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Planar Graphs

G 1 — (2,3,5) 1 — (2
2 — (3,1,4) 2— (3
3—(4,1,2) 1 3— (4
4—)(5,3,2) 4._>(5
5 — (1,4) 5— (1
inner faces
G is planar: Connected region of the plane

it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have many
planar drawings!

bounded by edges

‘Euler's polyhedra formula. )

+#faces — #edges + #vertices
f - m + n

#conn.comp. + 1

C + 1

Proof. By induction on m:
m=0= f=1landc=n

= 1—-04+n=n+1 \/
m > 1= remove someedgee = m—m—1

Po—J = c—=c+1l D>/




Properties of Planar Graphs

‘Euler's polyhedra formula. )

+#faces — #edges 4+ #vertices = #conn.comp. + 1
(\

f - m 4+ n = C + 1
_J

(Theorem. G simple planar graph with n > 3 vtc. )

1. m<3n-—-06 2. f <2n—4

\3' There is a vertex of degree at most 5. ) 3
1

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges 4
Li?)fghn ;
=6<3¢c+3<3f—-3m+3n <2m—-3m+3n=3n—m

= m <3n—06 Handshaking lemma.

2.3f<2m<bn—-12 = f<2n—4 |3 . deg(v) =2|E]|

3. Y,y deg(v) =2m < 6n — 12
= min,cy deg(v) < average degree(G) =1/n)_, . deg(v) <6




Triangulations

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.

A maximal planar graph is a planar
graph where adding any edge would
violate planarity.

‘Observation.
A maximal plane graph is a plane
ktriangulation.

‘Lemma.

A plane triangulation is at least
3-connected and thus has a unique planar
\embedding.

Q‘vith planar embedding

We focus on plane triangulations:

‘Lemma.
Every plane graph is subgraph of a plane

J

ktriangulation.

G
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Motivation

B Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization
3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic
s to(aiimiz T puber of edge crowsings)in a graph
[BMRW98, Har98, DH96, Pur(2, TR05, TBB88]|. The impor-
tance of avoiding edge crossings has also been extensively
validated in terms of user preference and performance (see
Section 4). Similarly, based on perceptual principles, it is
beneficial m within a
graph [Pur02, TRO5, TBB88]. Edge bends make edges more
difficult to follow because an edge with a sharp bend is more
likely to be perceived as two separate objects. This leads to
the heuristic of keeping edge bends uniform with respect to
the bend’s position on the edge and its angle [TRO5]. If an
edge must be bent to satisfy other aesthetic criteria, the an-
gle of the bend should be as little as possible, and the bend
placement should evenly divide the edge.

Drawing conventions
B No crossings = planar

B No bends = straight-line

Drawing aestethics
B Area



Towards Straight-Line Drawings

‘Theorem.  [Kuratowski 1930] |

G planar &

neither K5 nor K33 minor of GG

\ J K5
‘Theorem. [Hopcroft & Tarjan 1974]\

Let G be a graph with n vertices. There is an

O(n)-time algorithm to test whether G is planar.

\ S

Also computes a planar embedding in O(n) time.

‘Theorem. [Wagner 1936, Fary 1948, Stein 1951]\
Every planar graph has a planar drawing

\where the edges are straight-line segments.

Characterization

Recognition

Drawing



Towards Straight-Line Drawings

‘Theorem.  [Kuratowski 1930] )
G planar &
neither K5 nor K33 minor of G
. J
Ks K33
‘Theorem. [Hopcroft & Tarjan 1974]N

Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

. J

Also computes a planar embedding in O(n) time.

(Theorem. [Wagner 1936, Fary 1948, Stein 1951]

Every planar graph has a planar drawing
kwhere the edges are straight-line segments.

J

The algorithms implied by these theorems produce drawings
whose area is not bounded by any polynomial in n.

Characterization

Recognition

Drawing



Planar straight-line drawings

‘Theorem. [De Fraysseix, Pach, Pollack ’90]\
Every n-vertex planar graph has a planar straight-line

drawing of size (2n — 4) x (n — 2).

Idea.
B Start with singe edge (v1,v2). Let this be Gs.

B To obtain G;1, add v;. 1 to (&; so that neighbours
of v; 1 are on the outer face of ;.

® Neighbours of v;.1 in (&; have to form path of
length at least two.

p
Theorem.

Every n-vertex planar graph has a planar straight-line
drawing of size (n—2) x (n—2).

Ui+1
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Canonical Order — Definition

d s )
Definition.

Let G = (V, E) be a triangulated plane graph on n > 3 vertices.

An ordering m = (v1,v2,...,v,) of V is called a canonical order

if the following conditions hold for each k € {3,4,... ,n}:

(C1) Vertices {v1,...vxr} induce a biconnected internally triangulated
graph; call it G.

(C2) Edge (v1,v2) belongs to the outer face of Gj.

(C3) If £ < n then vertex viy1 lies in the outer face of G, and the
neighbors of vi1 form a path on the boundary of Gg.




Canonical Order — Example

10 -

(C1) Vertices {v1,...vg} induce a biconnected internally
triangulated graph; call it ..

(C2) Edge (v1,v2) belongs to the outer face of G}..

(C3) If £k < n then vertex vi 1 lies in the outer face of (7,
and the neighbors of vy ,; form a path on the
boundary of G5;..
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and the neighbors of vy ,; form a path on the
boundary of G5;..
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Canonical Order — Example

U14

10 -

(C1) Vertices {v1,...vg} induce a biconnected internally
triangulated graph; call it GGp..

(C2) Edge (v1,v2) belongs to the outer face of G}..

(C3) If £k < n then vertex vi 1 lies in the outer face of (7,
and the neighbors of vy ,; form a path on the
boundary of G5;..

chord:

edge joining two
nonadjacent
vertices In a cycle

16



Canonical Order — Example
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Canonical Order — Example

(C1) Vertices {v1,...vg} induce a biconnected internally
triangulated graph; call it ..

(C2) Edge (v1,v2) belongs to the outer face of G}..

(C3) If £k < n then vertex vi 1 lies in the outer face of (7,

and the neighbors of vy ,; form a path on the
boundary of ;..




11-20

Ca nOnIC8| Order — EXIStenCG (C1l) G biconnected and internally

triangulated

[Lemma_ ] (C2) (v1,v2) on outer face of GG,

Every triangulated plane graph has a canonical order. (C3) k <n = vgy1 in outer face of Gy,
neighbors of v;. .1 form path on

boundary of GG

Base Case:
Let &,, = (&, and let v1, vy, v,, be the vertices of the
outer face of (7,,. Conditions (C1)—(C3) hold. Have to show:

1. v not incident to
chord is sufficient
2. Such v, exists

Induction hypothesis:

Vertices v,,_1,...,Vrr1 have been chosen such that
conditions (C1)—(C3) hold for k +1 <1 < n.

Induction step: Consider (&.. We search for v;..

Vg

because vy cut vertex

incident to a
chord

V1 V2 U1 U2
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Canonical Order — Existence

Claim 1. Claim 2.
If v i1s not incident to a chord, There exists a vertex in (-, that is not
then (&,._1 is biconnected. Incident to a chord as choice for vy.

Contradiction to neighbors of
v, forming a path on 0Gj_q!
Gy

V1 U2

(1 was not biconnected! _
This completes the proof of the lemma. [
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Canonical Order — Implementation

B chord(v):
B outer face # chords adjacent to v
ICanonlcaIOrder(G = (V, E), (v1,v2,vy)) m out(v) = true iff v is
forall v € V do  currently outer vertex
. | chords(v) « 0; out(v) < false; +— false - _ true iff v has
| , out(vy), out(vz), out(vy,) < true ~ received its number
for kK = n downto 3 do :
| choose v such that = false, out(v) = true, ,
and chords(v) = 0 // keep list with candidates:
VE < U, <— true :
// Let 0Gr_1 be wy = v, Wy, ..., Wi_1, Wt = V. ' (C N
. | Lemma.
Let wp,...,w, be the unmarked neighbors of vy,. | . :
. .| Algorithm CanonicalOrder
for i =p to g do : .

. | computes a canonical order of
out(w;) - true 7 DGy i T a plane graph in O(n) time
update chords(w;) ( P grap )

_and for its neighbours  // O(m) = O(n) in total |
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Shift Method — Idea

Drawing invariants:
(+1._1 is drawn such that

B v is at (0,0), vy is at (2k — 6,0),

B boundary of Gi_1 (minus edge (v1,v)) is drawn
I-monotone,

B each edge of the boundary of G_1

(minus edge (v1,v2)) is drawn with slopes +1.

U
0o

) Overlaps!
/ What could be the solution?




Shift Method — Idea

Drawing invariants: Will v, lie on the grid?
(+1._1 is drawn such that

B v is at (0,0), vy is at (2k — 6,0),

B boundary of Gi_1 (minus edge (v1,v)) is drawn
I-monotone,

B each edge of the boundary of G_1 S A S
(minus edge (v1,v2)) is drawn with slopes +1.
\ Yes, because w, and w,
Vi have even Manhattan

distance Az + Ay.

15-20



Shift Method — Example




Shift Method — Example

atin = e




Example

Shift Method —

atin = e




Shift Method — Example
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Shift Method — Planarity

Observations. Lemma.

B Each internal vertex is exactly once. |Let0<d; < <--- <9 €N,

B Covering relation defines a tree in ¢ such that 0, — 0, > 2 and even.

m and a forestin G, 1 <i<mn—1. If we shift by 9; to. the rlght,
then we get a planar straight-line
drawing.

\. .

Proof by induction:
f G1._1 is drawn planar and straight-line,

then so is (&}..
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Shift Method — Pseudocode

Running Time?




19 -

Shift Method — Linear-Time Implementation

Idea 1.
To compute z(v) & y(vr),
we only need y(w, ) and y(w,) and x(w,) — z(w,)

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

%(x(wq) + x(wp) + y(wy) — y(wy))
%(ar(wq) — x(wp) + y(wq) + y(wp))

(1) (vx)
(2) y(ve)



Shift Method — Linear-Time Implementation

Idea 1.
To compute z(v) & y(vr),
we only need y(w,) and and z(w,) — x(w,)

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

19 -

After an x-distance is computed for each vy,

use preorder traversal to compute all x-coordinates.

(1) z(ve) = 3(x(wq) + z(wp) + — y(wp))
(2) y(vk) = %(x(wq) — x(wp) + + y(wp))
(3) =(vk) — x(wp) = %(m(wq) — x(wp) + — y(wp))
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Shift Method — Linear-Time Implementation

Relative x-distance tree.
For each vertex v store

B x-offset A (v) from parent  m y-coordinate y(v)

Calculations.
mA (wp+1)++ Aaz(wq)"""

Wp, Wq) = Dg(wpi1) + ... + Asy(wy)

A

+(Vr) by (3) B y(vr) by (2) \ root 7 #
»(wg) = wg) = A (vk) O(n) in total

o

A (w,
wper) = B (1p11) — As(oy)

O
m A
m A
m A

(1) z(v) = 3(x(wq) + z(wp) + y(wy) — y(w,))
(2) y(vr) = 5(x(wq) — (wp) + y(wy) + y(wp))
(3) =(vk) — x(wp) = %(a:(wq) — z(wp) + y(wq) — y(wp))



| iterature

B [PGD Ch. 4.2] for detailed explanation of shift method

B [de Fraysseix, Pach, Pollack 1990] “How to draw a planar graph on a grid”
— original paper on shift method

20
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