

Visualization of Graphs Lecture 3: Straight-Line Drawings of Planar Graphs I: Canonical Ordering and the Shift Method

Part I: Planar Straight-Line Drawings

Alexander Wolff

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

 $\begin{aligned} \# \mathsf{faces} &- \# \mathsf{edges} + \# \mathsf{vertices} = \# \mathsf{conn.comp.} + 1 \\ f &- m &+ n &= c &+ 1 \end{aligned}$

Proof. By induction on m: $m = 0 \Rightarrow f = 1 \text{ and } c = n$ $\Rightarrow 1 - 0 + n = n + 1 \checkmark$ $m \ge 1 \Rightarrow$ remove some edge $e \Rightarrow m \to m - 1$ $rightarrow e < c + 1 \qquad remove$

Properties of Planar Graphs

Triangulations

with planar embedding

A **plane (inner) triangulation** is a plane graph where every (inner) face is a triangle.

A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Triangulations

with planar embedding

A **plane (inner) triangulation** is a plane graph where every (inner) face is a triangle.

A maximal planar graph is a planar graph where adding any edge would violate planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Motivation

Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07] **The Aesthetics of Graph Visualization**

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to *minimize the number of edge crossings* in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to *minimize the number of edge bends* within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Drawing conventions

- $\blacksquare No crossings \Rightarrow planar$
- No bends \Rightarrow straight-line

Drawing aestethicsArea

Towards Straight-Line Drawings

Theorem. [Kuratowski 1930] G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Characterization

Theorem.

[Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an $\mathcal{O}(n)$ -time algorithm to test whether G is planar.

Also computes a planar embedding in $\mathcal{O}(n)$ time.

Theorem.[Wagner 1936, Fáry 1948, Stein 1951]Every planar graph has a planar drawingwhere the edges are straight-line segments.

Recognition

Drawing

Towards Straight-Line Drawings

Theorem. [Kuratowski 1930] G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Characterization

Theorem.

[Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an $\mathcal{O}(n)$ -time algorithm to test whether G is planar.

Also computes a planar embedding in $\mathcal{O}(n)$ time.

Theorem.[Wagner 1936, Fáry 1948, Stein 1951]Every planar graph has a planar drawing
where the edges are straight-line segments.

The algorithms implied by these theorems produce drawings whose area is **not** bounded by any polynomial in n.

Recognition

Drawing

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Idea.

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .
- Neighbours of v_{i+1} in G_i have to form path of length at least two.

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Visualization of Graphs Lecture 3: Straight-Line Drawings of Planar Graphs I: Canonical Ordering and Shift Method Part II:

Part II: Canonical Order

Alexander Wolff

Canonical Order – Definition

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An ordering $\pi = (v_1, v_2, \dots, v_n)$ of V is called a **canonical order** if the following conditions hold for each $k \in \{3, 4, \dots, n\}$:

- (C1) Vertices $\{v_1, \ldots, v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

- (C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

(C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .

(C2) Edge (v_1, v_2) belongs to the outer face of G_k .

 v_2

(C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

(C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .

- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

chord:

edge joining two nonadjacent vertices in a cycle

- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

- (C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and the neighbors of v_{k+1} form a path on the boundary of G_k .

Canonical Order – Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1)–(C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_k . We search for v_k .

- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} form path on boundary of G_k

Have to show:

- 1. v_k not incident to chord is sufficient
- 2. Such v_k exists

Canonical Order – Existence

Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_k that is not incident to a chord as choice for v_k .

Canonical Order – Implementation

outer face CanonicalOrder $(G = (V, E), (v_1, v_2, v_n))$ forall $v \in V$ do | $chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false$ $mark(v_1), mark(v_2), out(v_1), out(v_2), out(v_n) \leftarrow true$ for k = n downto 3 do choose v such that mark(v) = false, out(v) = true,and chords(v) = 0 // keep list with candidates $v_k \leftarrow v; \mathsf{mark}(v) \leftarrow \mathsf{true}$ // Let ∂G_{k-1} be $w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2$. Let w_p, \ldots, w_q be the unmarked neighbors of v_k . for i = p to q do $\mathsf{out}(w_i) \leftarrow \mathsf{true}$ //O(n) time in total update $chords(w_i)$ and for its neighbours //O(m) = O(n) in total

chord(v): # chords adjacent to v

- out(v) = true iff v is
 currently outer vertex
- mark(v) = true iff v has
 received its number

Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Visualization of Graphs Lecture 3: Straight-Line Drawings of Planar Graphs I: Canonical Ordering and the Shift Method Part III:

The Shift Method

Alexander Wolff

Shift Method – Idea

Drawing invariants:

- G_{k-1} is drawn such that
- v_1 is at (0,0), v_2 is at (2k 6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- each edge of the boundary of G_{k-1}
 (minus edge (v₁, v₂)) is drawn with slopes ±1.

Shift Method – Idea

Drawing invariants:

 G_{k-1} is drawn such that

• v_1 is at (0,0), v_2 is at (2k - 6,0),

 v_1

(0, 0)

- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v₁, v₂)) is drawn with slopes ±1.

Swp .

 v_k

 G_{k-1}

Will v_k lie on the grid?

Yes, because w_p and w_q have even Manhattan distance $\Delta x + \Delta y$.

(2k - 4, 0)

Shift Method – Planarity

Observations.

- Each internal vertex is covered exactly once.
- \blacksquare Covering relation defines a tree in G
- and a forest in G_i , $1 \le i \le n-1$.

Lemma.

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$, such that $\delta_q - \delta_p \geq 2$ and even. If we shift $L(w_i)$ by δ_i to the right, then we get a planar straight-line drawing.

Proof by induction: If G_{k-1} is drawn planar and straight-line, then so is G_k .

Shift Method – Pseudocode

Running Time?

Shift Method – Linear-Time Implementation

Idea 1.

To compute $x(v_k) \& y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$

Idea 2.

Instead of storing explicit x-coordinates, we store x-distances.

(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$

Shift Method – Linear-Time Implementation

Idea 1.

To compute $x(v_k) \& y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$

Idea 2.

Instead of storing explicit x-coordinates, we store x-distances.

After an x-distance is computed for each v_k , use preorder traversal to compute all x-coordinates.

(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

Shift Method – Linear-Time Implementation

Relative x-distance tree. For each vertex v store **x**-offset $\Delta_x(v)$ from parent **y**-coordinate y(v)**Calculations**. $\Delta_x(w_{p+1}) + +, \Delta_x(w_q) + +$ $\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \ldots + \Delta_x(w_q)$ $\Delta_x(v_k)$ by (3) $v(v_k)$ by (2) $\Delta_x(w_q) = \Delta_x(w_p, w_q) - \Delta_x(v_k)$ $\mathcal{O}(n)$ in total $\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) - \Delta_x(v_k)$ (1) $x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$ (2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$

(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

19 - 20

Literature

- [PGD Ch. 4.2] for detailed explanation of shift method
- [de Fraysseix, Pach, Pollack 1990] "How to draw a planar graph on a grid"
 - original paper on shift method