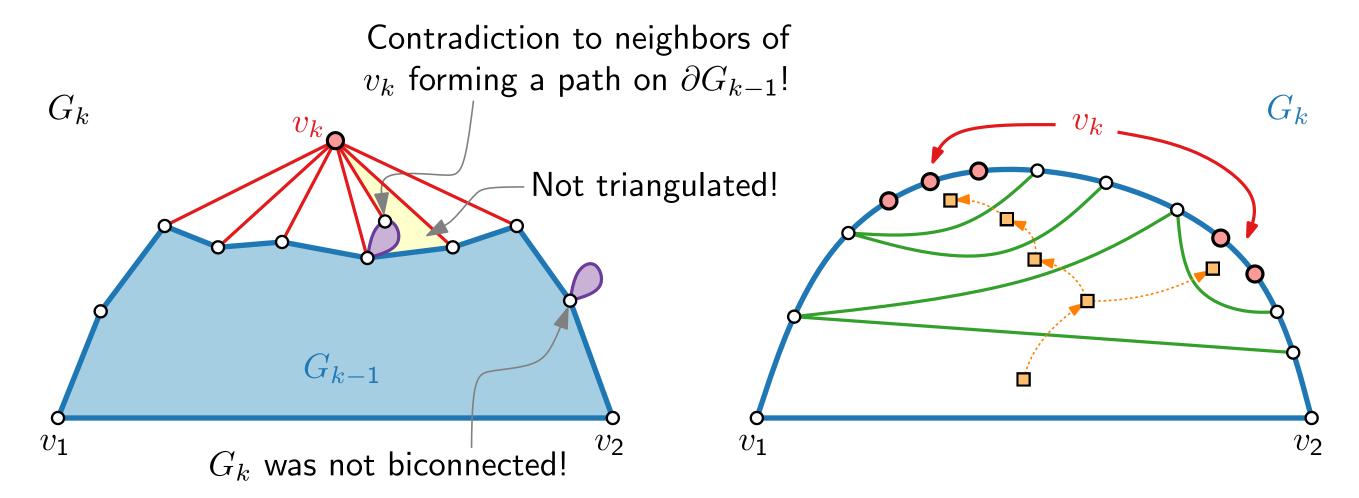
Claim 2.



Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

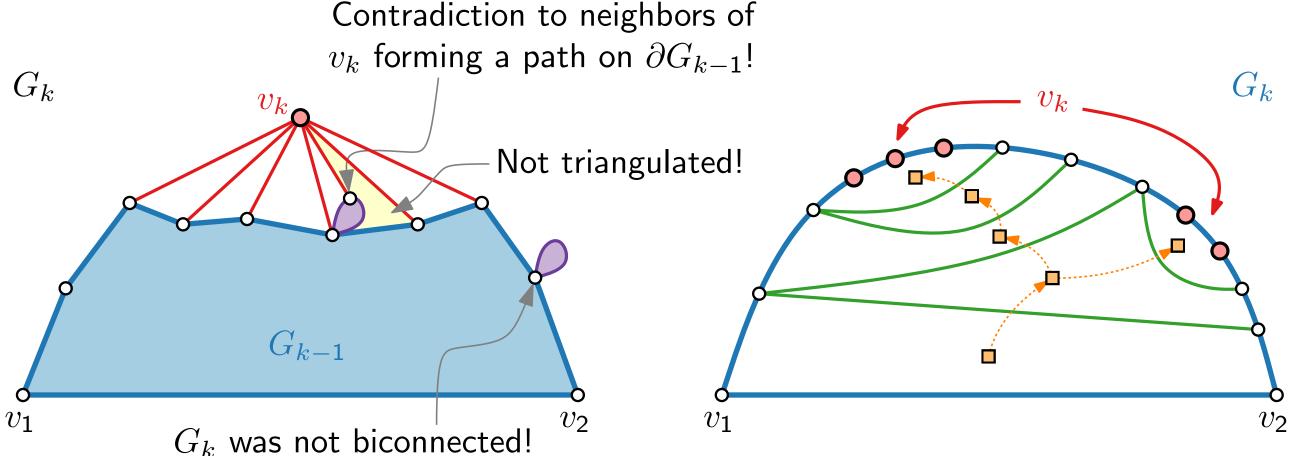


Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_k that is not incident to a chord as choice for v_k .



This completes the proof of the lemma. \Box

CanonicalOrder $(G = (V, E), (v_1, v_2, v_n))$

```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
```

```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
```

```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 | \operatorname{chords}(v) \leftarrow 0;
```

```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 | \operatorname{chords}(v) \leftarrow 0;
```

```
chord(v):
# chords adjacent to v
```

```
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
```

 $| \text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false};$

```
chord(v):
# chords adjacent to v
```

outer face

CanonicalOrder
$$(G = (V, E), (v_1, v_2, v_n))$$

forall $v \in V$ do

 $| \operatorname{chords}(v) \leftarrow 0; \operatorname{out}(v) \leftarrow \operatorname{false};$

- chord(v):
 # chords adjacent to v
- out(v) = true iff v is currently outer vertex

outer face

CanonicalOrder
$$(G = (V, E), (v_1, v_2, v_n))$$

forall $v \in V$ do

- chord(v):

 # chords adjacent to v
- out(v) = true iff v is currently outer vertex

outer face

```
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
```

$$| \text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false}; \text{mark}(v) \leftarrow \text{false}$$

- chord(v):
 # chords adjacent to v
- $\mathbf{out}(v) = \text{true iff } v \text{ is}$ currently outer vertex
- = mark(v) = true iff v has received its number

outer face

- chord(v):

 # chords adjacent to v
- $\mathbf{out}(v) = \text{true iff } v \text{ is}$ currently outer vertex
- = mark(v) = true iff v has received its number

- chord(v):

 # chords adjacent to v
- $\mathbf{out}(v) = \text{true iff } v \text{ is}$ currently outer vertex
- = mark(v) = true iff v has received its number

```
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))

forall v \in V do

\subseteq \operatorname{chords}(v) \leftarrow 0; \operatorname{out}(v) \leftarrow \operatorname{false}; \operatorname{mark}(v) \leftarrow \operatorname{false}

mark(v_1), \operatorname{mark}(v_2), \operatorname{out}(v_1), \operatorname{out}(v_2), \operatorname{out}(v_n) \leftarrow \operatorname{true}

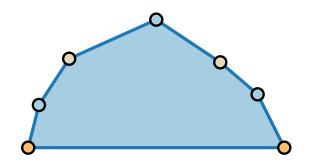
for k = n downto 3 do

\subseteq \operatorname{choose} v such that \operatorname{mark}(v) = \operatorname{false}, \operatorname{out}(v) = \operatorname{true}, and \operatorname{chords}(v) = 0
```

- chord(v):

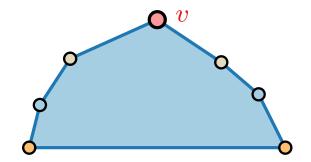
 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number

- chord(v):
 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



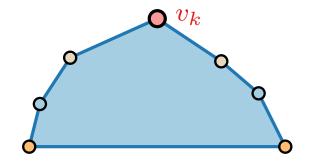
- chord(v):

 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



- chord(v):

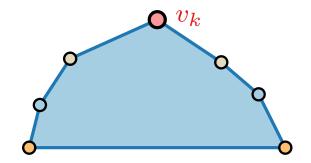
 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 | \text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false}; \text{mark}(v) \leftarrow \text{false}|
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
       and chords(v) = 0
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be t
```

- chord(v):

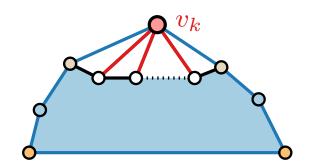
 # chords adjacent to v
- $\mathbf{out}(v) = \text{true iff } v \text{ is}$ currently outer vertex
- = mark(v) = true iff v has received its number



```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
      and chords(v) = 0
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be t
```

- chord(v):

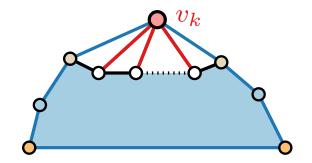
 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
      and chords(v) = 0
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be the unmarked neighbors of v_k.
     for i = p to q do
```

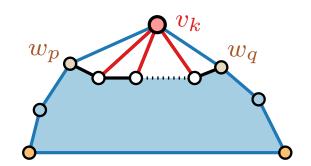
- chord(v):

 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



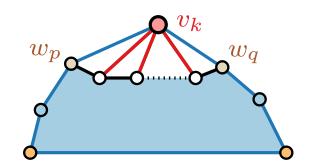
```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
      and chords(v) = 0
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be the unmarked neighbors of v_k.
     for i = p to q do
```

- chord(v):
 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
       and chords(v) = 0
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be the unmarked neighbors of v_k.
     for i = p to q do
          \mathsf{out}(w_i) \leftarrow \mathsf{true}
```

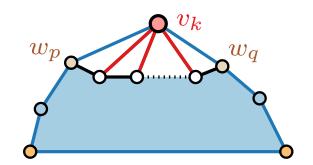
- chord(v):
 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 | \text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false}; \text{mark}(v) \leftarrow \text{false}
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
       and chords(v) = 0
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be the unmarked neighbors of v_k.
     for i = p to q do
          \mathsf{out}(w_i) \leftarrow \mathsf{true}
          update chords(w_i)
          and for its neighbours
```

- chord(v):

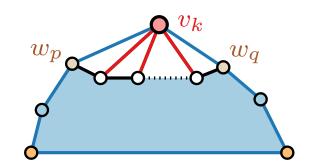
 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
      and chords(v) = 0
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be the unmarked neighbors of v_k.
     for i = p to q do
          \mathsf{out}(w_i) \leftarrow \mathsf{true}
          update chords(w_i)
          and for its neighbours
```

- chord(v):

 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Canonical Order – Implementation

```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
    choose v such that mark(v) = false, out(v) = true,
      and chords(v) = 0 // keep list with candidates
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be the unmarked neighbors of v_k.
     for i = p to q do
         \mathsf{out}(w_i) \leftarrow \mathsf{true}
         update chords(w_i)
         and for its neighbours
```

- chord(v):

 # chords adjacent to v
- out(v) = true iff v is currently outer vertex
- = mark(v) = true iff v has received its number



Lemma.

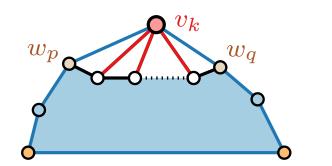
Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Canonical Order – Implementation

```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 | \text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false}; \text{mark}(v) \leftarrow \text{false}
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
      and chords(v) = 0 // keep list with candidates
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be the unmarked neighbors of v_k.
     for i = p to q do
          \mathsf{out}(w_i) \leftarrow \mathsf{true}
                                                  //O(n) time in total
          update chords(w_i)
          and for its neighbours
```

- chord(v):

 # chords adjacent to v
- $\mathbf{out}(v) = \text{true iff } v \text{ is}$ currently outer vertex
- = mark(v) = true iff v has received its number



Lemma.

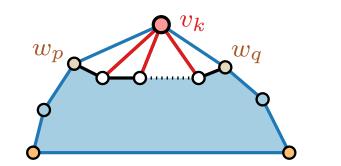
Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Canonical Order – Implementation

```
outer face
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 | \text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false}; \text{mark}(v) \leftarrow \text{false}
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n downto 3 do
     choose v such that mark(v) = false, out(v) = true,
      and chords(v) = 0 // keep list with candidates
     v_k \leftarrow v; mark(v) \leftarrow true
     // Let \partial G_{k-1} be w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2.
     Let w_p, \ldots, w_q be the unmarked neighbors of v_k.
     for i = p to q do
         \mathsf{out}(w_i) \leftarrow \mathsf{true}
                                                 //O(n) time in total
          update chords(w_i)
         and for its neighbours //O(m) = O(n) in total
```

- chord(v):

 # chords adjacent to v
- $\mathbf{out}(v) = \text{true iff } v \text{ is}$ currently outer vertex
- = mark(v) = true iff v has received its number



Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Visualization of Graphs

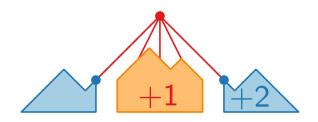
Lecture 3:

Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and the Shift Method

The Shift Method

Alexander Wolff



Drawing invariants:

Drawing invariants:

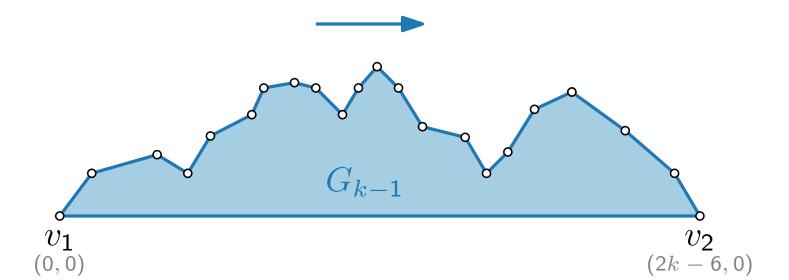
 G_{k-1} is drawn such that

 v_1 is at (0,0), v_2 is at (2k-6,0),

$$G_{k-1}$$
 v_1
 v_2
 v_2
 v_3
 v_4
 v_5
 v_6
 v_7
 v_8
 v_9
 v_9

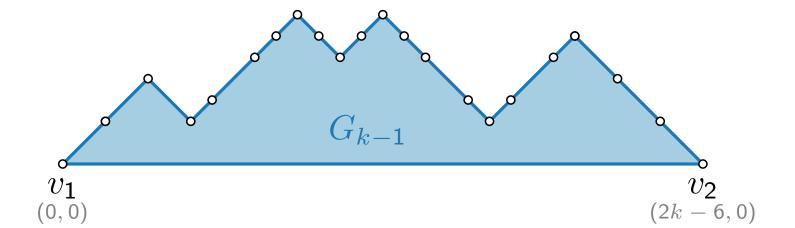
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,



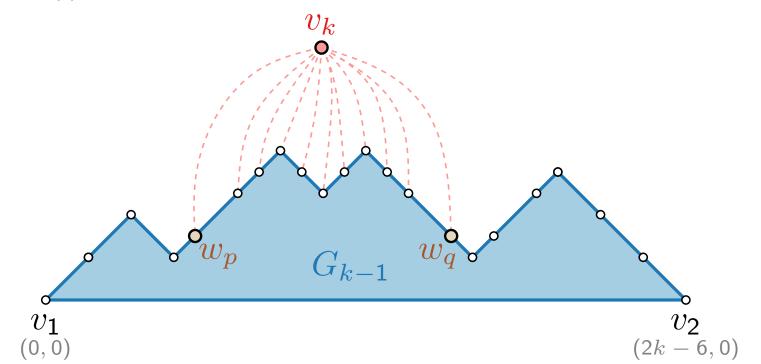
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



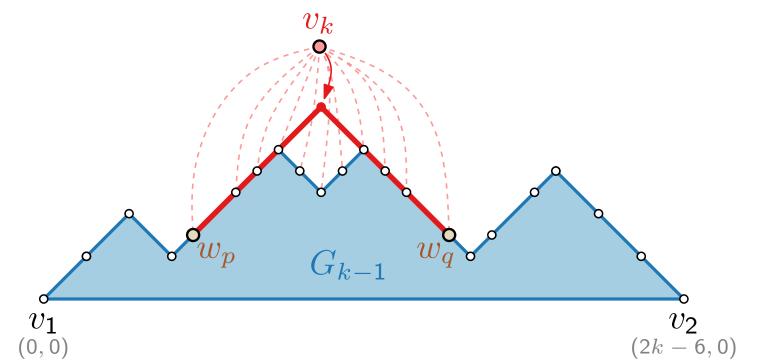
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



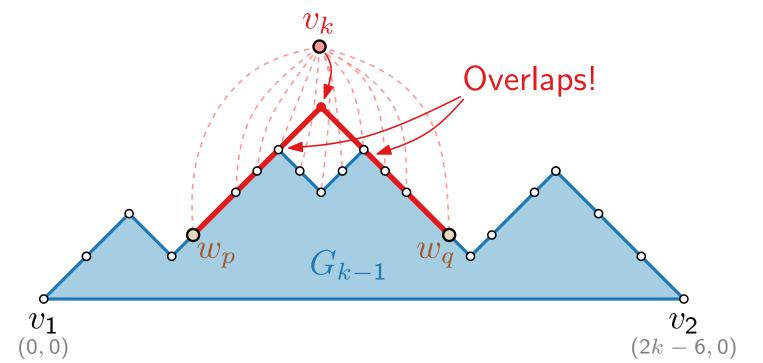
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



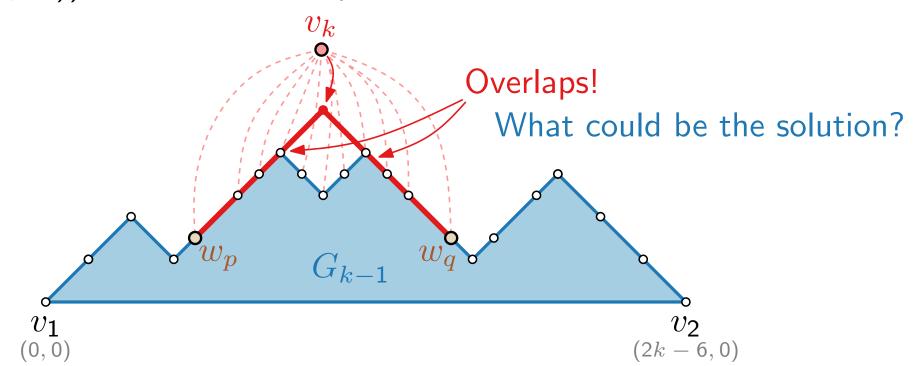
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



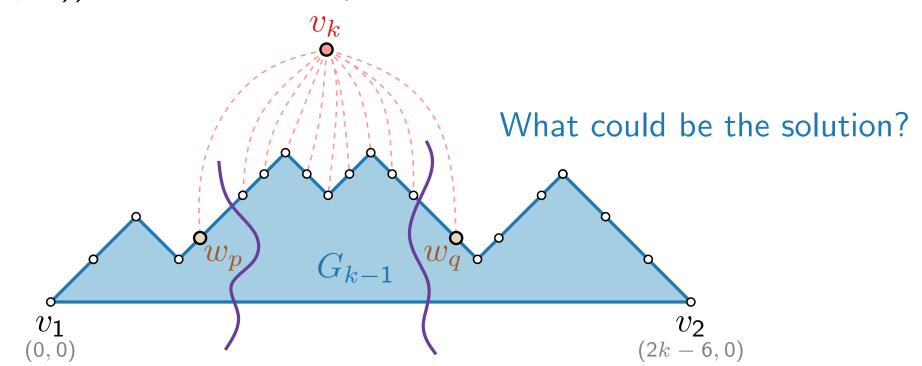
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



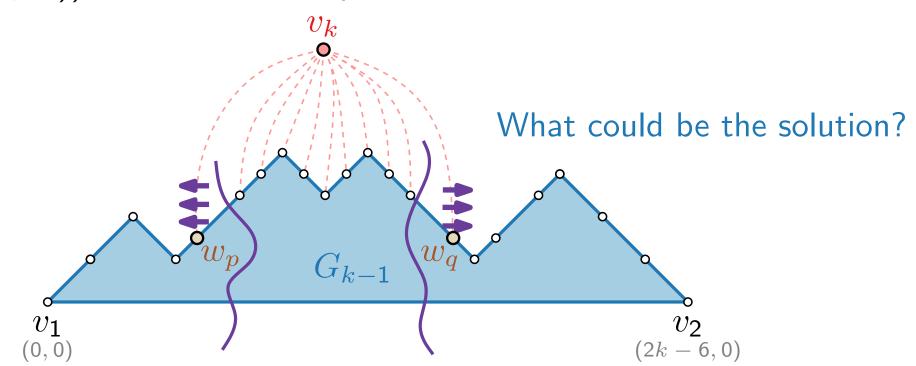
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



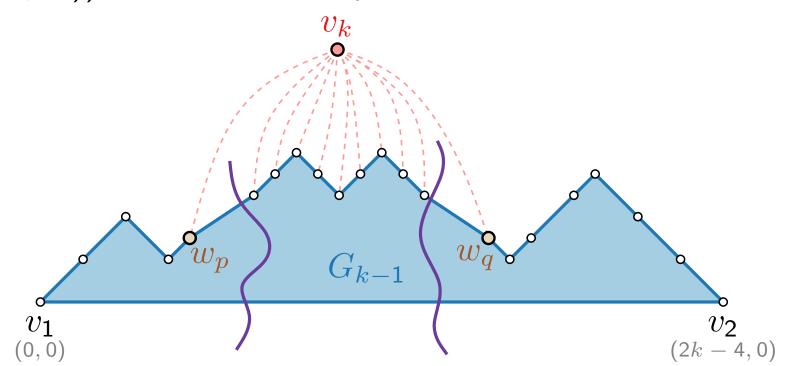
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



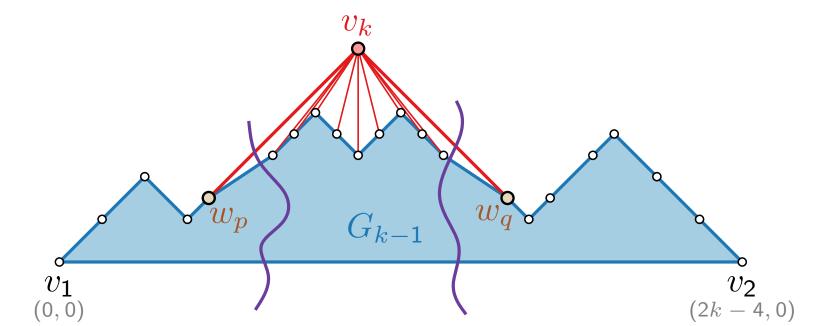
Drawing invariants:

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



Drawing invariants:

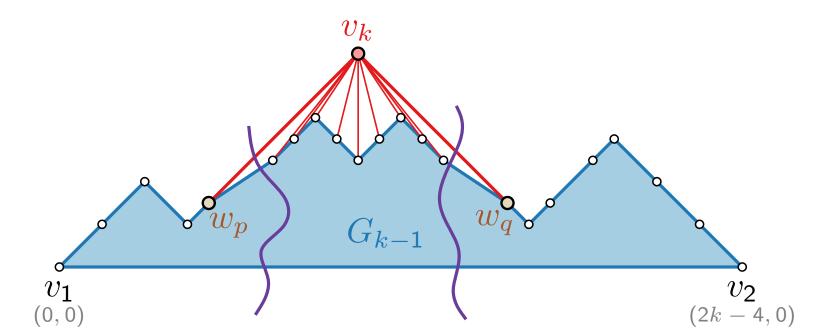
- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



Drawing invariants:

 G_{k-1} is drawn such that

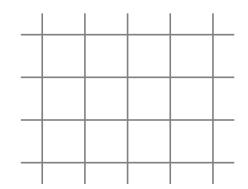
- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

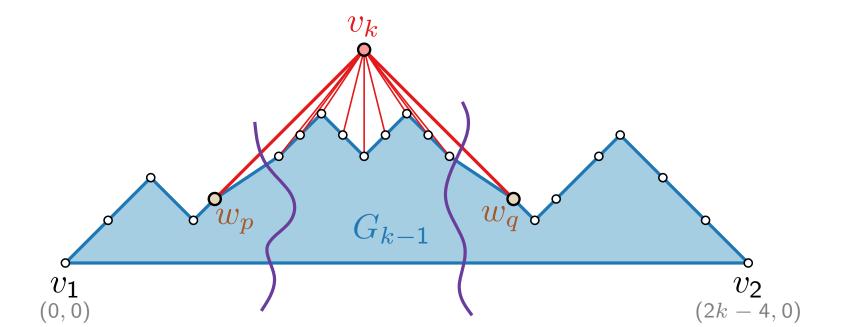


Drawing invariants:

 G_{k-1} is drawn such that

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

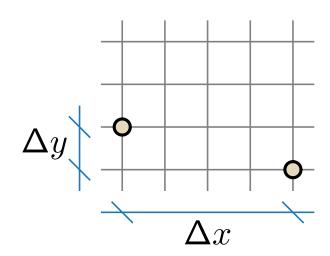


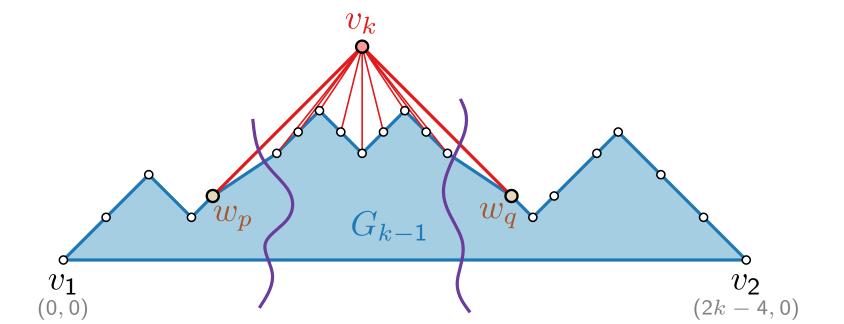


Drawing invariants:

 G_{k-1} is drawn such that

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

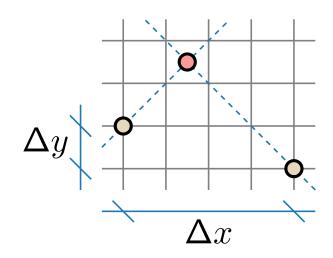


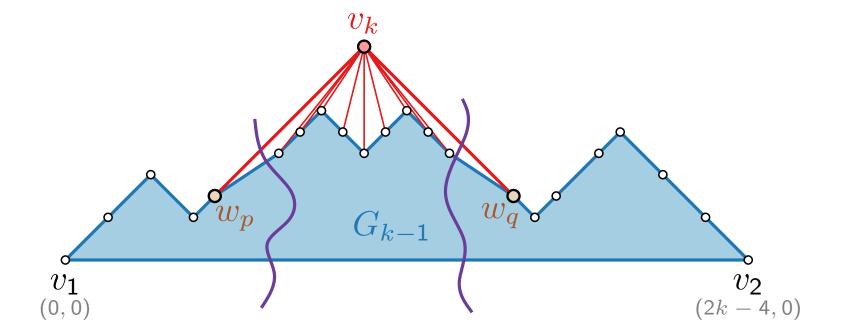


Drawing invariants:

 G_{k-1} is drawn such that

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

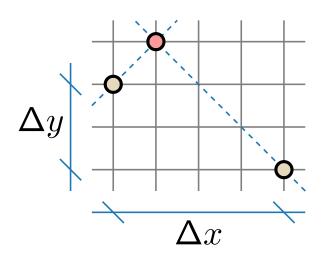


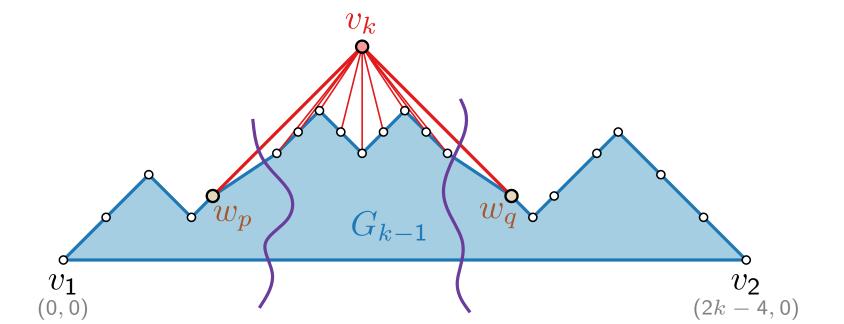


Drawing invariants:

 G_{k-1} is drawn such that

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

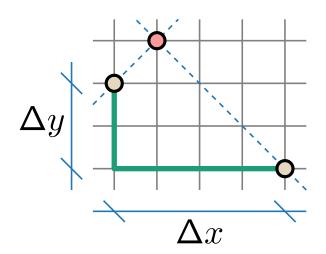


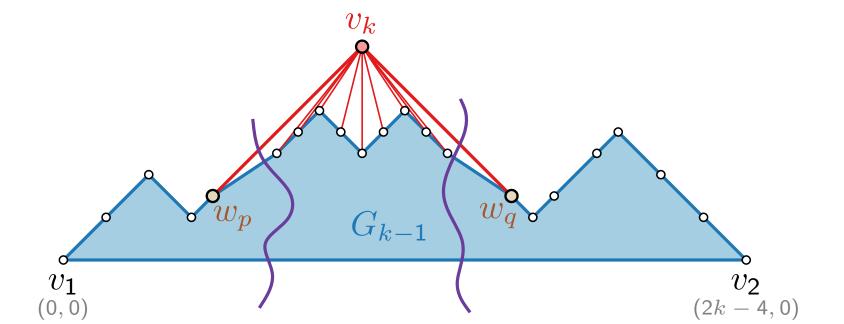


Drawing invariants:

 G_{k-1} is drawn such that

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



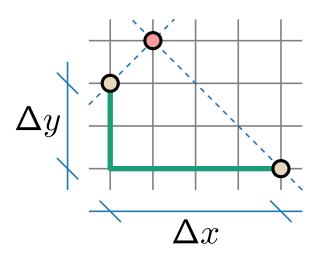


Drawing invariants:

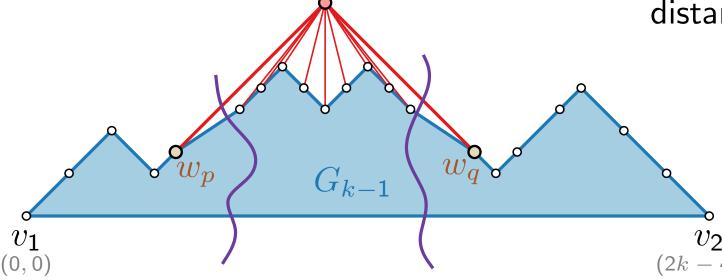
 G_{k-1} is drawn such that

- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

Will v_k lie on the grid?



Yes, because w_p and w_q have even Manhattan distance $\Delta x + \Delta y$.

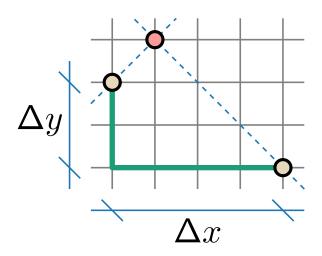


Drawing invariants:

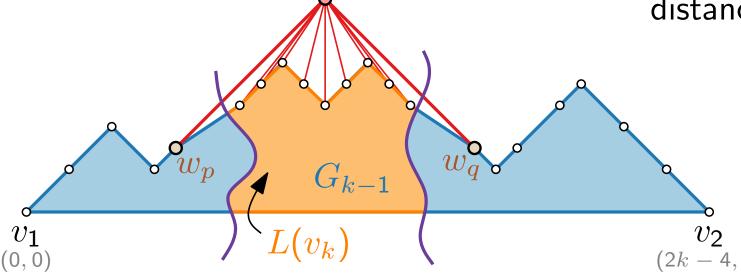
 G_{k-1} is drawn such that

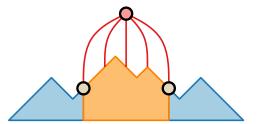
- v_1 is at (0,0), v_2 is at (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

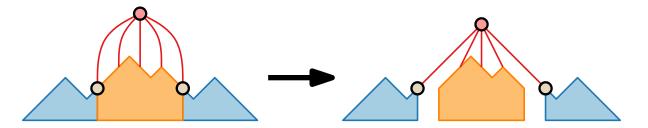
Will v_k lie on the grid?

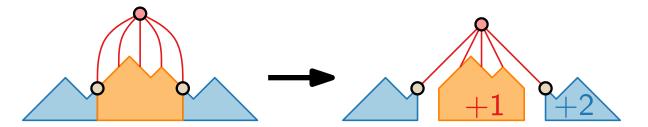


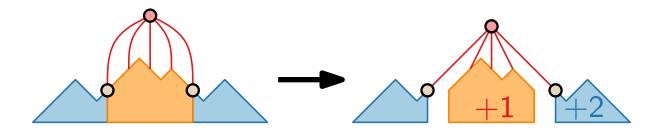
Yes, because w_p and w_q have even Manhattan distance $\Delta x + \Delta y$.

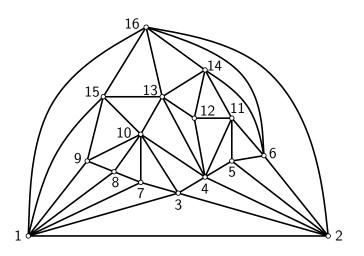


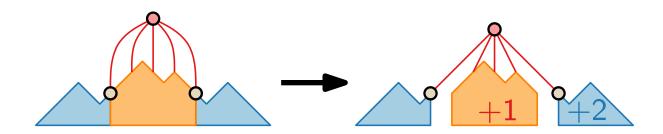


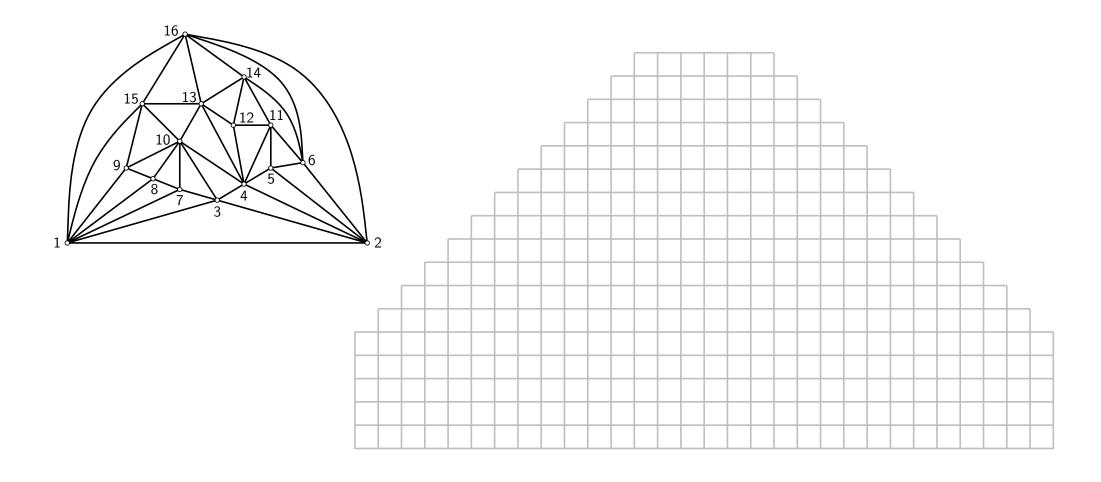


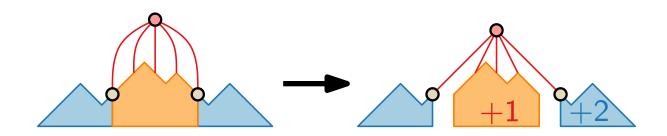


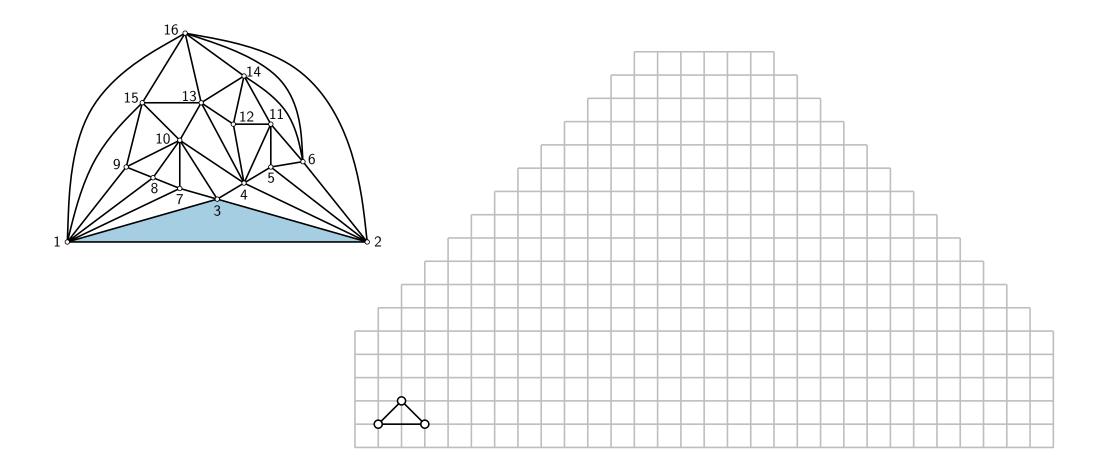


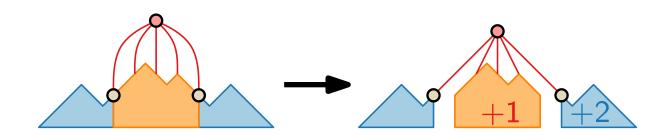


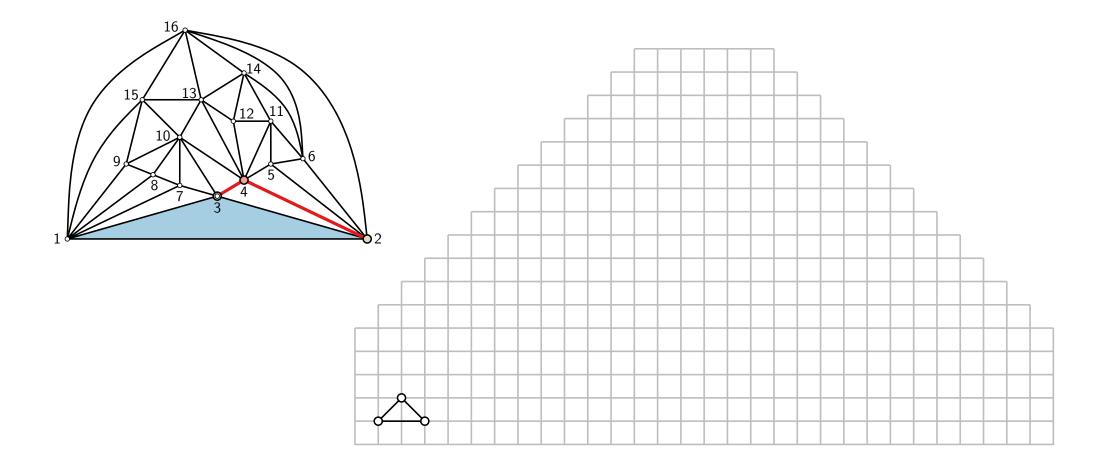


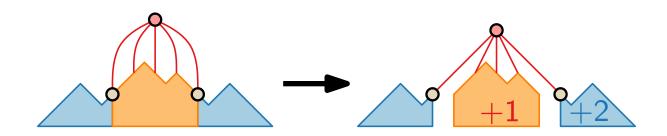


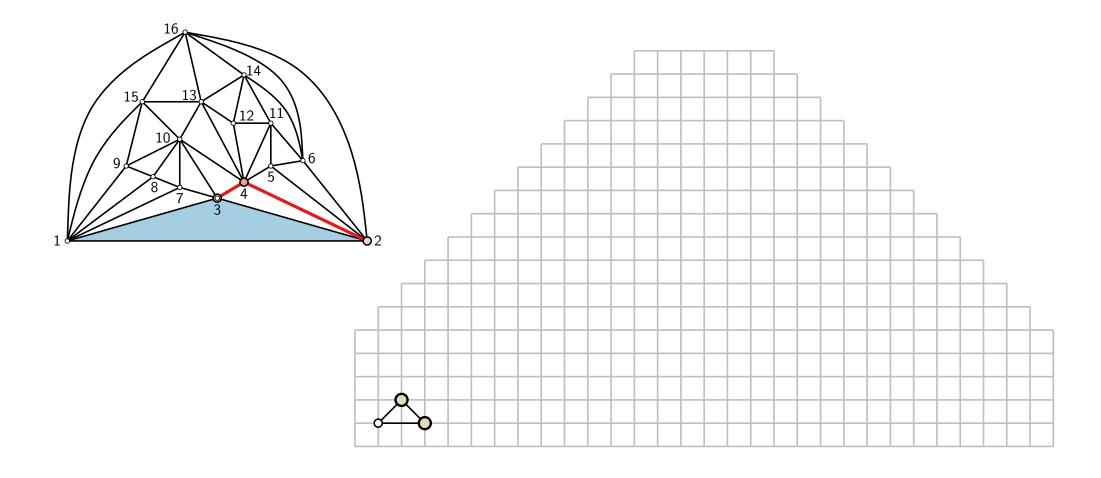


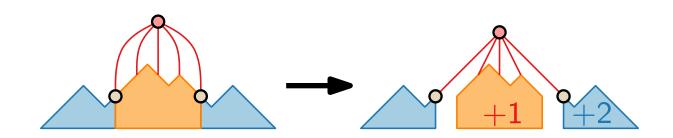


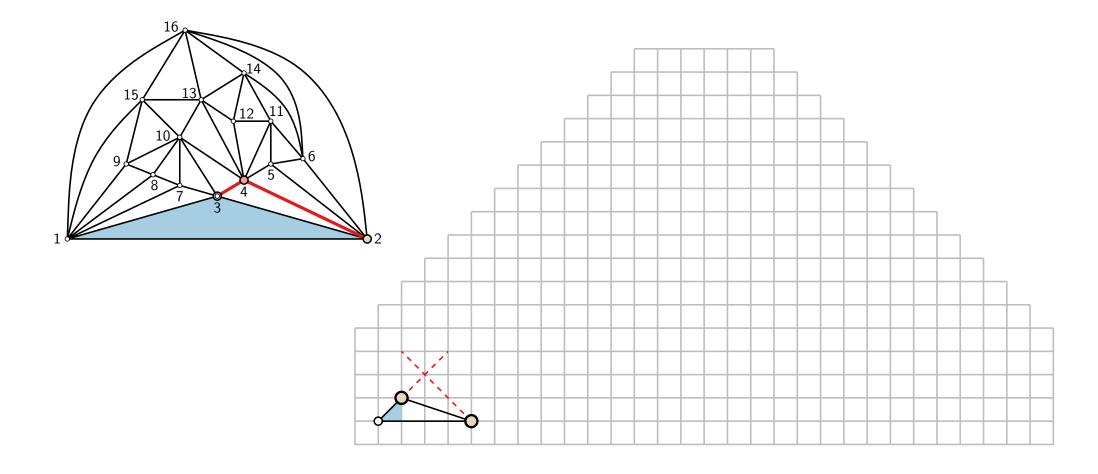


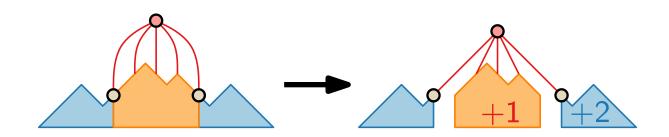


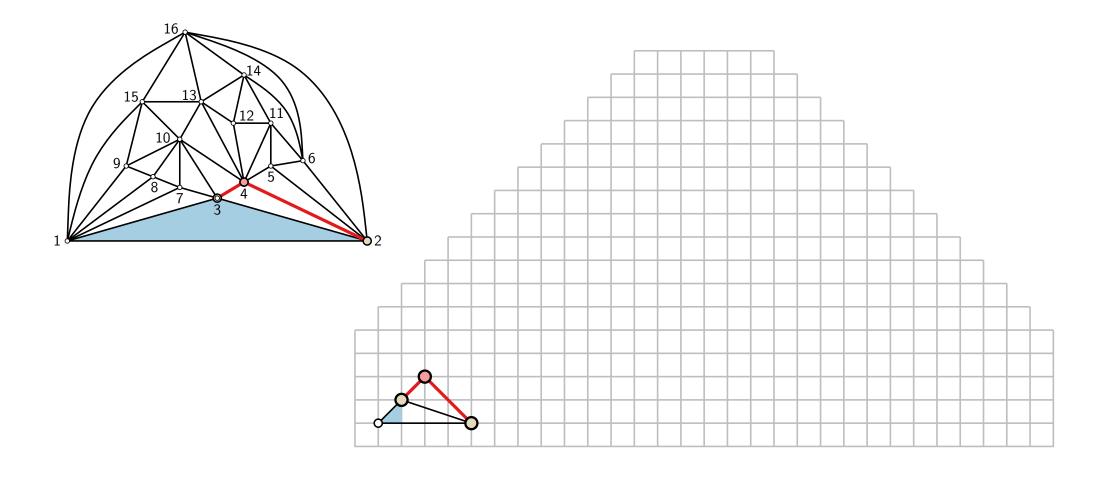


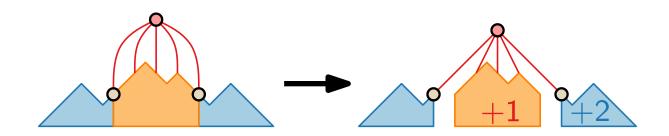


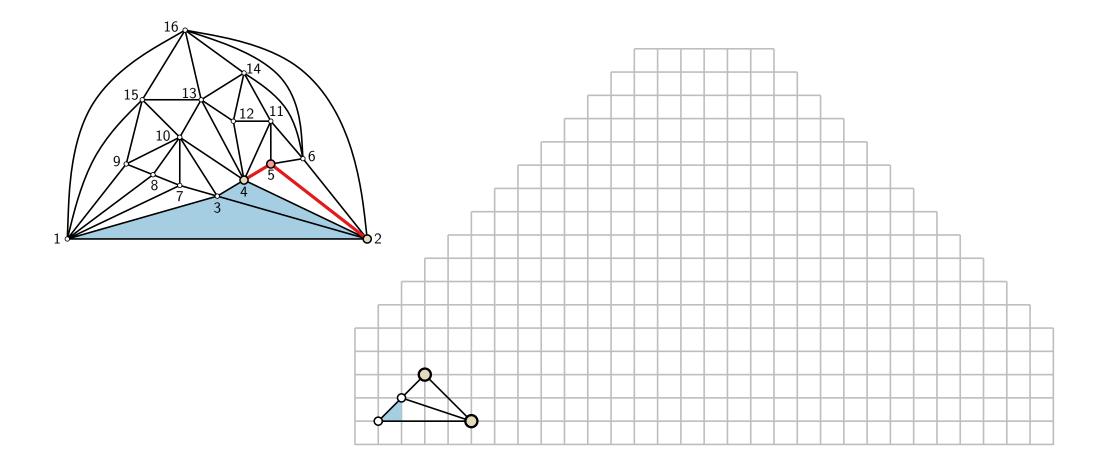


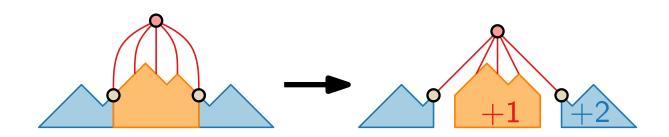


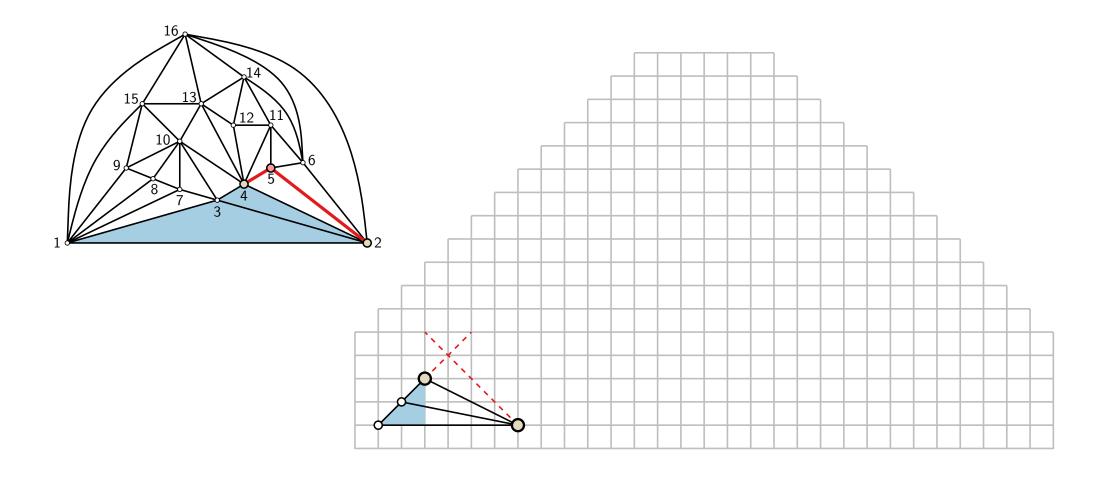


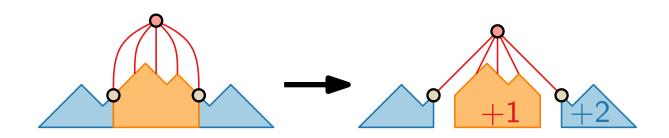


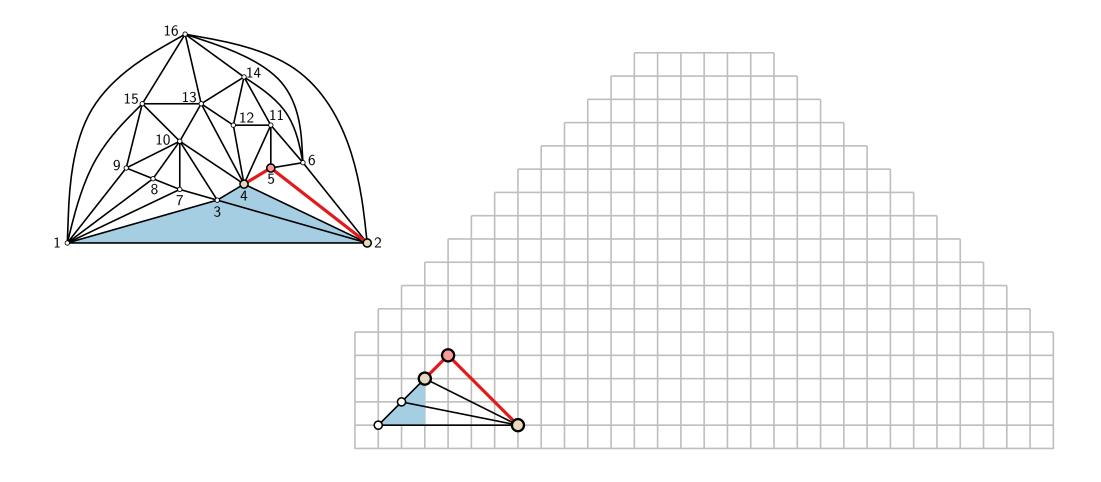


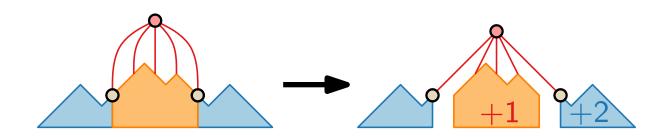


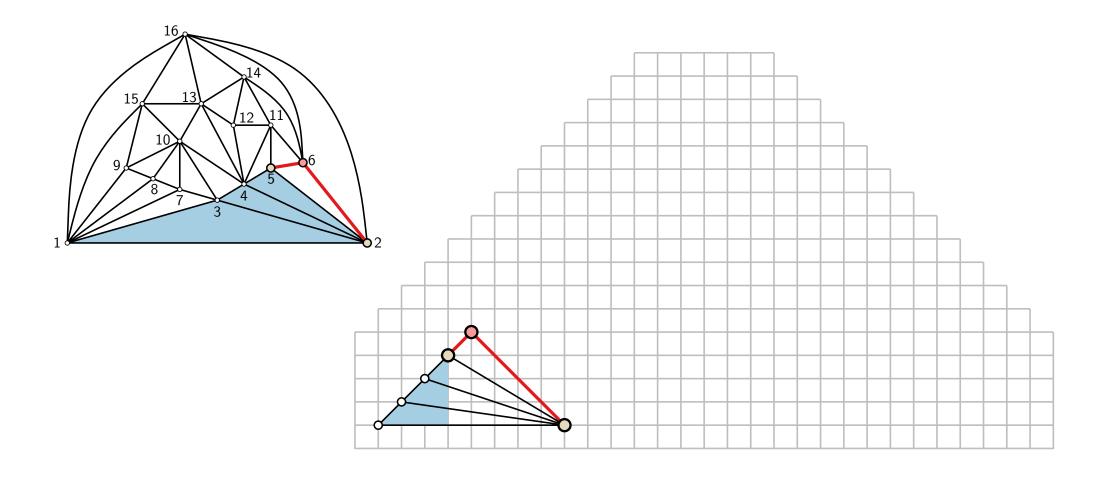


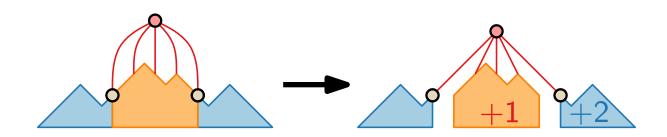


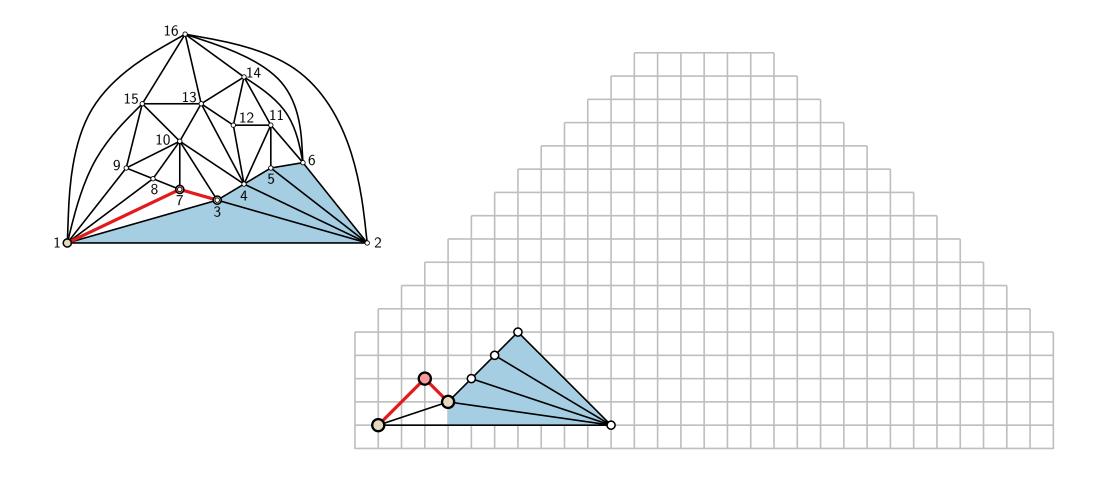


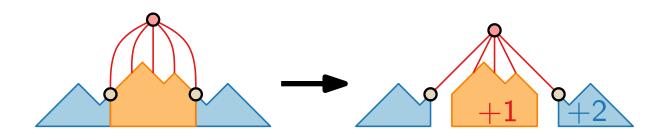


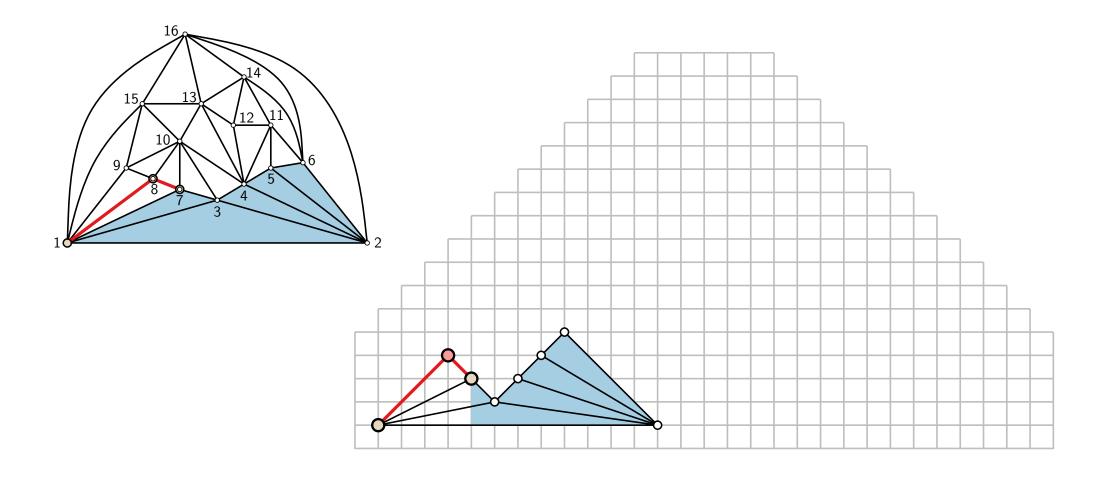


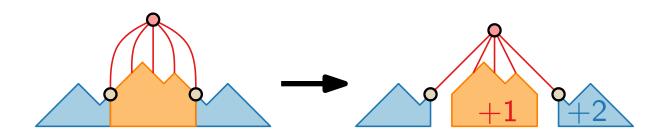


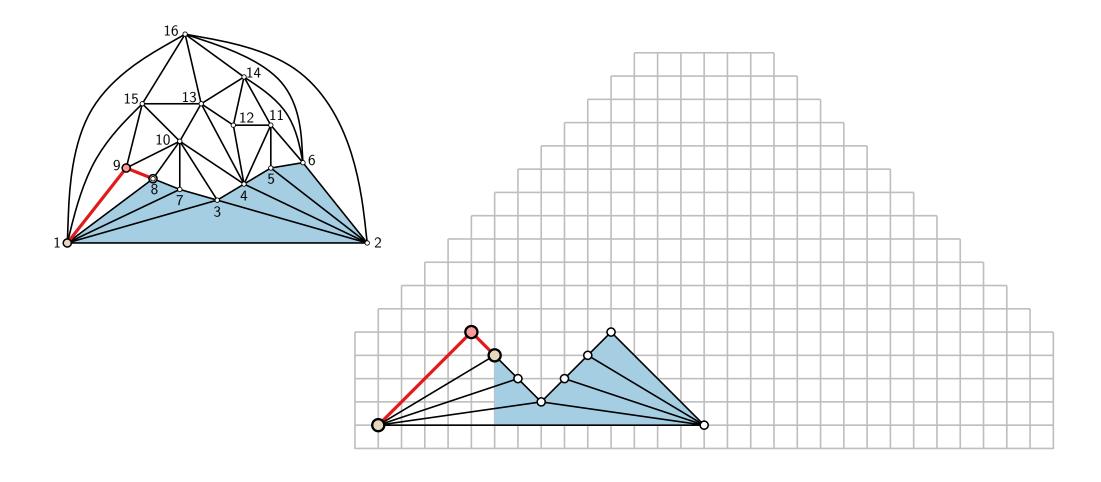


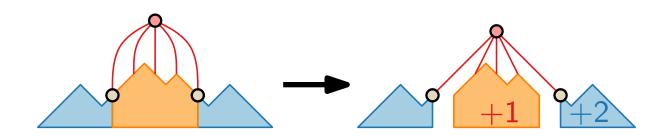


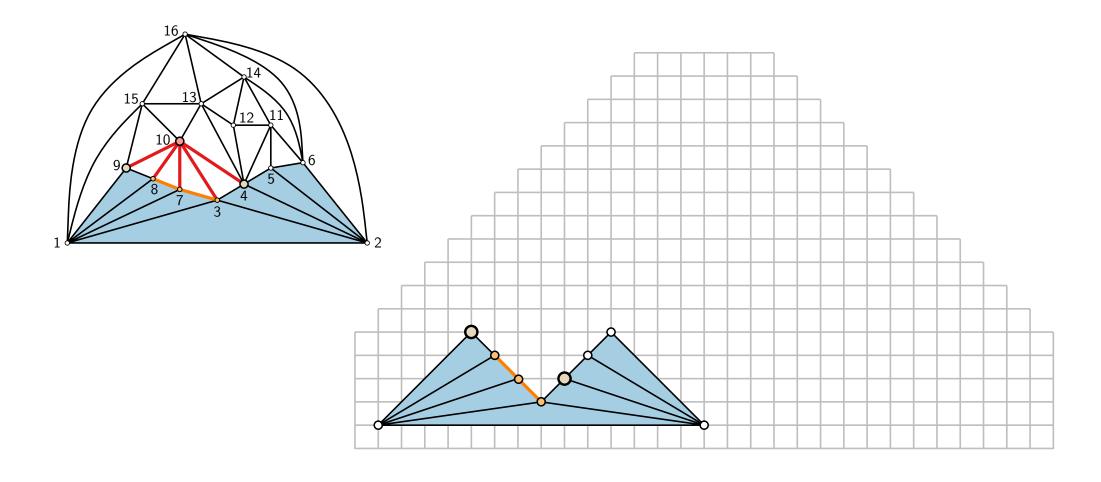


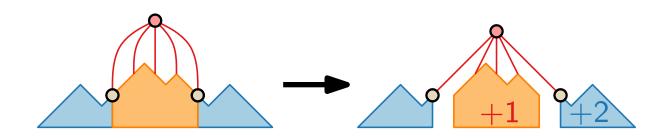


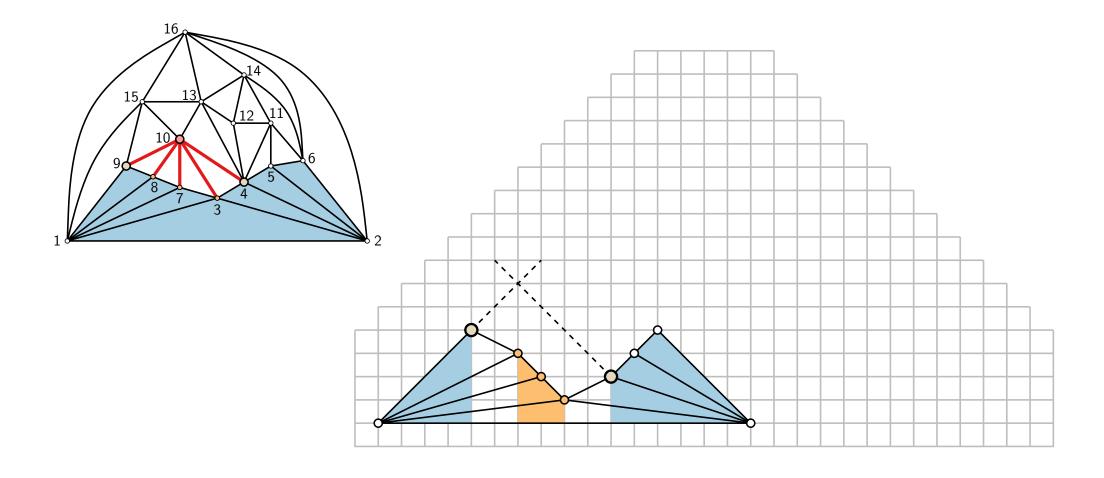


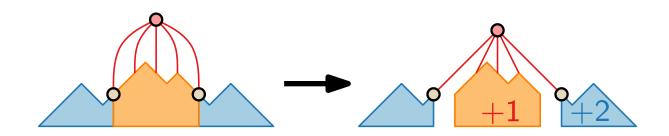


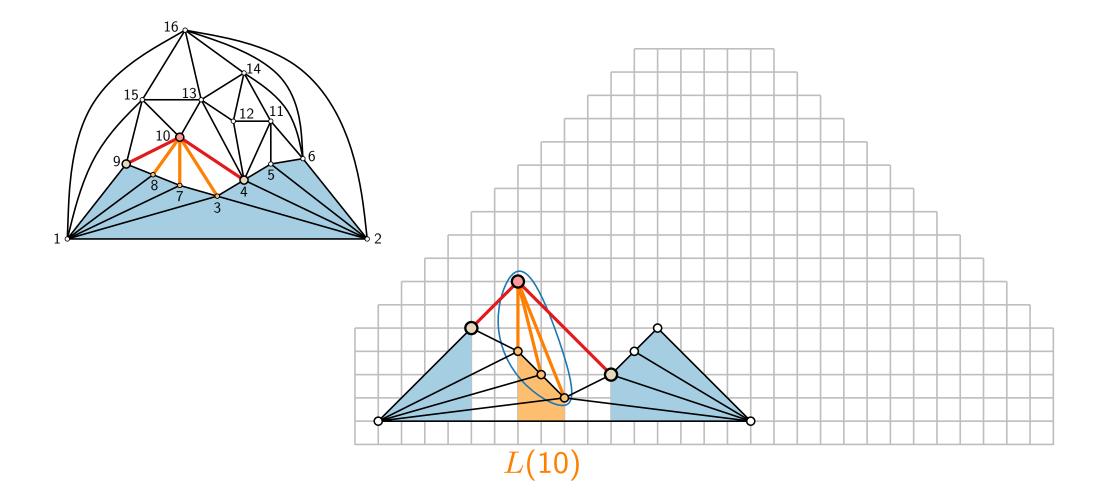


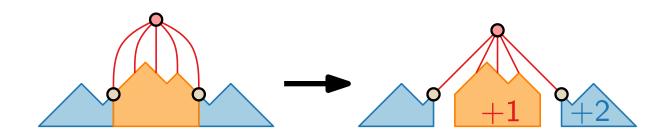


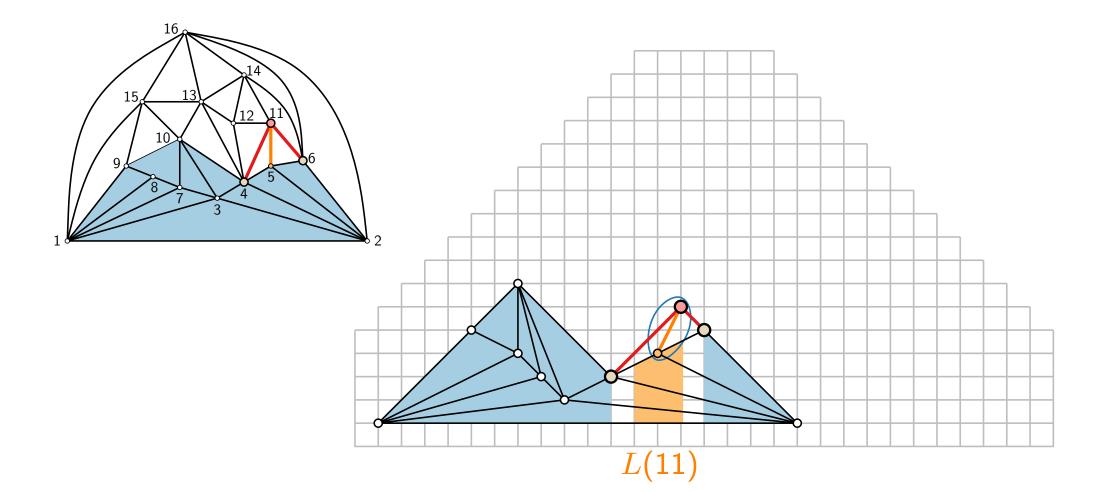


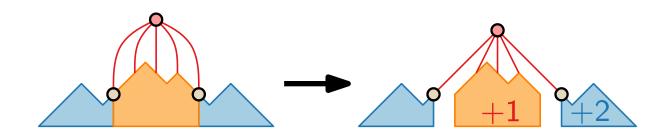


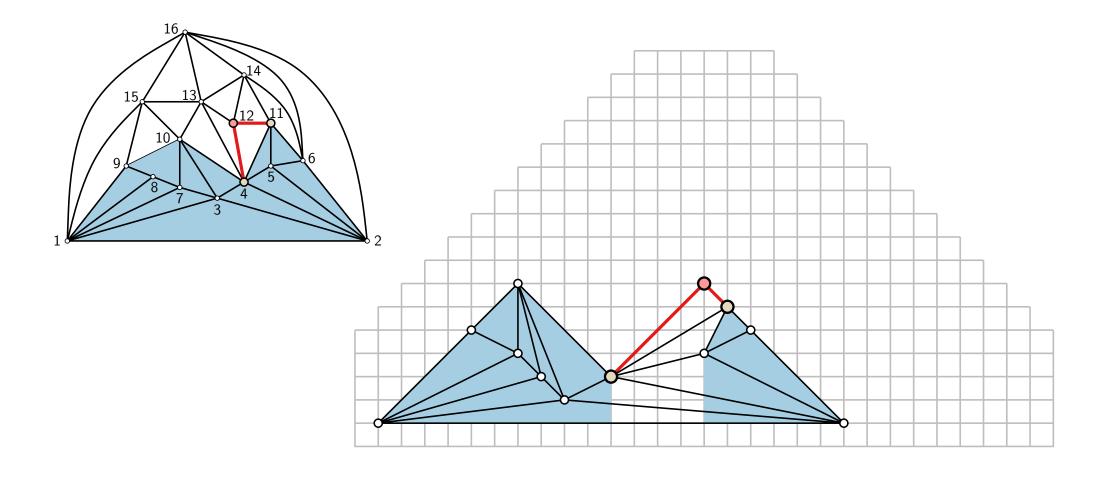


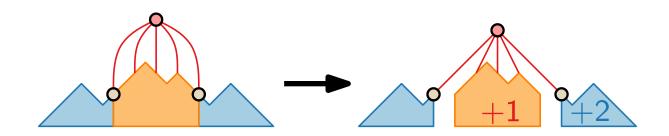


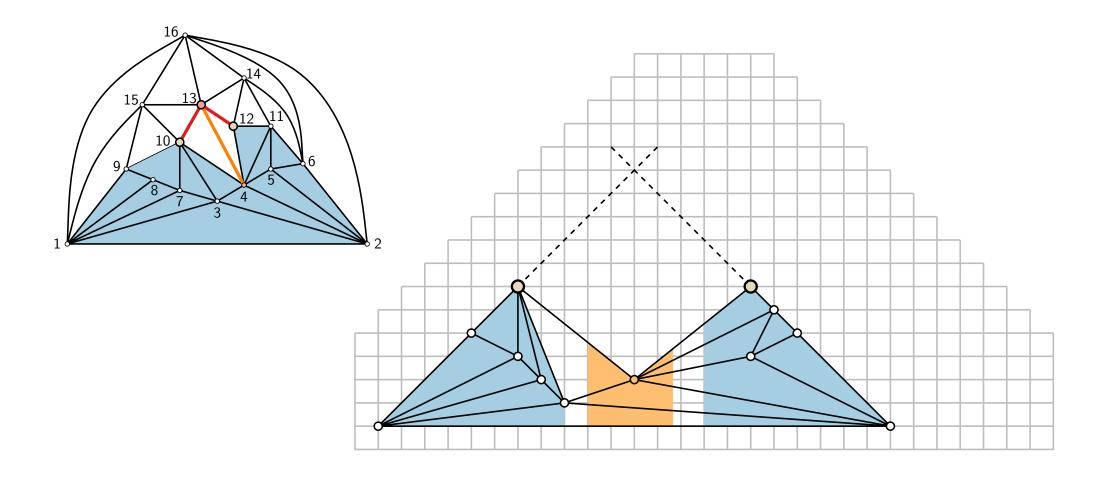


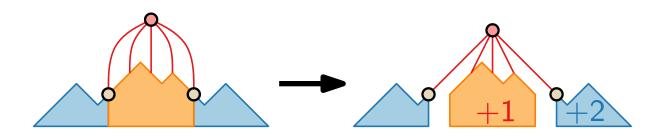


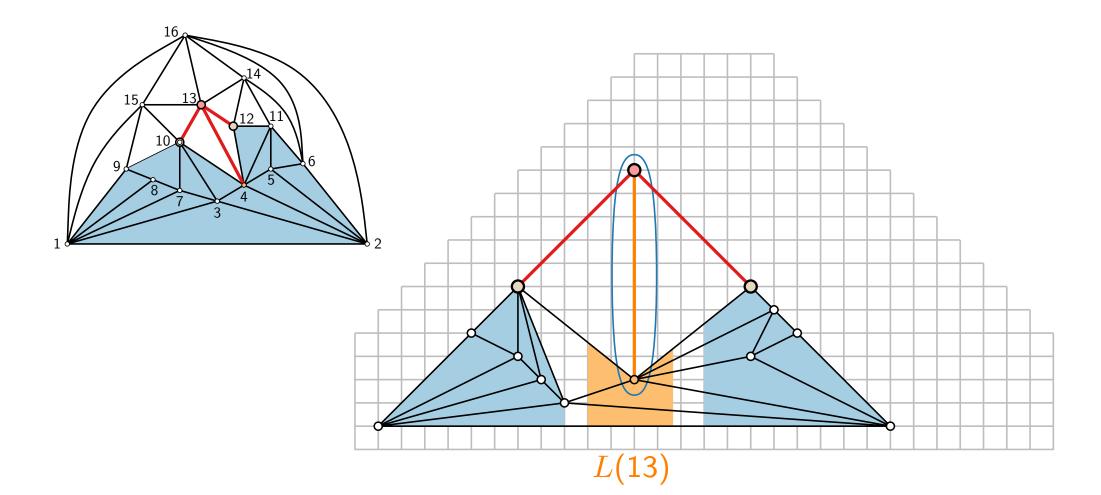


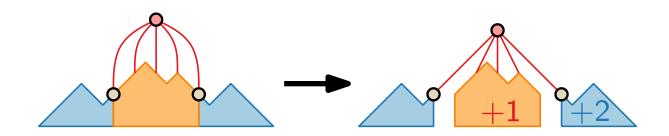


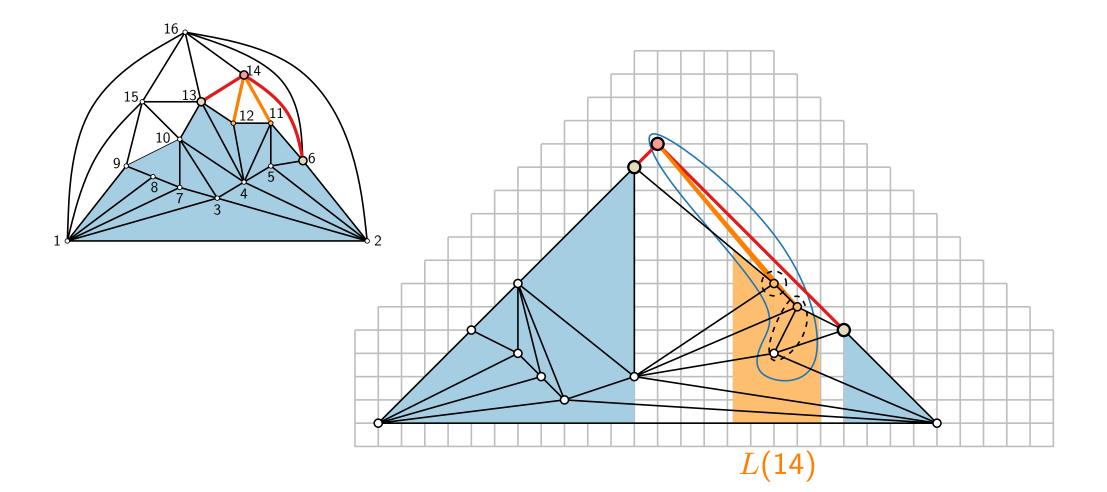


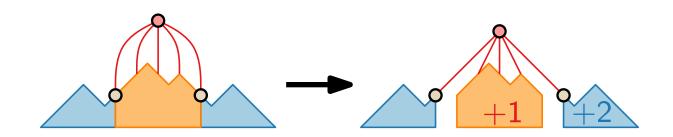


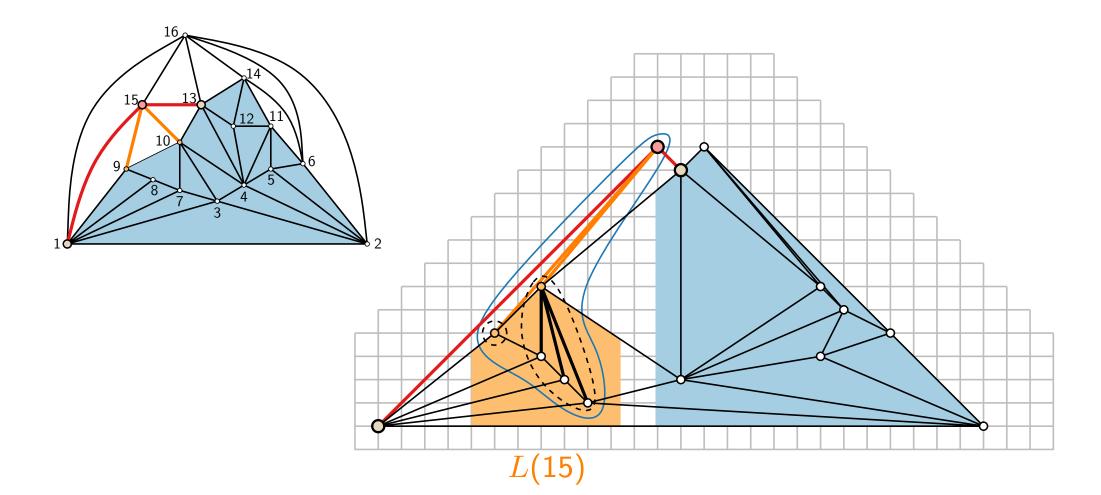


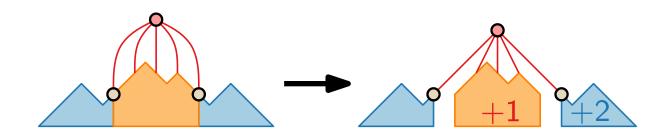


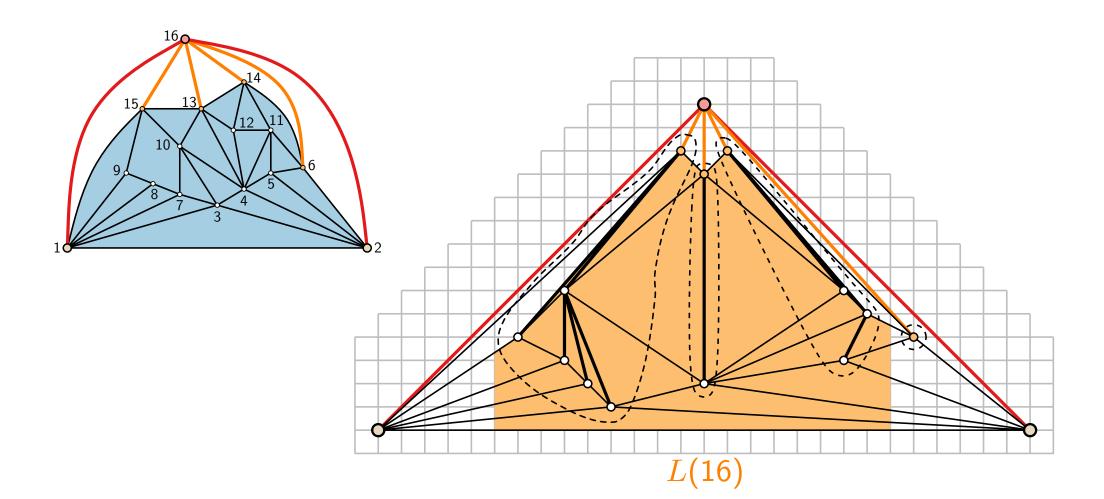


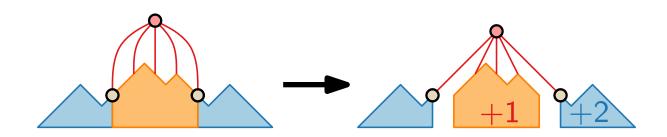


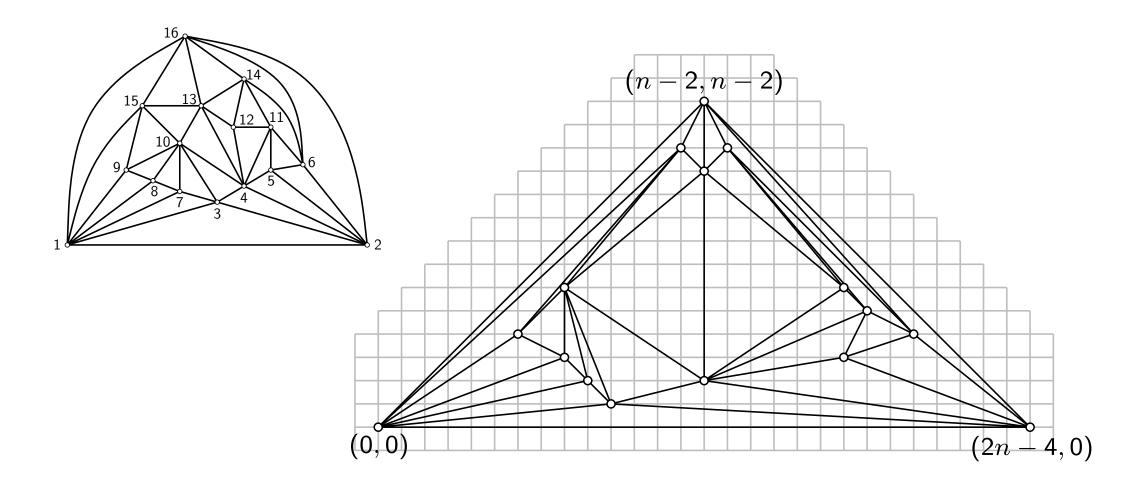


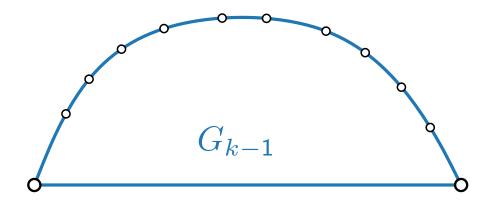


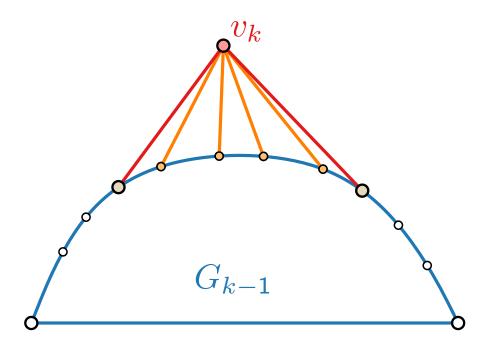


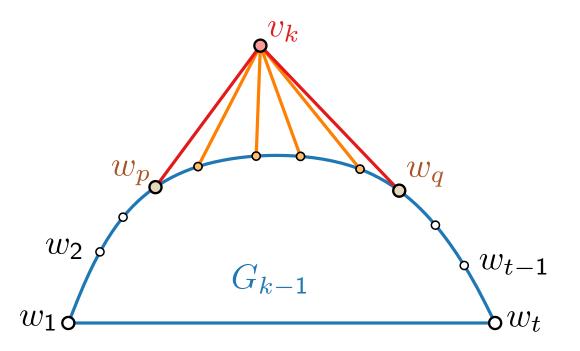


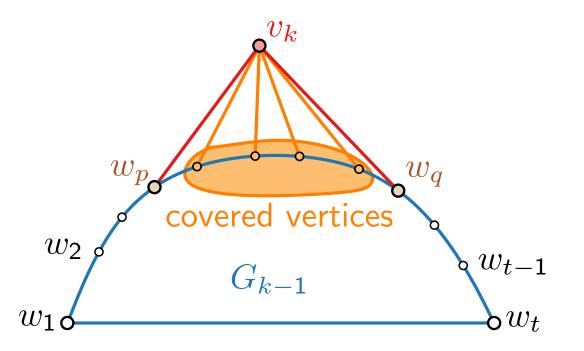






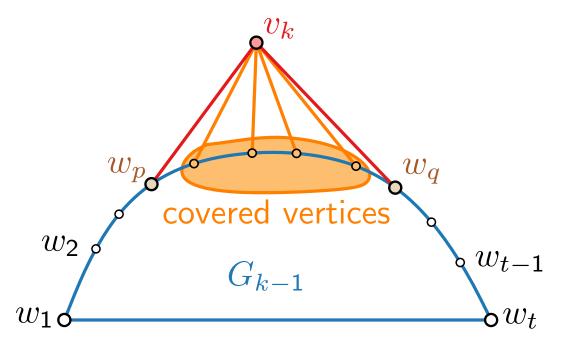




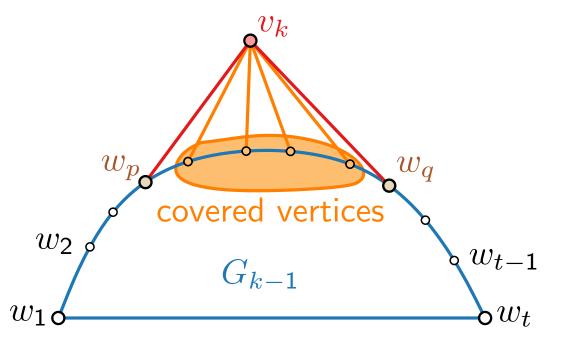


Observations.

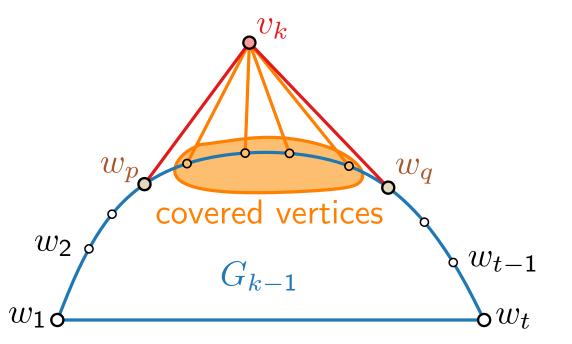
■ Each internal vertex is covered exactly once.



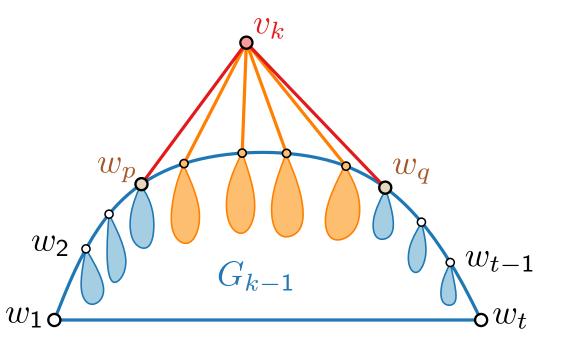
- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G



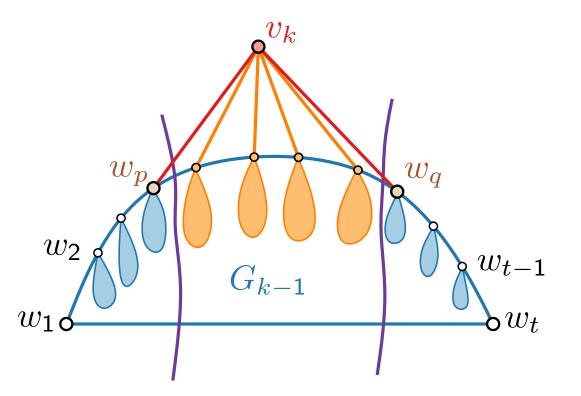
- Each internal vertex is covered exactly once.
- \blacksquare Covering relation defines a tree in G
- \blacksquare and a forest in G_i , $1 \le i \le n-1$.



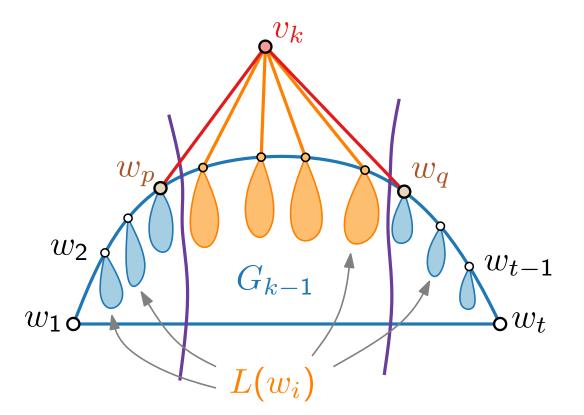
- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- \blacksquare and a forest in G_i , $1 \le i \le n-1$.



- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- \blacksquare and a forest in G_i , $1 \le i \le n-1$.



- Each internal vertex is covered exactly once.
- \blacksquare Covering relation defines a tree in G
- \blacksquare and a forest in G_i , $1 \le i \le n-1$.



Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- \blacksquare and a forest in G_i , $1 \le i \le n-1$.

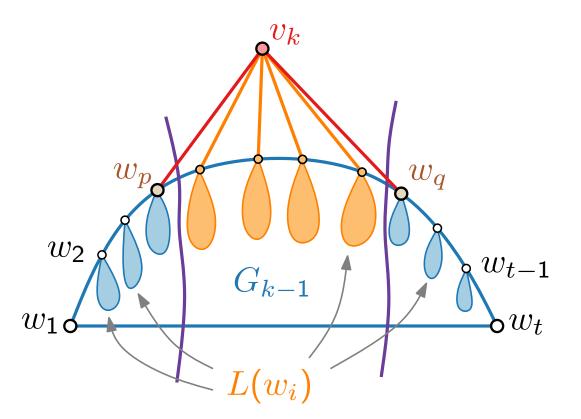
w_2 w_2 w_2 w_2 w_4 w_{t-1} w_t w_t

Lemma.

Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$, such that $\delta_q - \delta_p \ge 2$ and even.

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- lacksquare and a forest in G_i , $1 \leq i \leq n-1$.

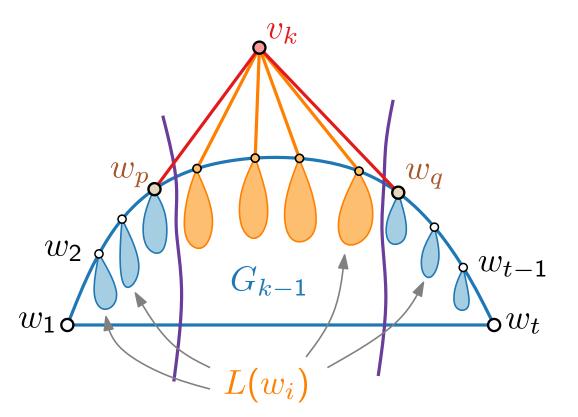


Lemma.

Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$, such that $\delta_q - \delta_p \ge 2$ and even. If we shift $L(w_i)$ by δ_i to the right, then we get a planar straight-line drawing.

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- \blacksquare and a forest in G_i , $1 \le i \le n-1$.



Lemma.

Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$, such that $\delta_q - \delta_p \ge 2$ and even. If we shift $L(w_i)$ by δ_i to the right, then we get a planar straight-line drawing.

Proof by induction:

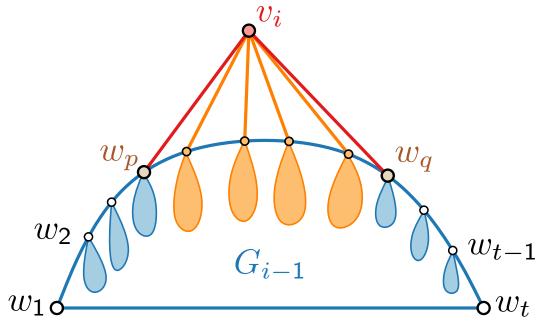
If G_{k-1} is drawn planar and straight-line, then so is G_k .

```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
for i = 4 to n do
```

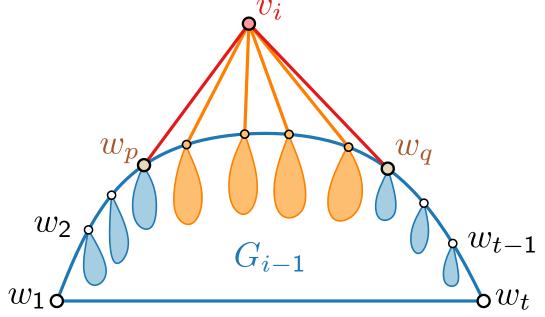
```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
  L(v_i) \leftarrow \{v_i\} 
for i = 4 to n do
```

```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
```

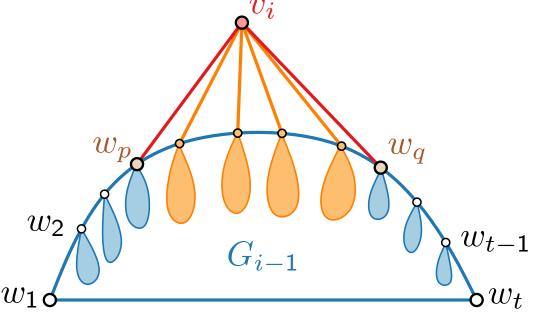
```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
  L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
```



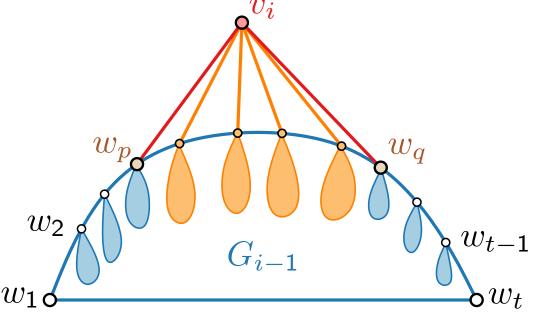
```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
  L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
```

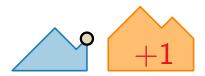



```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
    foreach v \in \bigcup_{j=p+1}^{q-1} L(w_j) do
```

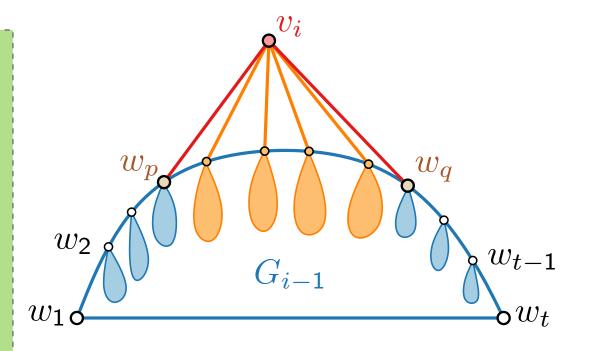



```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
    foreach v \in \bigcup_{j=p+1}^{q-1} L(w_j) do
     x(v) \leftarrow x(v) + 1
```

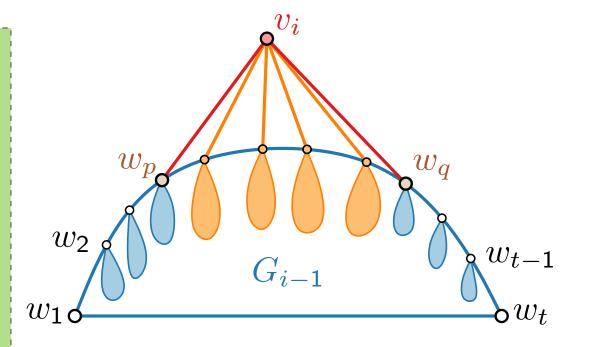




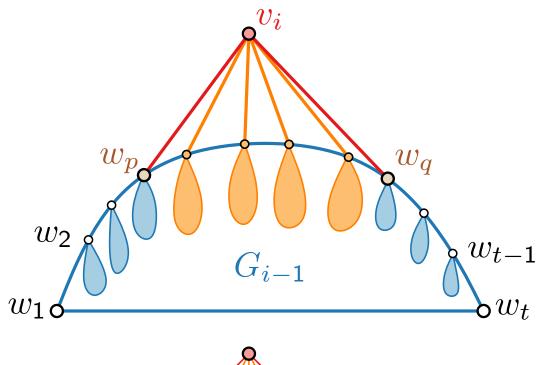
```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
    foreach v \in \bigcup_{j=p+1}^{q-1} L(w_j) do
     | x(v) \leftarrow x(v) + 1
    foreach v \in \bigcup_{j=q}^t L(w_j) do
```

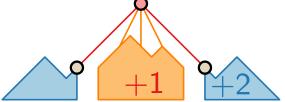



```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
    foreach v \in \bigcup_{j=p+1}^{q-1} L(w_j) do
     | x(v) \leftarrow x(v) + 1
    foreach v \in \bigcup_{j=q}^t L(w_j) do
     x(v) \leftarrow x(v) + 2
```

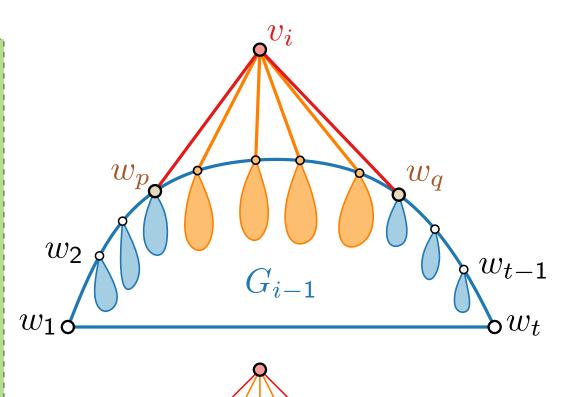



```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
    foreach v \in \bigcup_{i=n+1}^{q-1} L(w_i) do
     | x(v) \leftarrow x(v) + 1
    foreach v \in \bigcup_{j=q}^t L(w_j) do
     x(v) \leftarrow x(v) + 2
    P(v_i) \leftarrow \text{intersection of slope-} \pm 1 \text{ diagonals}
                through P(w_p) and P(w_q)
```

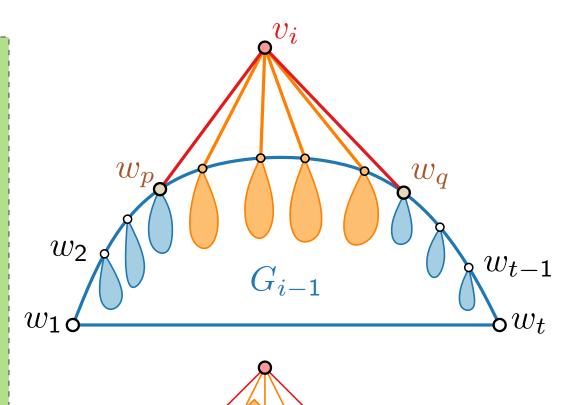




```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
    foreach v \in \bigcup_{i=n+1}^{q-1} L(w_i) do
     | x(v) \leftarrow x(v) + 1
    foreach v \in \bigcup_{j=q}^t L(w_j) do
     x(v) \leftarrow x(v) + 2
    P(v_i) \leftarrow \text{intersection of slope-} \pm 1 \text{ diagonals}
                 through P(w_p) and P(w_q)
   L(v_i) \leftarrow \bigcup_{i=p+1}^{q-1} L(w_i) \cup \{v_i\}
```

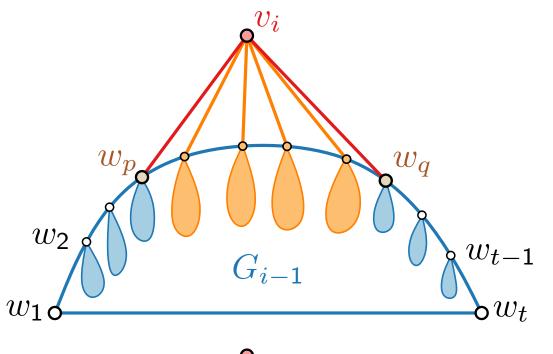


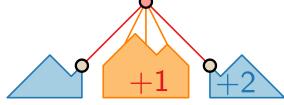
```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
    foreach v \in \bigcup_{i=n+1}^{q-1} L(w_i) do
     | x(v) \leftarrow x(v) + 1
    foreach v \in \bigcup_{j=q}^t L(w_j) do
     | x(v) \leftarrow x(v) + 2
    P(v_i) \leftarrow \text{intersection of slope-} \pm 1 \text{ diagonals}
                 through P(w_p) and P(w_q)
   L(v_i) \leftarrow igcup_{j=p+1}^{q-1} L(w_j) \cup \{v_i\}
```



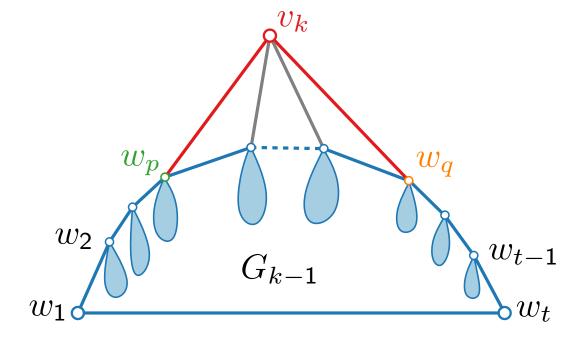
Running Time?

```
Let v_1, \ldots, v_n be a canonical order of G.
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let \partial G_{i-1} be v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2.
    Let w_p, \ldots, w_q be the neighbors of v_i.
   foreach v \in \bigcup_{j=n+1}^{q-1} L(w_j) do // \mathcal{O}(n^2) in total
     | x(v) \leftarrow x(v) + 1
   foreach v \in \bigcup_{j=q}^t L(w_j) do // \mathcal{O}(n^2) in total
     | x(v) \leftarrow x(v) + 2
   P(v_i) \leftarrow \text{intersection of slope-} \pm 1 \text{ diagonals}
                through P(w_p) and P(w_q)
   L(v_i) \leftarrow igcup_{i=p+1}^{q-1} L(w_j) \cup \{v_i\}
```



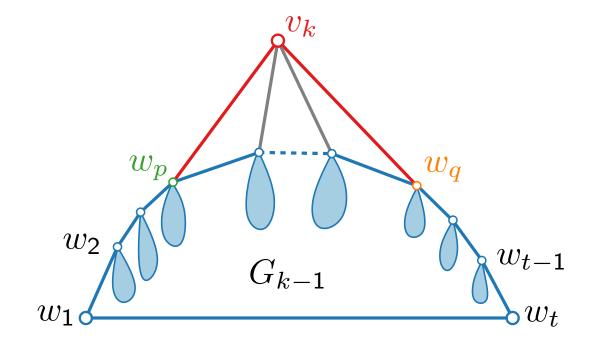


Running Time?



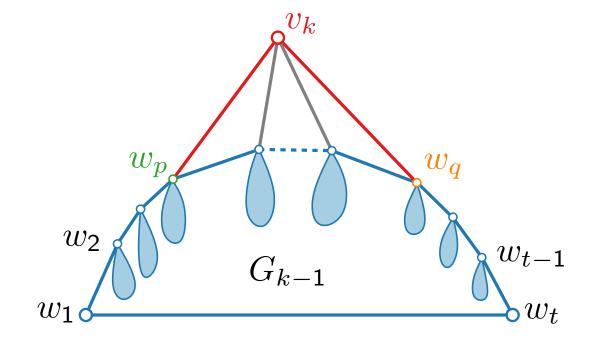
Idea 1.

```
To compute x(v_k) & y(v_k), we only need y(w_p) and y(w_q) and x(w_q) - x(w_p)
```



Idea 1.

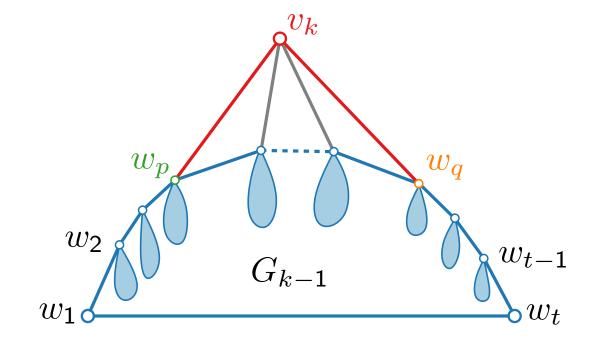
To compute $x(v_k)$ & $y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

Idea 1.

To compute $x(v_k)$ & $y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

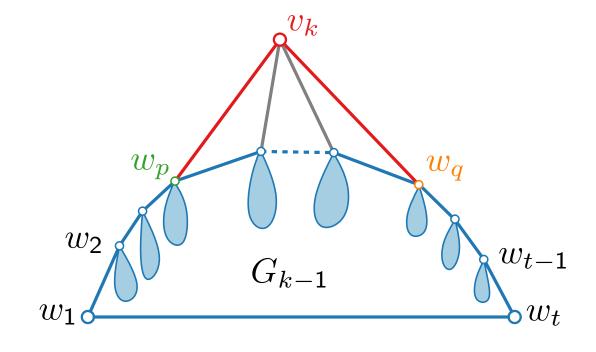
(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

Idea 1.

To compute $x(v_k)$ & $y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$

Idea 2.

Instead of storing explicit x-coordinates, we store x-distances.



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

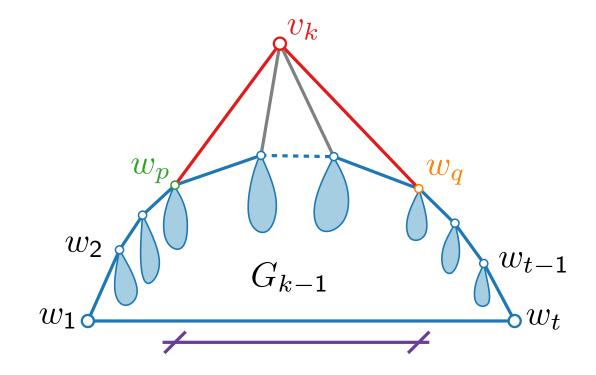
(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

Idea 1.

To compute $x(v_k)$ & $y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$

Idea 2.

Instead of storing explicit x-coordinates, we store x-distances.



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

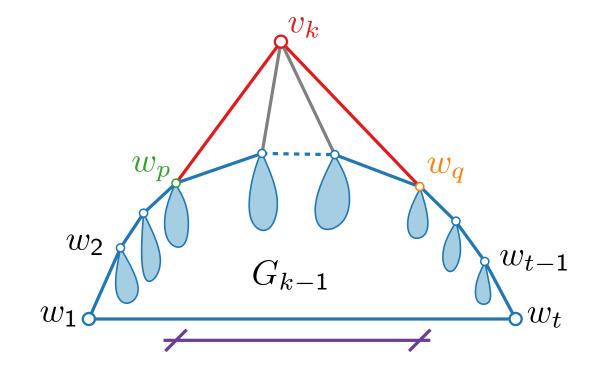
Idea 1.

To compute $x(v_k)$ & $y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$

Idea 2.

Instead of storing explicit x-coordinates, we store x-distances.

After an x-distance is computed for each v_k , use preorder traversal to compute all x-coordinates.



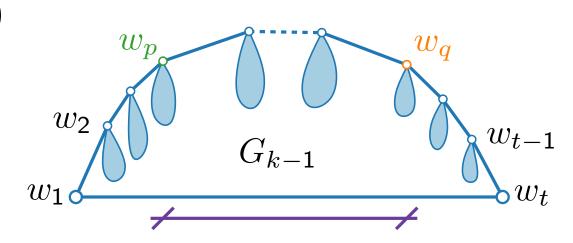
(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store



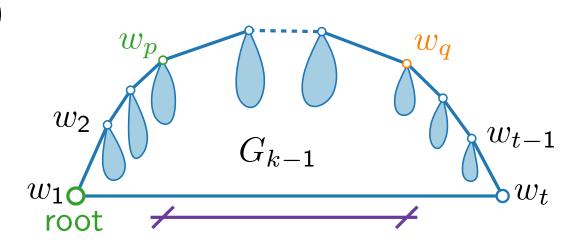
(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store



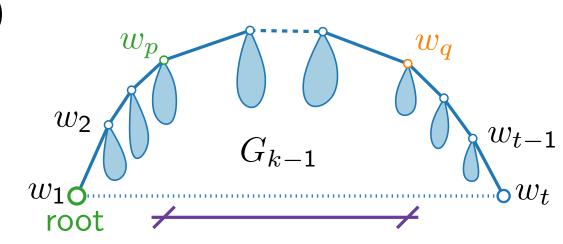
(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store



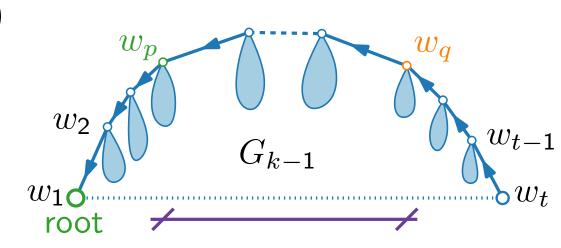
(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store



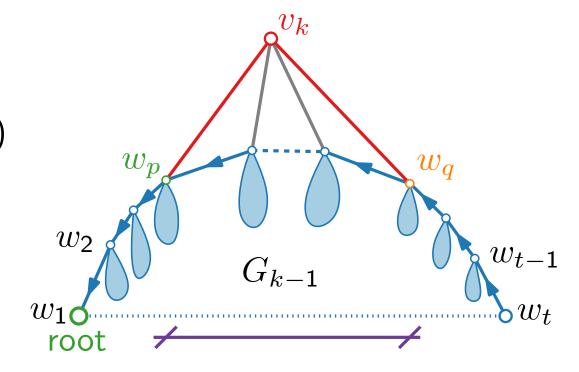
(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store



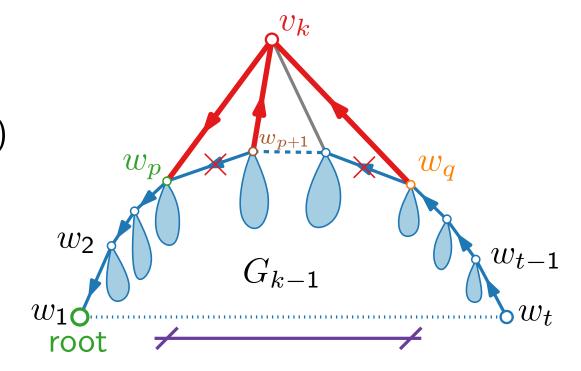
(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

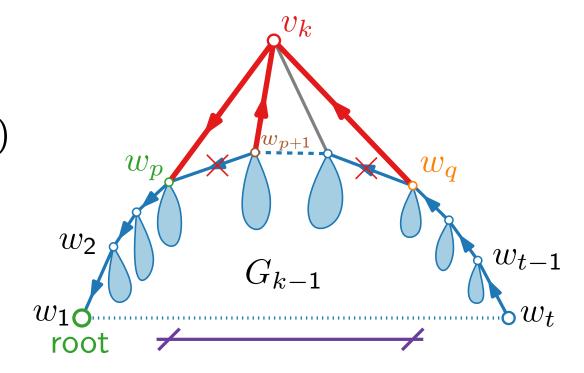
Relative x-distance tree.

For each vertex v store

- lacktriangleq x-offset $\Delta_x(v)$ from parent
- \blacksquare y-coordinate y(v)

Calculations.

 $\triangle_x(w_{p+1})++, \triangle_x(w_q)++$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

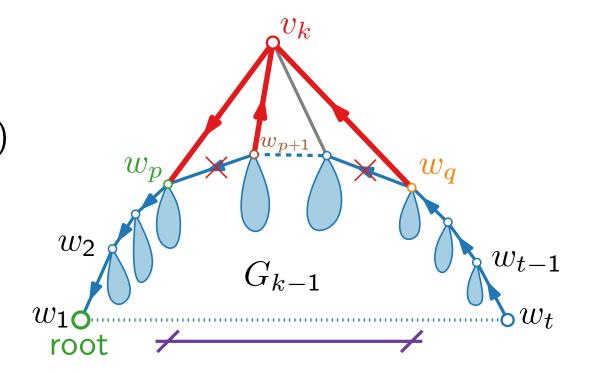
Relative x-distance tree.

For each vertex v store

lacksquare x-offset $\Delta_x(v)$ from parent

lacksquare y-coordinate y(v)

- $\triangle_x(w_{p+1})++, \triangle_x(w_q)++$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

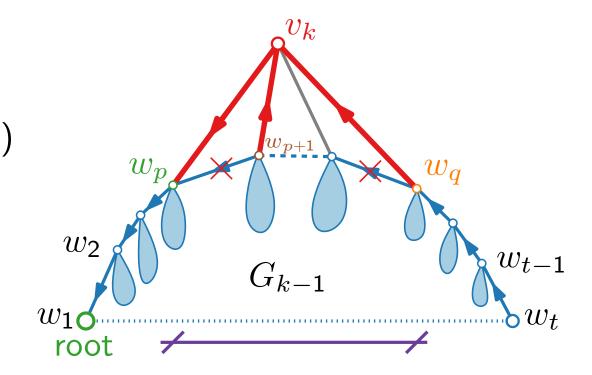
Relative x-distance tree.

For each vertex v store

lacksquare x-offset $\Delta_x(v)$ from parent

lacksquare y-coordinate y(v)

- $\triangle_x(w_{p+1})++, \triangle_x(w_q)++$
- $lack \Delta_x(v_k)$ by (3)



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

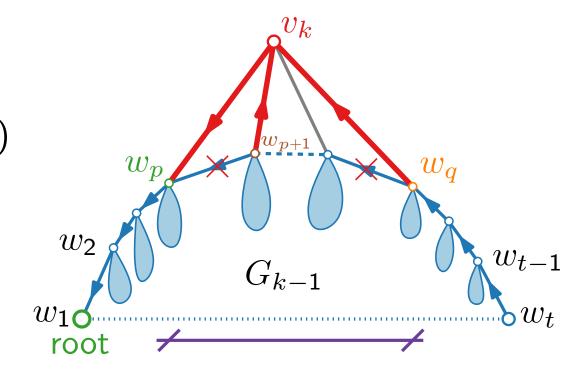
(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store

 \blacksquare x-offset $\Delta_x(v)$ from parent \blacksquare y-coordinate y(v)

- $\Delta_x(w_{p+1})++, \Delta_x(w_q)++$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

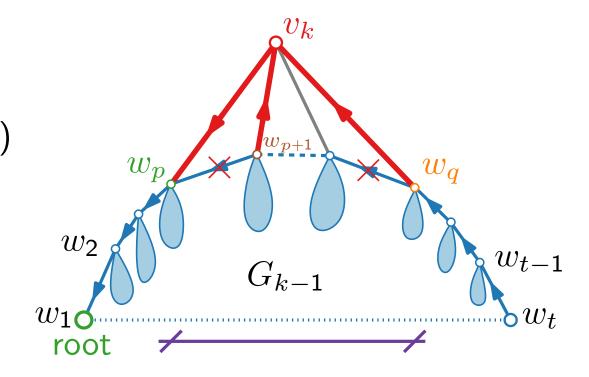
(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store

 \blacksquare x-offset $\Delta_x(v)$ from parent \blacksquare y-coordinate y(v)

- $\Delta_x(w_{p+1})++, \Delta_x(w_q)++$
- $\Delta_x(v_k)$ by (3) $V(v_k)$ by (2)



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

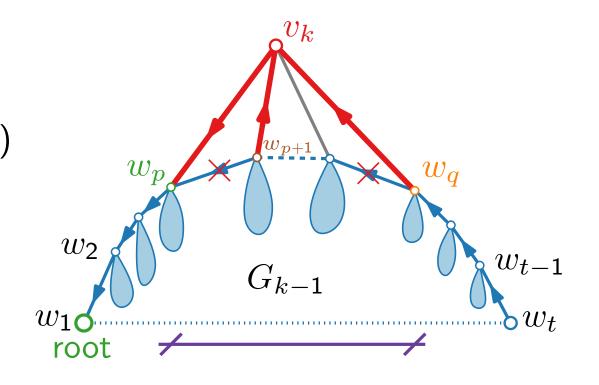
(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Relative x-distance tree.

For each vertex v store

 \blacksquare x-offset $\Delta_x(v)$ from parent \blacksquare y-coordinate y(v)

- $\Delta_x(w_{p+1})++, \Delta_x(w_q)++$
- $\Delta_x(v_k)$ by (3) $V(v_k)$ by (2)
- $\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) \Delta_x(v_k)$
- (1) $x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) y(w_p))$
- (2) $y(v_k) = \frac{1}{2}(x(w_q) x(w_p) + y(w_q) + y(w_p))$
- (3) $x(v_k) x(w_p) = \frac{1}{2}(x(w_q) x(w_p) + y(w_q) y(w_p))$



Relative x-distance tree.

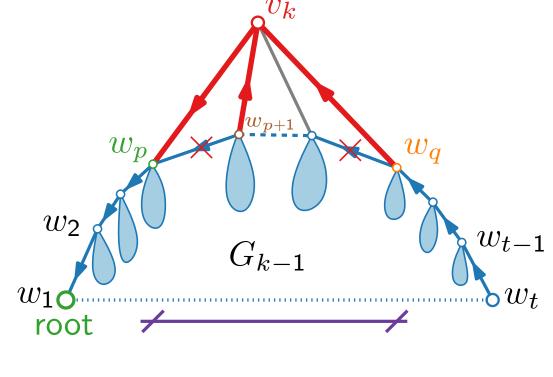
For each vertex v store

 \blacksquare x-offset $\Delta_x(v)$ from parent \blacksquare y-coordinate y(v)

Calculations.

- $\Delta_x(w_{p+1})++, \Delta_x(w_q)++$

- $\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) \Delta_x(v_k)$
- (1) $x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) y(w_p))$
- (2) $y(v_k) = \frac{1}{2}(x(w_q) x(w_p) + y(w_q) + y(w_p))$
- (3) $x(v_k) x(w_p) = \frac{1}{2}(x(w_q) x(w_p) + y(w_q) y(w_p))$



 $\mathcal{O}(n)$ in total

Literature

- [PGD Ch. 4.2] for detailed explanation of shift method
- [de Fraysseix, Pach, Pollack 1990] "How to draw a planar graph on a grid"
 - original paper on shift method