Evms.m
WURZBURG
Visualization of Graphs

Lecture 2:
Force-Directed Drawing Algorithms

Part |-
Algorithmic Framework

Alexander Wolff

General Layout Problem

Input: Graph G
Output: Clear and readable straight-line drawing of G

M
N P ———aa 7
\/l\ h‘é\\““v'i@"@//%’%/'/"“
'\ - S
AL W

) 4
\
V = v

A
N
BHE7 X
.,%'il&!'/A

A~
KK N \\F
: -'!’ﬁég/‘\\\“!‘-]

A —B% ‘\v

V%

General Layout Problem

Input: Graph G
Output: Clear and readable straight-line drawing of G

Drawing aesthetics:

adjacent vertices are close

non-adjacent vertices are far apart

edges short, straight-line, similar length

densely connected parts (clusters) form communities

as few crossings as possible

nodes distributed evenly

Optimization criteria partially contradict each other.

Fixed Edge Lengths?

Input: Graph G, required edge length /(e) for each e € E(G).
Output: Drawing of GG that realizes the given edge lengths.

>
o
o 0 xR
& 0 X o'
0 © & ¥o)

NP-hard for

Fixed Edge Lengths?

Input: Graph G, required edge length £(e) for each e € E(G).

Output: Draw

NP-hard for
B uniform ed

B uniform ed

ing of GG that realizes the given edge lengths.

Qe
o 0 xR
& 0 x
4 © &

ge lengths in any dimension [Johnson '82]

ge lengths in planar drawings [Eades, \WWormald "90]

B edge lengt

ns {1,2} [Saxe '80]

Physical Analogy

Idea. |[Eades '84]

“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system ... The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal

energy state.”

Physical Analogy

Idea. |[Eades '84]

“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system ... The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal

energy state. Attractive forces.

pairs {u, v} of adjacent vertices:

fattr
Repulsive forces.
So-called spring-embedder algorithms that any pair {z,y} of vertices:
work according to this or similar principles are
x
among the most frequently used graph-drawing O‘f\bo Y
rep

methods in practice.

Force-Directed Algorithms

initial layout

end layout

threshold
max # iterations

V-
-

- 13

Force-Directed Algorithms

initial layout

end layout

threshold
max # iterations

V-
P

-15

Evm.w
WURZBURG
Visualization of Graphs

Lecture 2:
Force-Directed Drawing Algorithms

Part |l

w Spring Embedders by Eades

_{Jlll.r‘ and by Fruchterman & Reingold
; %, Alexander Wolff

Spring Embedder by Eades — Model

B Repulsive forces repulsic;n/constant (e.g., 2.0)
C —
frep(u7 ”U) — - 5 PvPu
[Py — pu|

B Attractive forces .
spring constant (e.g., 1.0)

7 pe = pal

fspring(ua U) — Cspring |0g / * PuPv

fattr(ua U) — fspring(ua U) — frep(ua U)

B Resulting displacement vector

Fu = Z frep(u,?}) + Z fater (0, v)

veV veAdj[u]

EForceDirected(G = (V,E), p= (pv)vev, € >0, K €N) ,
Cte1 '
+ while t < K and max,cv [|Fy(t)[| > € do

foreach v € V do

| Ful)) & ey Feept0) + X cnaipug Farer(u v)

foreach v € V do
Lpu <_pu‘|‘5(t) F (t)
t+—t+1

1 —
. return p

Notation.

O pupva = unit vector

pointing from u to v

B ||py. — pv|| = Euclidean
distance between u and v

B / = ideal spring length
for edges

Spring Embedder by Eades — Force Diagram

-

Force
f.)
9 A
3
2 Distance
14
>
: Frep(tt,v) = P pup;
3 T lpo —pull®> 77
&
-]
o

Spring Embedder by Eades — Force Diagram
fater (0, v) = fspring(ua v) — frep(ua v)

Force

— D

-

; A fspring(u7 ?}) — Cspring - |og /
3

= .

= Distance

>

: frep(tv) = 75 - D,
: P T lpy —pul? P
&

-]

o

Spring Embedder by Eades — Discussion

Advantages.

Spring Embedder by Eades — Discussion

Advantages.
B very simple algorithm

B good results for small and medium-sized graphs

B empirically good representation of symmetry and structure

Disadvantages.
B System may not be stable at the end.

B Converging to local minima.
B Computation of feying in O(|E(G)]) time and frep in O(|V(G)|?) time.

Influence.
B original paper by Peter Eades [Eades '84| got ~ 2000 citations

B basis for many further ideas

- 11

Variant by Fruchterman & Reingold

B Repulsive forces repulsion constant (e.g. 2.0)

Crep —
u,v) — " PuD
frep() ||pv _pu||2 VU

B Attractive forces .
spring constant (e.g. 1.0)

Dy — P ey
Fong(1:0) = e -log 2 P2l g

fattr(ua U) — fspring(ua U) — frep(ua U)

B Resulting displacement vector

Fu = Z frep(u,?}) + Z fater (0, v)

veV veAdj[u]

ForceDirected(G = (V, E), p = (py)vev, € >0, K € N) |

t+1

while ¢ < K and max,cy || F,(t)|| > ¢ do
foreach v € V do

L Fu(t) < Xy frep(u,v) + ZUGAdj[u] Jater(u, v))]
foreach u € V do E

| Pu Do +3(2) - Ful(t) I

| et :

. return p

Notation.

B ||py. — pu|| = Euclidean
distance between u and v

O pupvg = unit vector

pointing from u to v

B / = ideal spring length
for edges

10 -

1

Variant by Fruchterman & Reingold

B Repulsive forces

BN
Jrep(u,v) = * PuP
et 0) = [] PP

B Attractive forces

2
Pv — P ——
fattr(uav) — H - / u” * PuDv

B Resulting displacement vector

Fu = Z frep(U,?}) + Z fater (0, v)

veV veAdj[u]

EForceDirected(G = (V,E), p= (pv)vev, € >0, K €N) ,
Cte1 '
+ while t < K and max,cv [|Fy(t)[| > € do

foreach © € V do 1
L Fu(t) < Xy frep(u,v) + ZvEAdj[u] Jater(u, v))]
foreach v € V do I
L Du < Du + 5(t) : Fu(t)
|t t+1

1
. return p

Notation.

B ||py. — pu|| = Euclidean
distance between u and v

O pupvg = unit vector

pointing from u to v

B / = ideal spring length
for edges

10 -

3

Fruchterman & Reingold — Force Diagram

11 -

Force

~

9 A

3

3

/ Distance

g

- Frep(ts0) = — o
U,v) = * PuP

:__g \4 - ”p’v —pu|| .

o

Fruchterman & Reingold — Force Diagram

2
Pv — P —
fattr(ua U) — ” . - H * PuPv

11 -

Force l
~ A
= fspring(ua U) — fattr(ua U) - frep(u7 U)
3
=
= Distance
S
. frep(u,v) & DoDs
U, V) = :
z_—g v <P ||pv _puH .
o

Evms.m
WURZBURG
Visualization of Graphs

Lecture 2:
Force-Directed Drawing Algorithms

Part IlI:
Variants & Improvements

Alexander Wolff

Adaptability

Inertia.
B Define vertex mass ®(v) = 1 4 deg(v)/2

B Set fartr(Dus Do) < fater(Pus Do) - 1/P ()
Gravitation.

B Define centroid puary = 1/|V| - > v Do
B Add force foray (o) = Carav - P(V) - DoPbary

Restricted drawing area.
If F, points beyond area R, clip vector appropriately at

the border of R.
And many more...

B magnetic orientation of edges [GD Ch. 10.4]
B other energy models
B planarity preserving

B speed-ups

13 -

Speeding up “Convergence” by Adaptive Displacement 9,(t)

ForceDirected(G = (V, E), p = (pv)vev, € > 0, K € N)
<1
while ¢t < K and max,cy || Fy(t)|| > ¢ do

foreach u € V do

L Eu(t) < D pey Srep(w,v) + D e p farer(u, v)
foreach © € V do

L Pu < Pu +/@7 Fy (t)
t—t+1 v(t)
return o,

14 -5

Speeding up “Convergence” by Adaptive Displacement 9,(t)
[Frick, Ludwig, Mehldau '95]

Fy (1) Same direction.
F,(t—1) — increase temperature 6,(%)

14 -7

Speeding up “Convergence” by Adaptive Displacement 9,(t)
[Frick, Ludwig, Mehldau '95]

Same direction.
F,(t—1) — increase temperature 6,(%)

o, (t) Oszillation.
— decrease temperature 9§, (%)

Fy(t)

Speeding up “Convergence” by Adaptive Displacement 9,(t)

[Frick, Ludwig, Mehldau '95]

Same direction.
— increase temperature 6,(%)

Oszillation.
— decrease temperature 9§, (%)

Rotation.

B count rotations

m if applicable

— decrease temperature 6§, (1)

14 -

Speeding up “Convergence” via Grids
[Fruchterman & Reingold '91]

""""""""""""""""""""""""""

B divide plane into grid

B consider repelling forces only to
vertices in neighboring cells

B and only if distance is less than
some max distance

Discussion.

B good idea to improve actual
runtime

B asymptotic runtime does not
Improve

B might introduce oszillation and
thus a quality loss

15 -

16 -

Speeding up with Quad Trees
[Barnes, Hut '86]

° [QT

: Sinit 3
B height i < log ™ + 3

B time/space in O(hn)

B compressed quad tree can be
computed in O(nlogn) time

m h € O(logn) if vertices evenly
distributed

Sinit

16 - 11

Speeding up with Quad Trees
[Barnes, Hut '86]

N .

™~

/

frep(Riapu) — ’Rz’ ' frep(O'Riapu)

for each child R; of a vertex on path from u to root.

Evms.m
WURZBURG
Visualization of Graphs

Lecture 2:
Force-Directed Drawing Algorithms

Part IV:
Tutte Embedding

Alexander Wolff

ldea

Consider a fixed triangle (a, b, c
with one common neighbor v

Where would you place v?)

William T. Tutte
1917 — 2002

18- 4

18- 11

ldea

Consider a fixed triangle (a, b, ¢)
with one common neighbor v

[Where would you place v?)

barycenter(a, b, ¢)

barycenter(z1, ..., x5) = S0 L Ti/k

1=

William T. Tutte
1917 — 2002

Idea.
Repeatedly place every vertex at barycenter of neighbors.

Tutte's Forces :ForceDlrected(G (V. E), p= (po)vev, € >0, K € N)
Ct+1 |
Goal. - while t < K and max,cy ||F,(t)]| > ¢ do
p. = barycenter(Adj[u]) foreach u € V' do |
— ZveAdj(u) pv/ deg(u) L Fou(t) Zvev frep(u,v) + ZvEAdj[u] fater (u, v)
| foreach u € V do '
EFu(t) = > pep Po/ deg(u) — pu L Pu < Dy + Ml- F, (1)
— ZveAdj[u] (pv — pu)/ deg(u) t—t+1 . ;
= > veadjful [1Pu—Doll/ deg(u) return p barycenter(x1,...,z5) =) ,_;xi/k |

B Repulsive forces

Solution: p, = (0,0) YVu € V
Jrep(u,v) =0 Fix coordinates
B Attractive forces of outer face!
0 If v fixed,

- ||pu — pul|| otherwise.

fattr(uav) — {

deg(U)

20 - 34

Linear System of Equations
Goal. py = (2w, Yu) Az =b Ay=b b=(0),
pu = barycenter(Adju]) = >, cagjju Po/ deg(u)

Ly = ZveAdj[u] T,/ deg(u) < deg(u)- x, = ZveAdj[u] T, < deg(u) -z, — ZUEAdj[u] Ty =0
Yu = 2 _veadjiu) Yo/ deg(u) < deg(u) - yu =) eagiu Yo < de8(U) - Yu = 2y eadjfu Yo = O

(VA U us Uy Usx Ug

“ wp (3 -1 -1 0 —1 0 Ai; = deg(u;)
) w =1 3 -1 -1 0 0 1w e B
Uus -1 -1 3 0 0 -1 Aij,i;éj —{ v
w0 21 0 3 -1 -1 0 wu; ¢ B
; ws | =1 0 0 -1 2 0
w\ 0 0 -1 -1 0 2

s Laplacian matrix of G

n variables, n constraints, det(A4) =0
= no unique solution @

20 - 42

Linear System of Equations

‘Theorem. Tutte drawing

Tutte's barycentric algorithm admits a unique solution.
It can be computed in polynomial time.
.

\

Goal. py, = (Tu, Yu)
pu = barycenter(Adj[u]) =

Loy = ZveAdj[u] T,/ deg(u) < deg(u)- x, = Z’UEAdj[u] T, < deg(u) -z, — ZveAdj[u] Ty =0
Yu = 2 _veadiiu] Yo/ deg(u) < deg(u) - yu =) eagiu Yo < de8(U) - Yu = 2y eadjfu Yo = 0

U1 U2 us Uy Usx Ug

. w3 -1 -1 0 —1 0\ Ay = deg(u;)
) b —1-3 —1 —1--0 0 1 wu e E
U3 —1 —1 3 0 0 —1 Aij,i;éj —{ v
w0 -1 0 3 -1 -1 0 wiu; ¢
. wus | =1 0 0 -1 2 0
w\ 0 0 -1 -1 0 2

s Laplacian matrix of G

k variables, k constraints, det(A) >0
k = #free vertices — unique solution

3-Connected Planar Graphs

planar: GG can be drawn in such a way

that no edges cross each other
connected: 1 u—v path for every vertex pair {u,v}.
k-connected: G — {v1,...,v;_1} is connected

for any k£ — 1 vertices v1 ..., Vr_1.

10

21 -

21 - 36

3-Connected Planar Graphs

planar: GG can be drawn in such a way ‘Theorem. [Whitney 1933])
that no edges cross each other Every 3-connected planar graph
connected: 1 u—v path for every vertex pair {u,v}. \has a unique planar embedding.)
k-connected: G — {v1,...,v;_1} is connected Proof sketch.
for any k£ — 1 vertices v1 ..., Vr_1. [1,[> embeddings of G.
Or (equivalently): Let (' be a face of 5, but not of .
There are at least £ vertex-disjoint w inside (' in 1, v outside (' in '
u—v paths for every vertex pair {u,v}. both on same side in ',

21 - 38

3-Connected Planar Graphs

planar: GG can be drawn in such a way ‘Theorem. [Whitney 1933])
that no edges cross each other Every 3-connected planar graph
connected: 1 u—v path for every vertex pair {u,v}. khas a unique planar embedding.)
k-connected: G — {v1,...,v;_1} is connected Proof sketch.
for any k£ — 1 vertices v1 ..., Vr_1. [1,[> embeddings of G.
Or (equivalently): Let (' be a face of 5, but not of .
There are at least £ vertex-disjoint w inside (' in 1, v outside (' in '
u—v paths for every vertex pair {u,v}. both on same side in ',

21 - 39

3-Connected Planar Graphs

planar: GG can be drawn in such a way ‘Theorem. [Whitney 1933])
that no edges cross each other Every 3-connected planar graph
connected: 1 u—v path for every vertex pair {u,v}. khas a unique planar embedding.)
k-connected: G — {v1,...,v;_1} is connected Proof sketch.
for any k£ — 1 vertices v1 ..., Vr_1. [1,[> embeddings of G.
Or (equivalently): Let (' be a face of 5, but not of .
There are at least £ vertex-disjoint w inside (' in 1, v outside (' in '
u—v paths for every vertex pair {u,v}. both on same side in ',

Tutte's Theorem

g
Theorem.

| et G be a 3-connected planar graph, and
et (be a face of its unique embedding.

of GG is planar and all its faces are strictly convex.
.

[Tutte 1963])

f we fix (" on a strictly convex polygon, then the Tutte drawing

J

22 -

23 - 13

Properties of Tutte Drawings

Property 1. Let v € V free, 7 line through v.
Juv € E on one side of / = Jvw € E on other side

Otherwise, all forces to same side . ..

Property 2. All free vertices lie inside (.

23 - 42

Properties of Tutte Drawings

Property 1. Let v € V free, 7 line through v.
Juv € E on one side of / = Jvw € E on other side

Otherwise, all forces to same side . .. U

Property 2. All free vertices lie inside

Property 3. Let / be any line. o—Q
Let V, be all vertices on one side of /.
Then G[V/] is connected.

furthest away from ¢
Pick any vertex u, ¢ parallel to ¢ through

G connected, v not on £/ = Jw on £’ with neighbor further away from ¢
= d path from u to

Property 4. No vertex is collinear with all of its neighbors.

g/

Not all vertices collinear

(G 3-connected
= K3 33 minor

Proof of Tutte's Theorem

‘Lemma. Let uv be a non-boundary edge, / line through uv. |
Then the two faces /i, /> incident to uv lie
completely on opposite sides of /.

"

Property 1. Let v € V free, 7 line through v.

) . w i
Juv € E on one side of / = dvw € E on other/side o 0o
. ‘

Property 3. Let / be any line. —O—O_o—
Let V, be the set of vertices on one side of /. o -
Then G[V/] is connected. ‘

Property 4. No vertex is collinear with all of its neighbors.

~~~~~~~

(Lemma. All faces are strictly convex. J [Lemma. The drawing is planar. J

p inside two faces
Property 2. All free vertices lie inside (. D
= q in one face
jumping over edge
— #£faces the same
= p inside one face é
q




| iterature

Main sources:
m [GD Ch. 10] Force-Directed Methods

m [DG Ch. 4] Drawing on Physical Analogies

Original papers:

Eades 1984] A heuristic for graph drawing
Fruchterman, Reingold 1991] Graph drawing by force-directed placement

‘Tutte 1963] How to draw a graph



	Algorithmic Framework
	General Layout Problem

	Fixed Edge Lengths?
	Physical Analogy
	Force-Directed Algorithms Framework

	Eades' Algorithm and Fruchtermann & Reingold's Algorithm
	Model
	Force diagram
	Discussion
	Fruchterman \& Reingold
	Force diagram

	Variants & Improvements
	Adaptability
	Adaptive Displacement

	Speeding up ``Convergence'' via Grids
	Speeding up with Quad Trees

	Tutte Embedding
	Idea
	Tutte's Forces
	Linear System of Equations
	3-Connected Planar Graphs
	Tutte's Theorem
	Properties of Tutte Drawings
	Proof of Tutte's Theorem

	Literature

