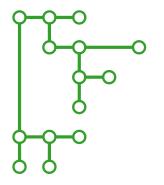


Visualization of Graphs

Lecture 1b:

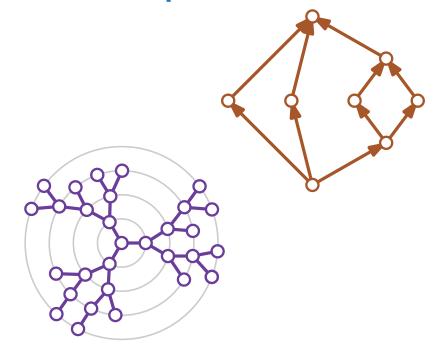
Drawing Trees and Series-Parallel Graphs

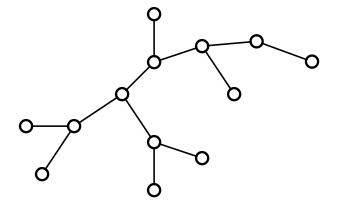


Part I: Layered Drawings

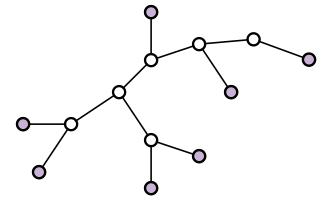


Alexander Wolff



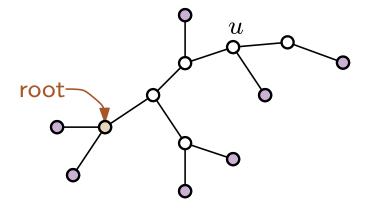


Leaf: Vertex of degree 1



Leaf: Vertex of degree 1

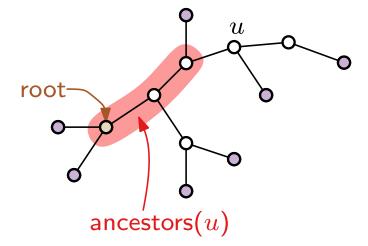
Rooted tree: tree with designated root



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

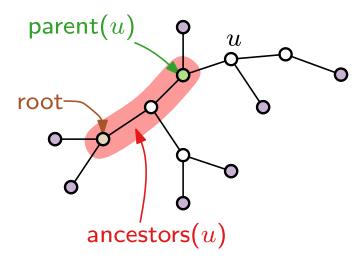


Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root



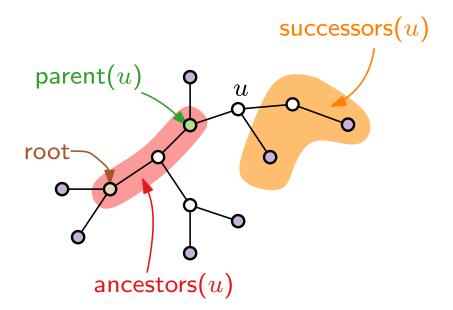
Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root



Leaf: Vertex of degree 1

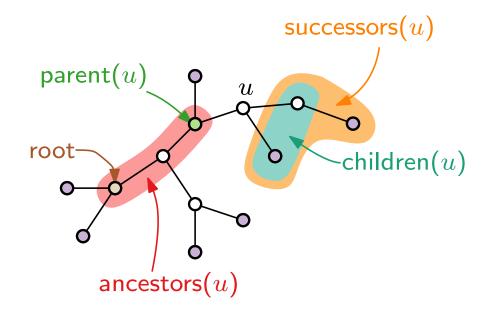
Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

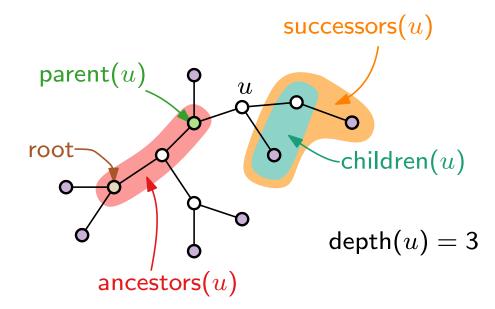
Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

Depth: Length of path to root



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

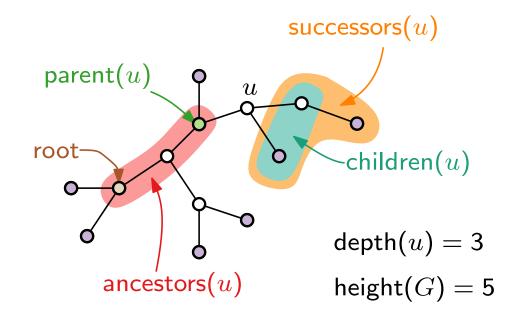
Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

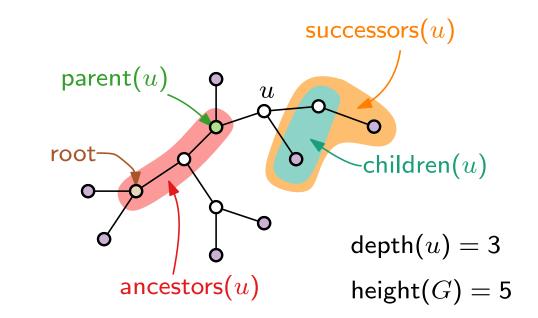
Successor: Vertex on path away from root

Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

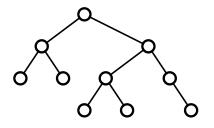
Successor: Vertex on path away from root

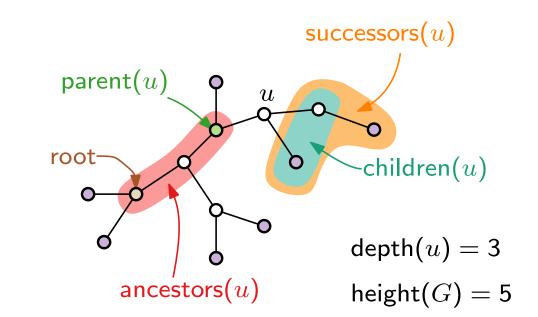
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

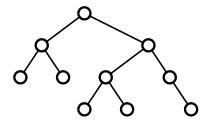
Successor: Vertex on path away from root

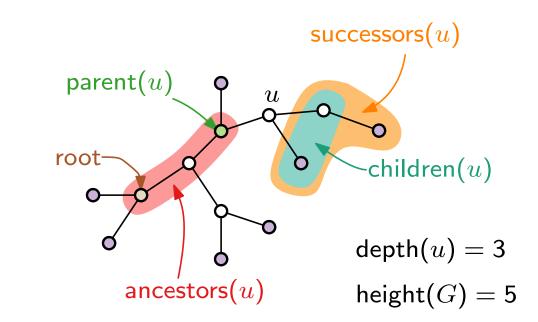
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

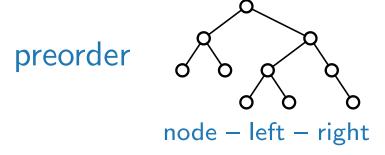
Successor: Vertex on path away from root

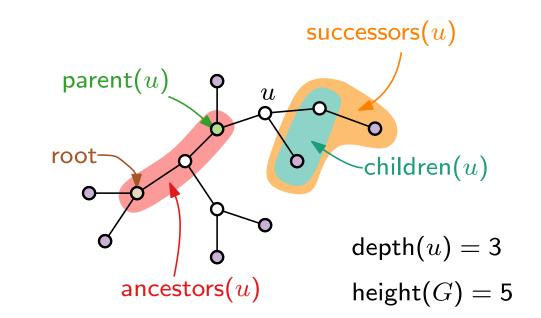
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

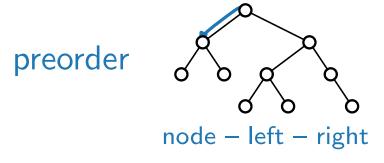
Successor: Vertex on path away from root

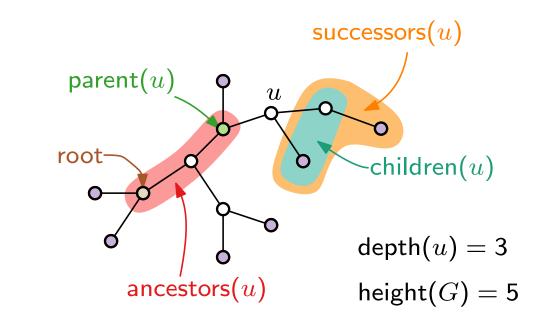
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

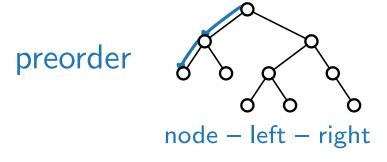
Successor: Vertex on path away from root

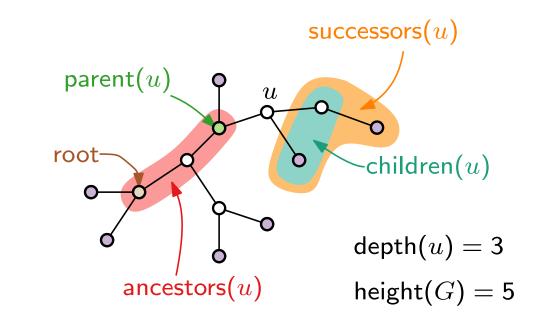
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

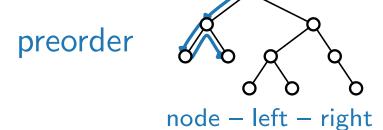
Successor: Vertex on path away from root

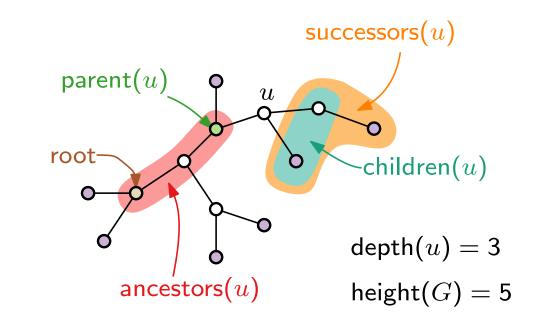
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

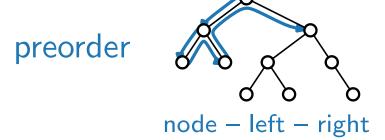
Successor: Vertex on path away from root

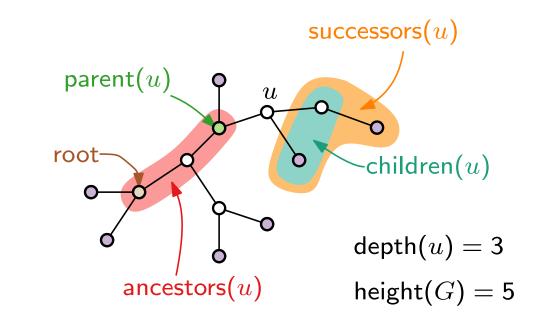
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

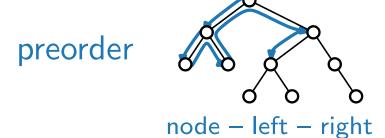
Successor: Vertex on path away from root

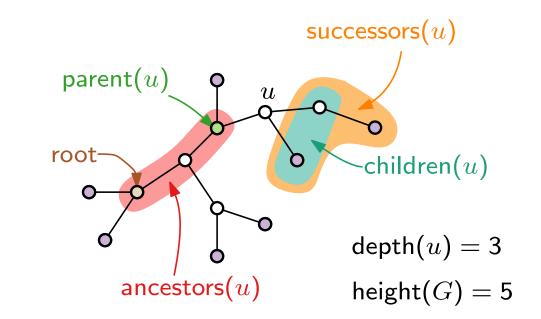
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

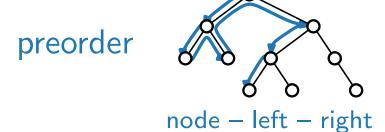
Successor: Vertex on path away from root

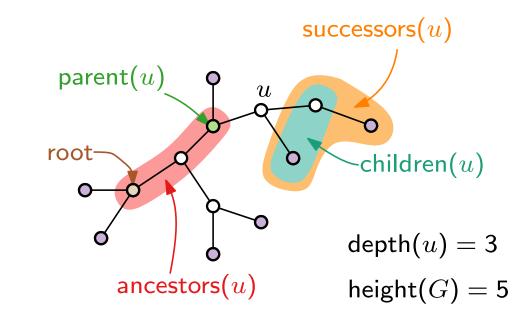
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

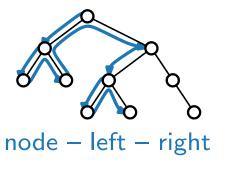
Successor: Vertex on path away from root

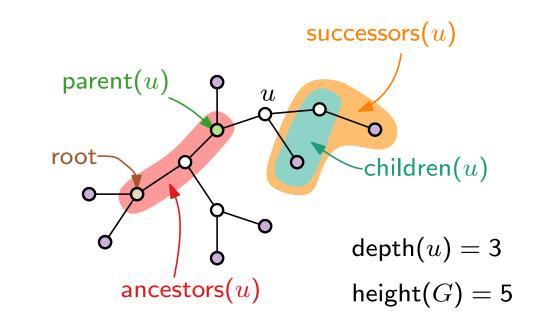
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

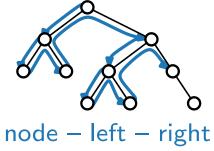
Successor: Vertex on path away from root

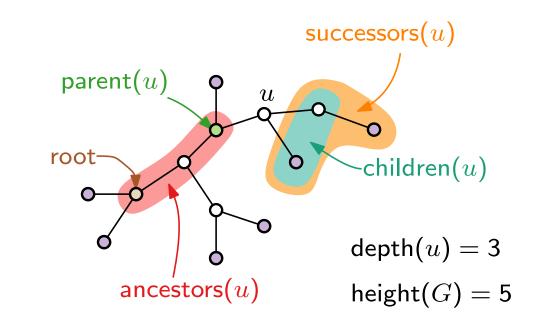
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

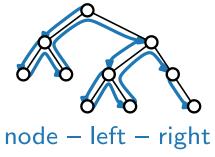
Successor: Vertex on path away from root

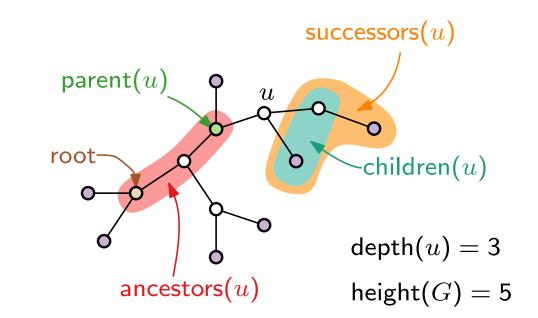
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

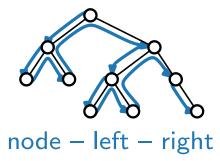
Depth: Length of path to root

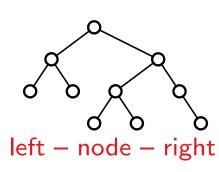
Height: Maximum depth of a leaf

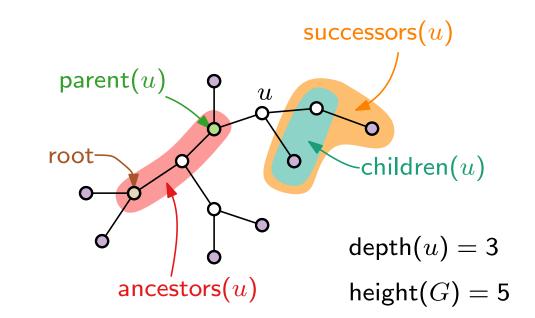
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

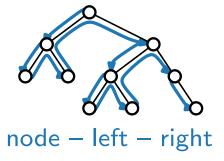
Depth: Length of path to root

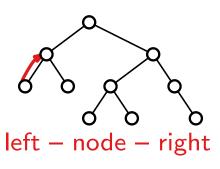
Height: Maximum depth of a leaf

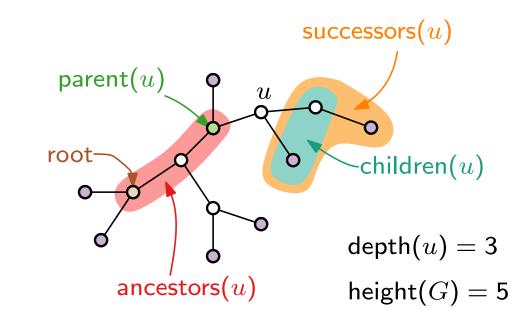
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

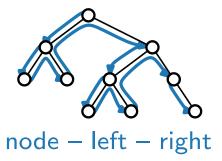
Depth: Length of path to root

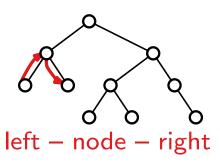
Height: Maximum depth of a leaf

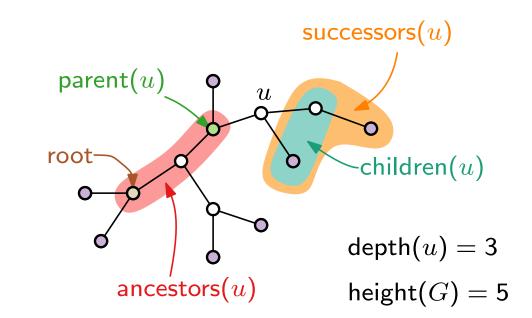
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

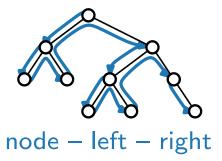
Depth: Length of path to root

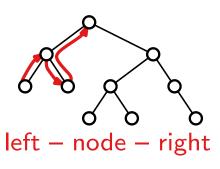
Height: Maximum depth of a leaf

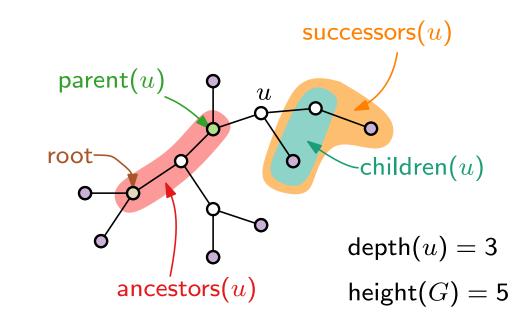
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

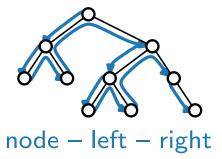
Depth: Length of path to root

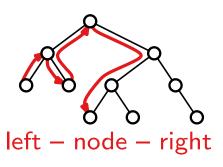
Height: Maximum depth of a leaf

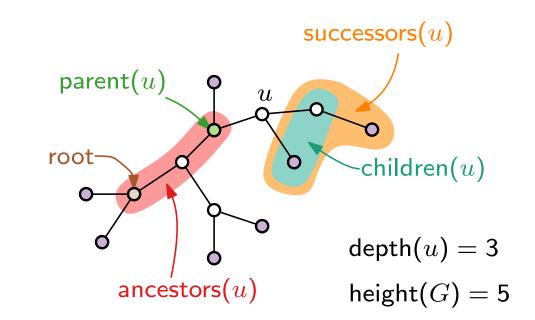
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

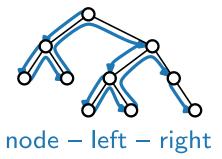
Depth: Length of path to root

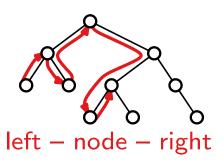
Height: Maximum depth of a leaf

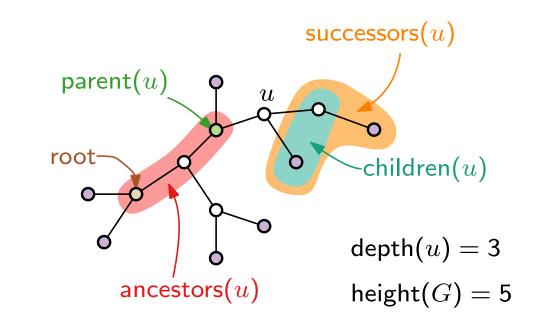
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

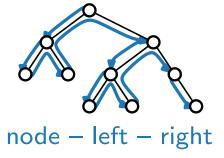
Depth: Length of path to root

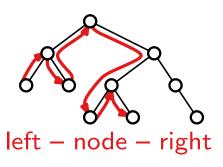
Height: Maximum depth of a leaf

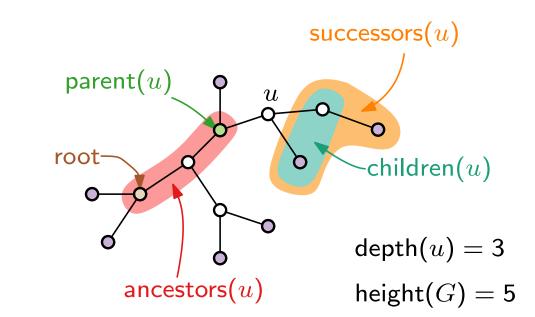
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

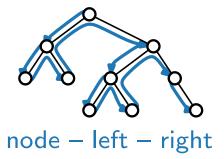
Depth: Length of path to root

Height: Maximum depth of a leaf

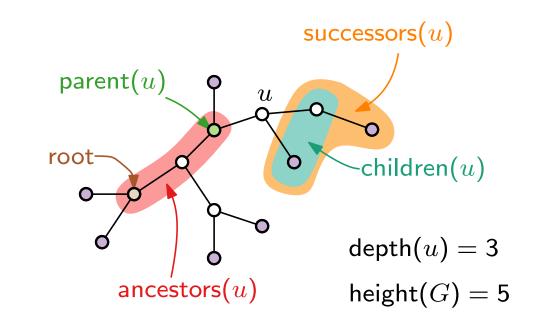
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

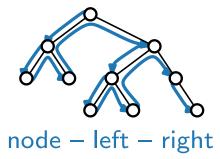
Depth: Length of path to root

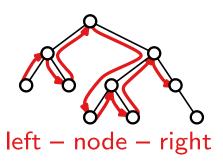
Height: Maximum depth of a leaf

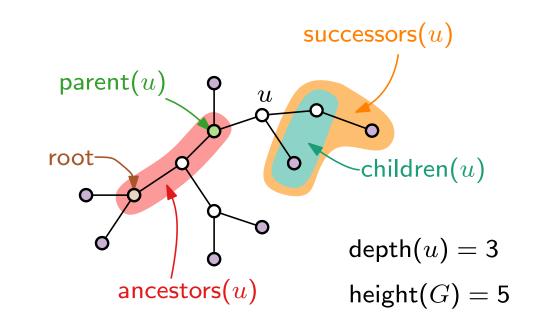
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

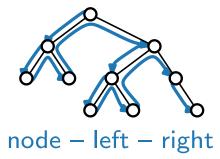
Depth: Length of path to root

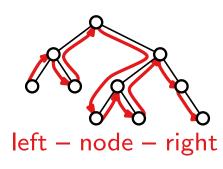
Height: Maximum depth of a leaf

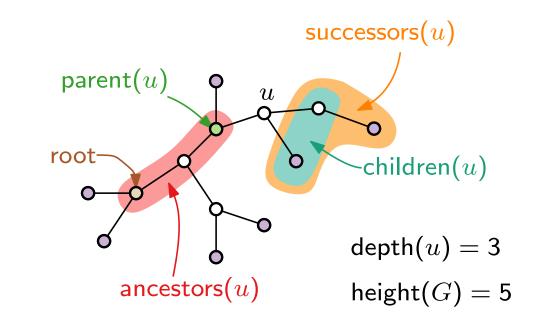
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated **root**

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

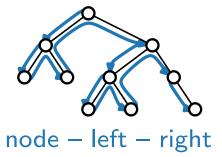
Depth: Length of path to root

Height: Maximum depth of a leaf

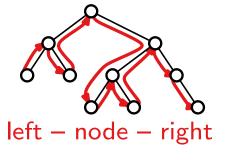
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

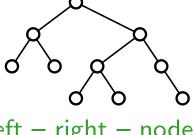
preorder



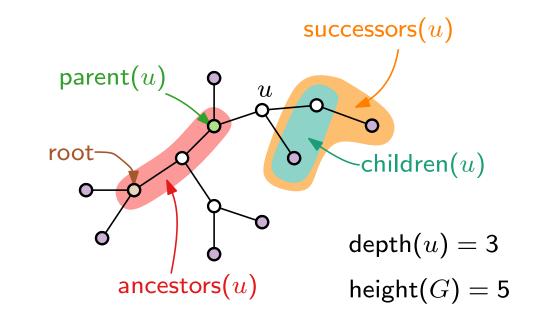
inorder



postorder



left – right – node



Leaf: Vertex of degree 1

Rooted tree: tree with designated **root**

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

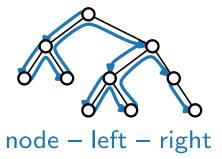
Depth: Length of path to root

Height: Maximum depth of a leaf

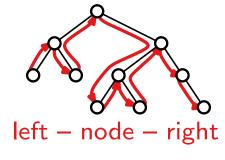
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

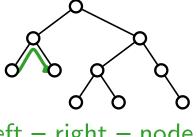
preorder



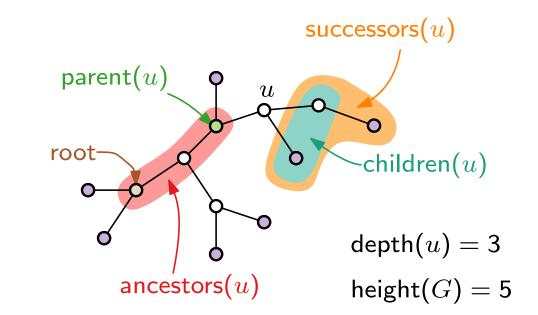
inorder



postorder



left – right – node



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

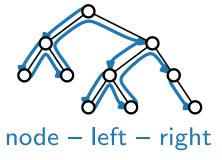
Depth: Length of path to root

Height: Maximum depth of a leaf

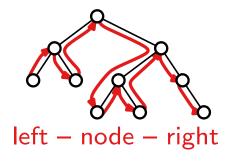
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

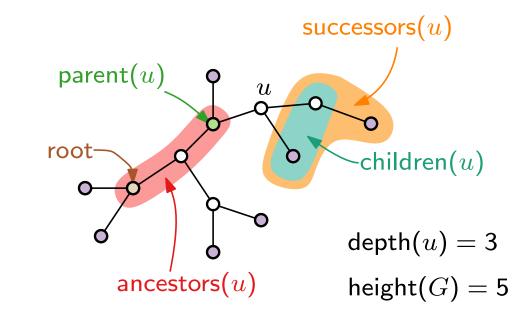


inorder



postorder

left – right – node



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

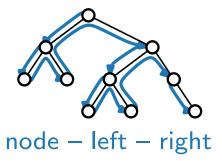
Depth: Length of path to root

Height: Maximum depth of a leaf

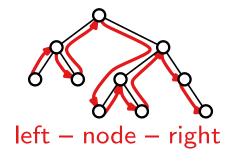
Binary Tree: At most two children per vertex (left / right child)

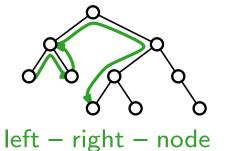
3 traversals:

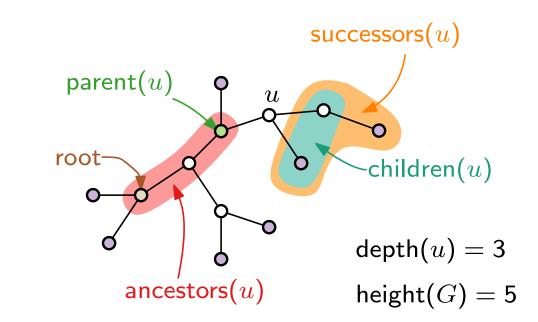
preorder



inorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

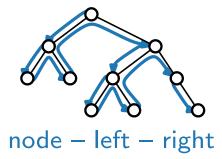
Depth: Length of path to root

Height: Maximum depth of a leaf

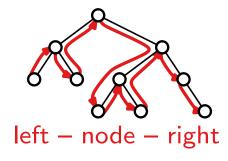
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

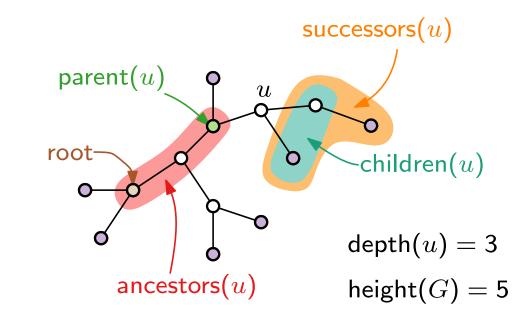


inorder



postorder





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

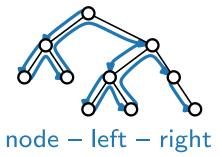
Depth: Length of path to root

Height: Maximum depth of a leaf

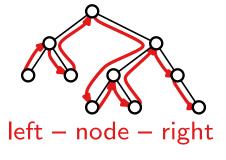
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

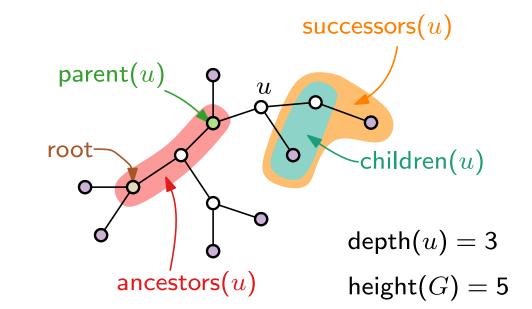
preorder



inorder



postorder



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

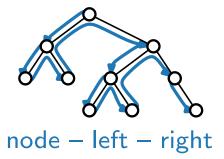
Depth: Length of path to root

Height: Maximum depth of a leaf

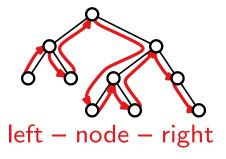
Binary Tree: At most two children per vertex (left / right child)

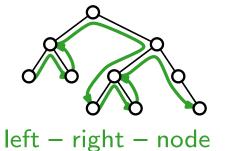
3 traversals:

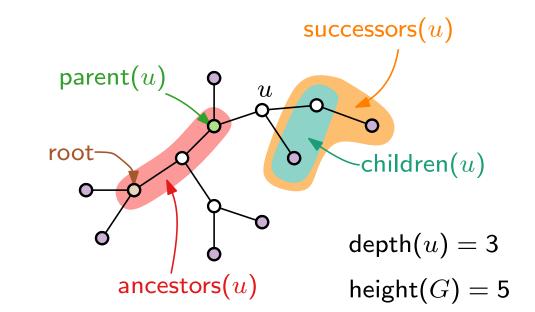
preorder



inorder







Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

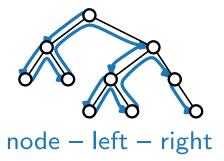
Depth: Length of path to root

Height: Maximum depth of a leaf

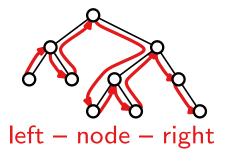
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

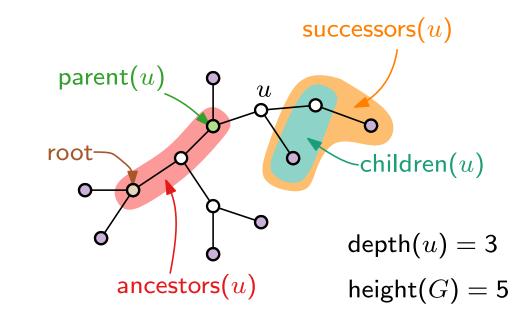
preorder



inorder



postorder



Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

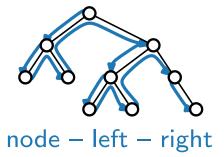
Depth: Length of path to root

Height: Maximum depth of a leaf

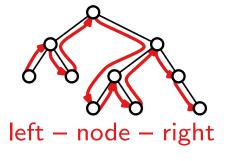
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

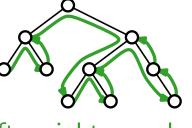
preorder

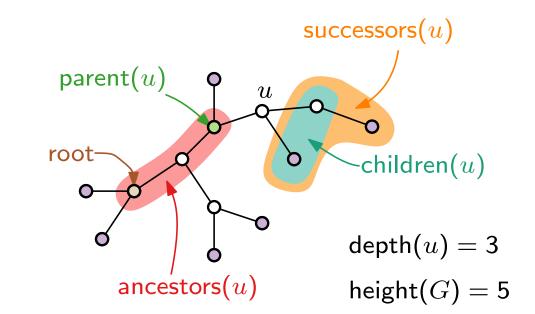


inorder



postorder





Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

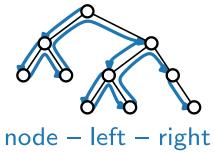
Depth: Length of path to root

Height: Maximum depth of a leaf

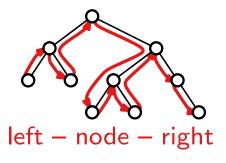
Binary Tree: At most two children per vertex (left / right child)

3 traversals:

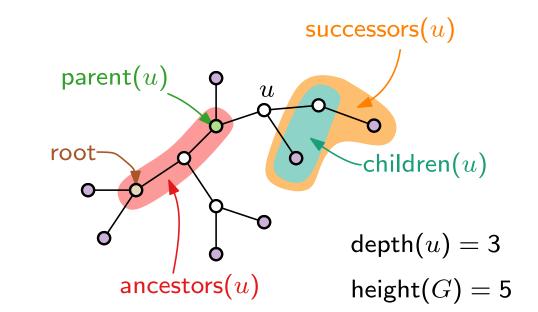
preorder



inorder



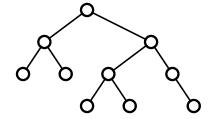
postorder



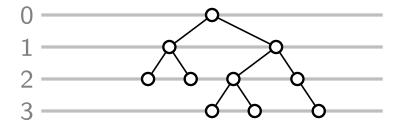
1. Choose *y*-coordinates:

1. Choose y-coordinates: y(u) = depth(u)

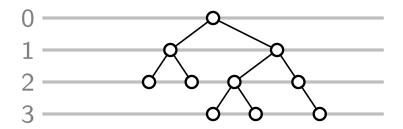
1. Choose y-coordinates: y(u) = depth(u)



1. Choose y-coordinates: y(u) = depth(u)



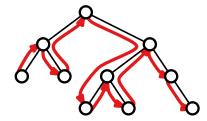
1. Choose y-coordinates: y(u) = depth(u)

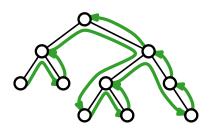


2. Choose *x*-coordinates:

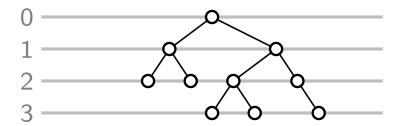


inorder

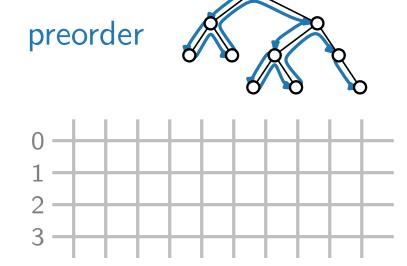




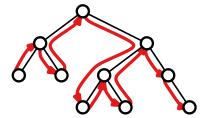
1. Choose y-coordinates: y(u) = depth(u)

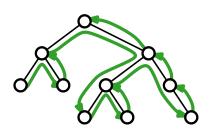


2. Choose *x*-coordinates:

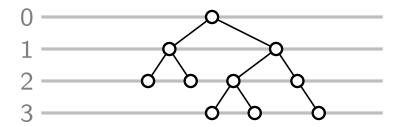


inorder

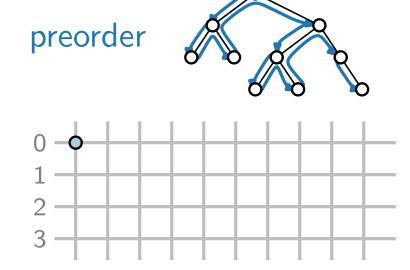




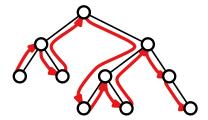
1. Choose y-coordinates: y(u) = depth(u)

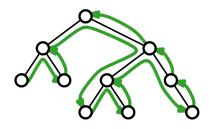


2. Choose *x*-coordinates:

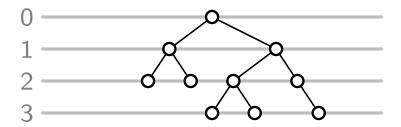


inorder

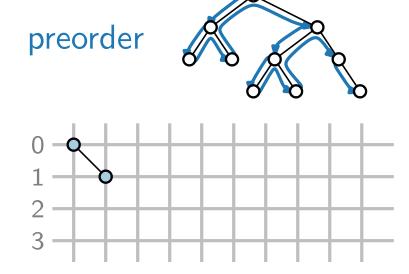




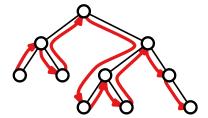
1. Choose y-coordinates: y(u) = depth(u)

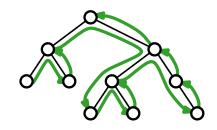


2. Choose *x*-coordinates:

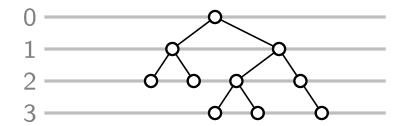


inorder

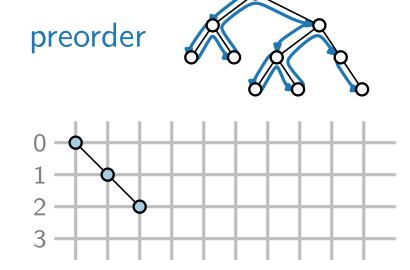




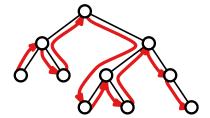
1. Choose y-coordinates: y(u) = depth(u)

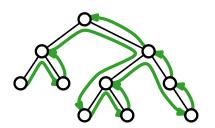


2. Choose *x*-coordinates:

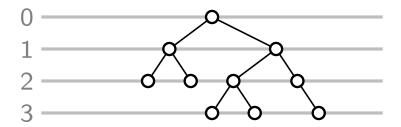


inorder

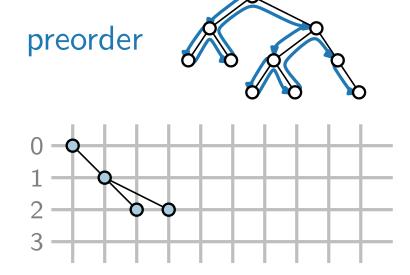




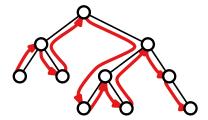
1. Choose y-coordinates: y(u) = depth(u)

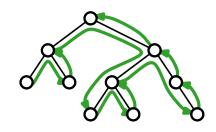


2. Choose *x*-coordinates:

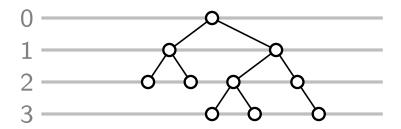


inorder

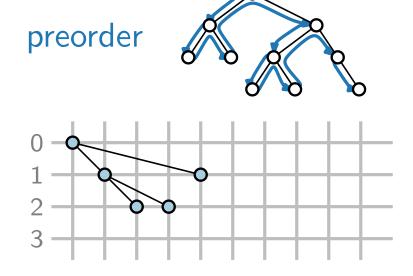




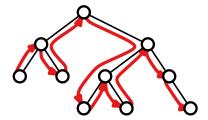
1. Choose y-coordinates: y(u) = depth(u)

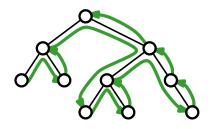


2. Choose *x*-coordinates:

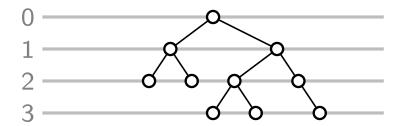


inorder

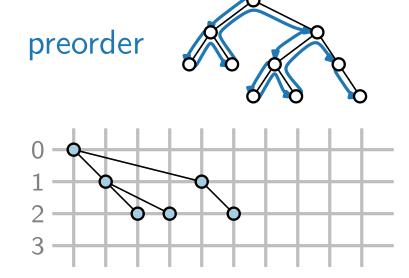




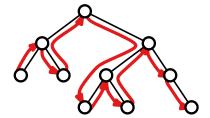
1. Choose y-coordinates: y(u) = depth(u)

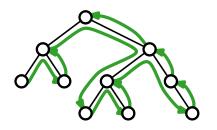


2. Choose *x*-coordinates:

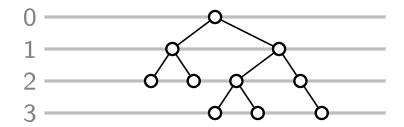


inorder

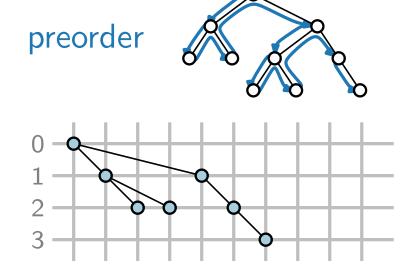




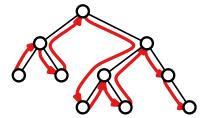
1. Choose y-coordinates: y(u) = depth(u)

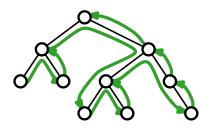


2. Choose *x*-coordinates:

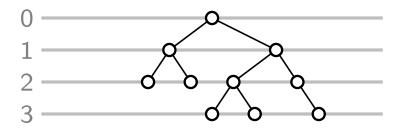


inorder



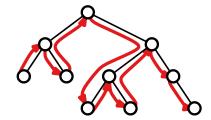


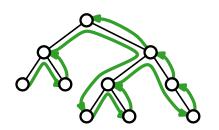
1. Choose y-coordinates: y(u) = depth(u)



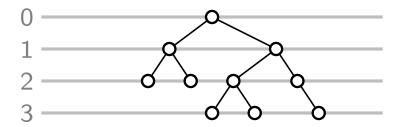
2. Choose *x*-coordinates:

inorder



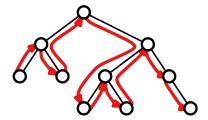


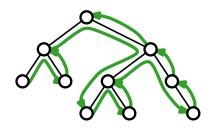
1. Choose y-coordinates: y(u) = depth(u)



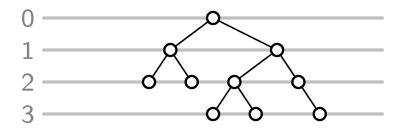
2. Choose *x*-coordinates:

inorder



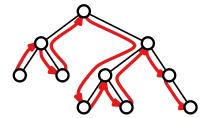


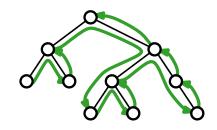
1. Choose y-coordinates: y(u) = depth(u)



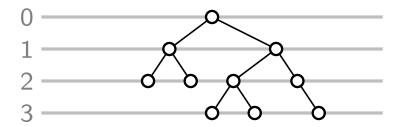
2. Choose *x*-coordinates:

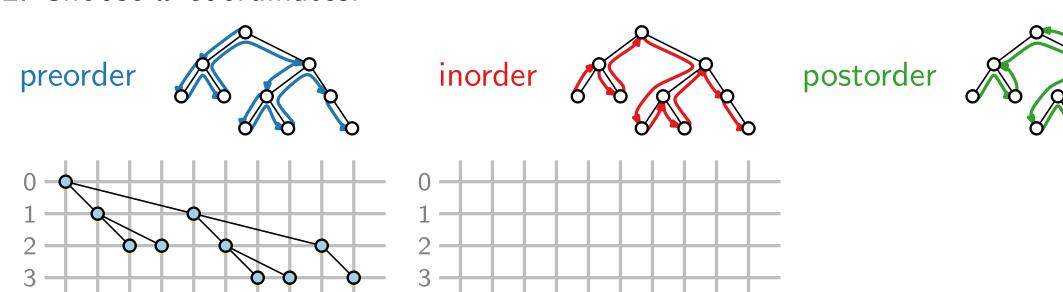
inorder



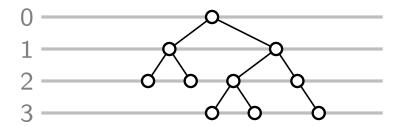


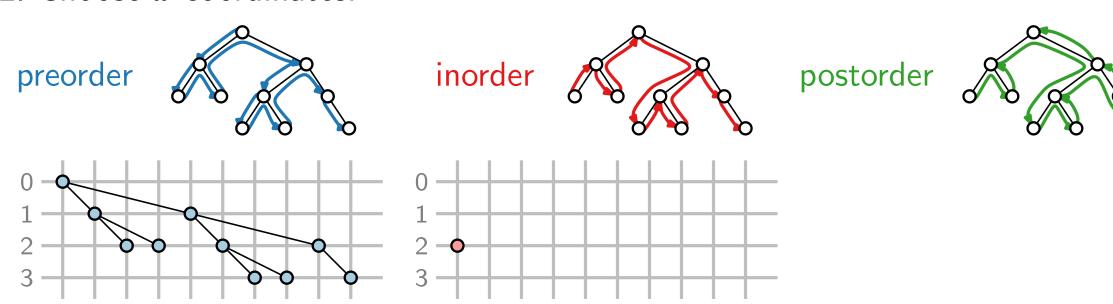
1. Choose y-coordinates: y(u) = depth(u)



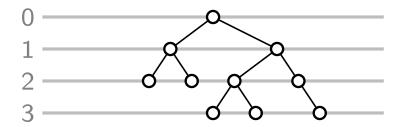


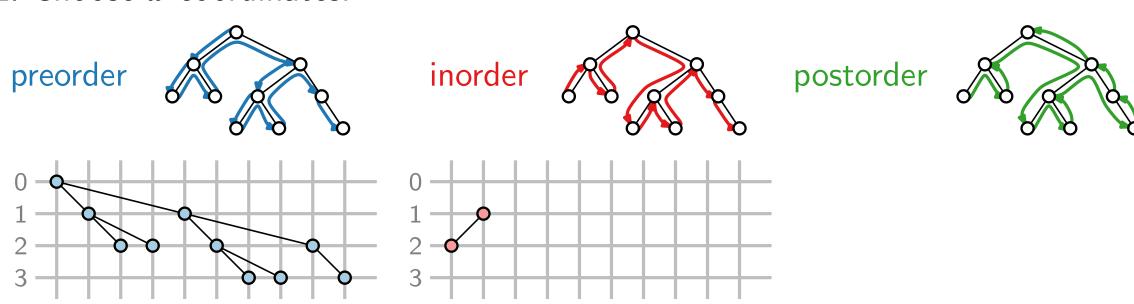
1. Choose y-coordinates: y(u) = depth(u)



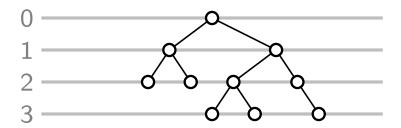


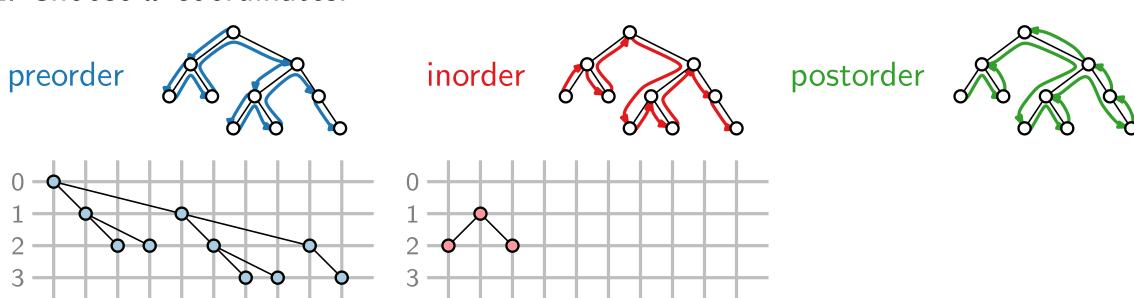
1. Choose y-coordinates: y(u) = depth(u)



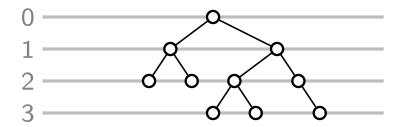


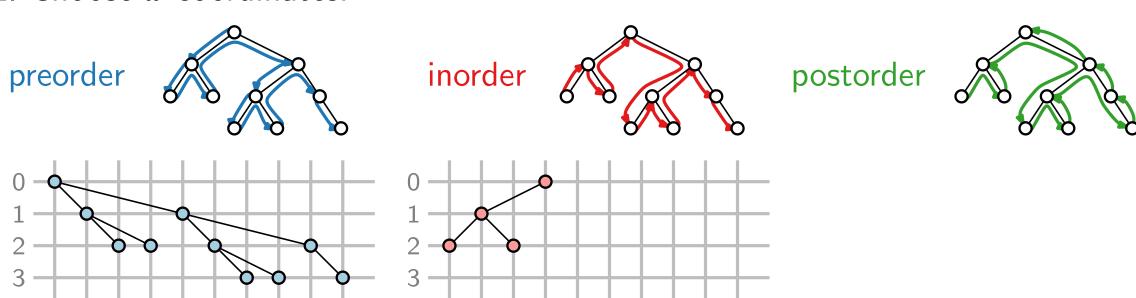
1. Choose y-coordinates: y(u) = depth(u)



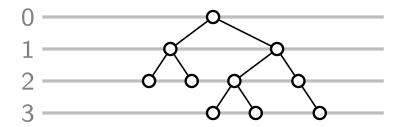


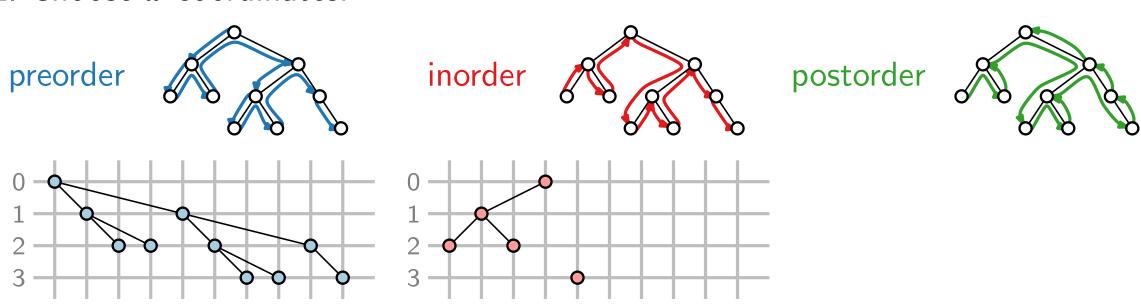
1. Choose y-coordinates: y(u) = depth(u)



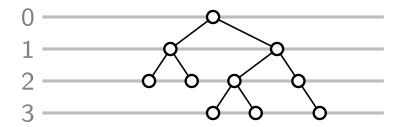


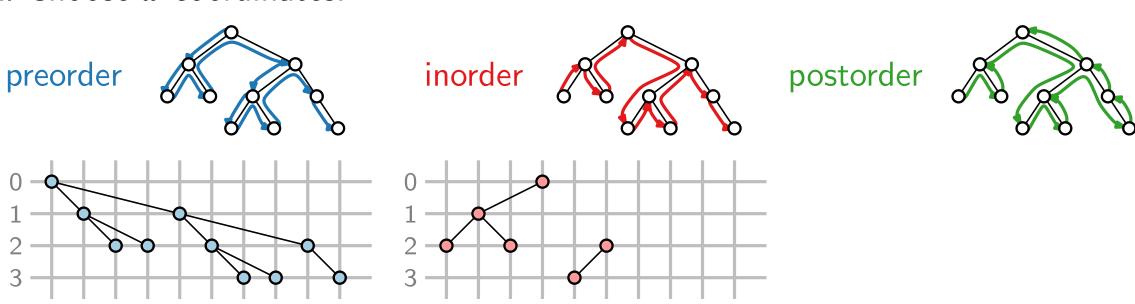
1. Choose y-coordinates: y(u) = depth(u)



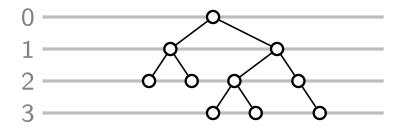


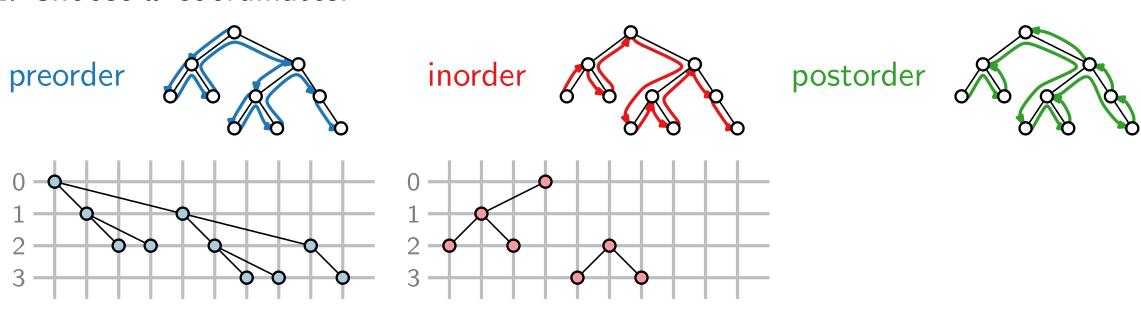
1. Choose y-coordinates: y(u) = depth(u)



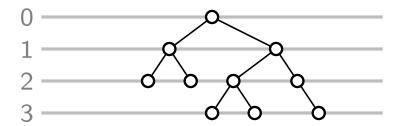


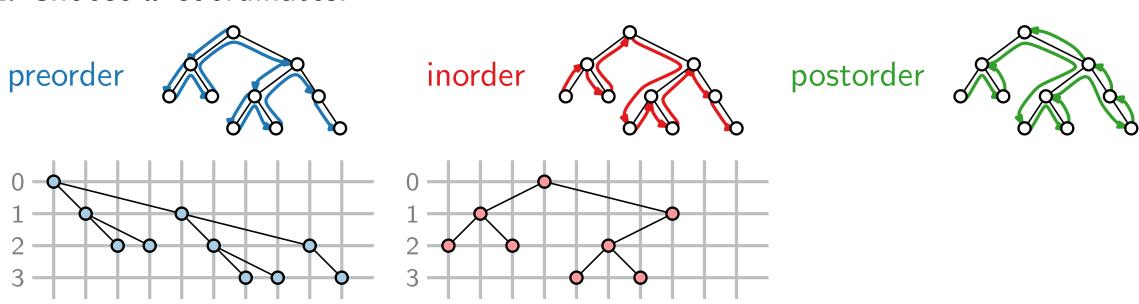
1. Choose y-coordinates: y(u) = depth(u)



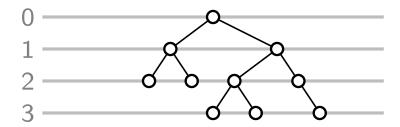


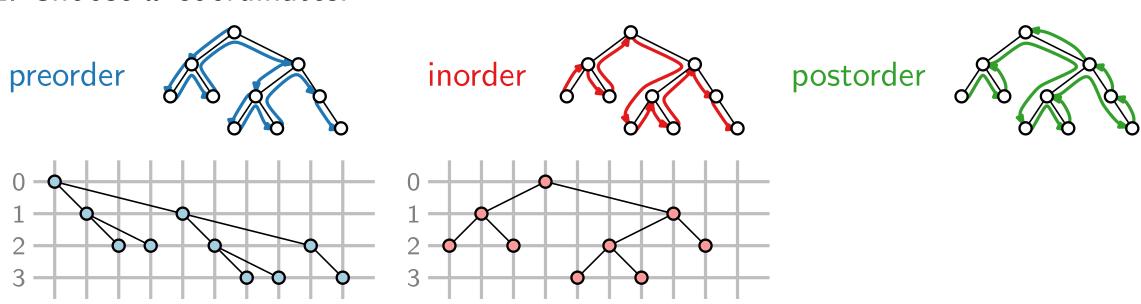
1. Choose y-coordinates: y(u) = depth(u)



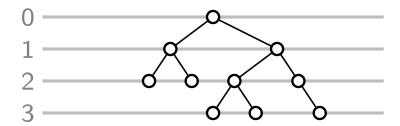


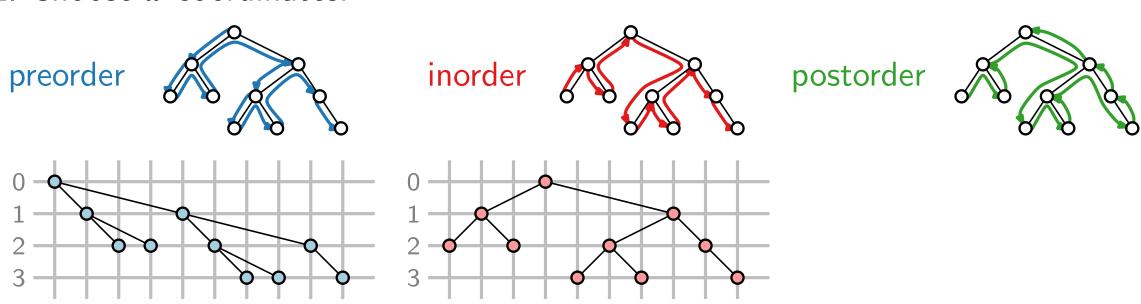
1. Choose y-coordinates: y(u) = depth(u)



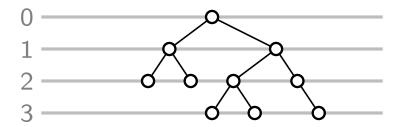


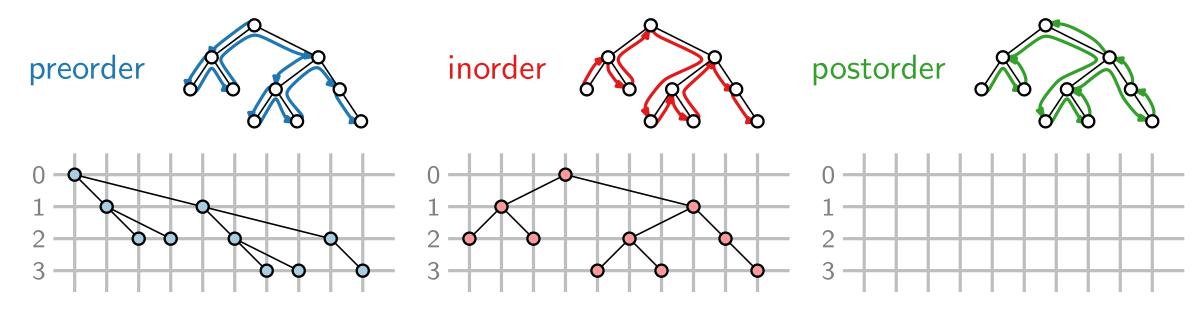
1. Choose y-coordinates: y(u) = depth(u)



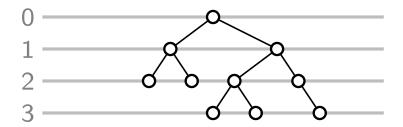


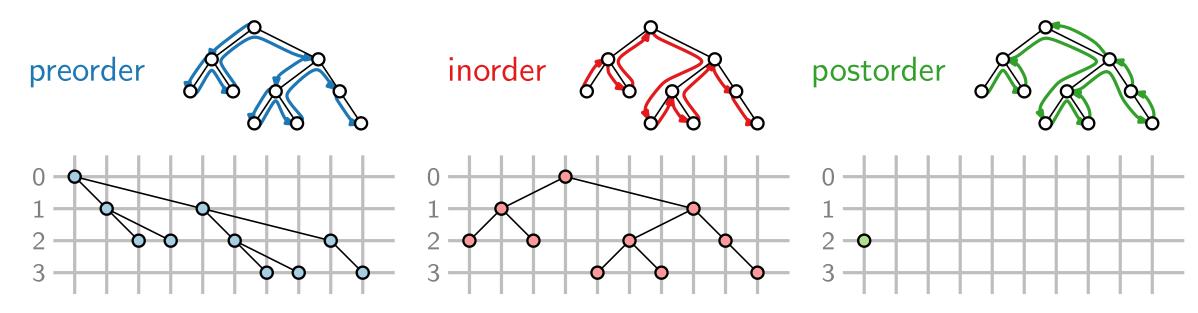
1. Choose y-coordinates: y(u) = depth(u)



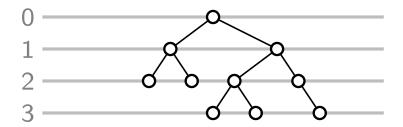


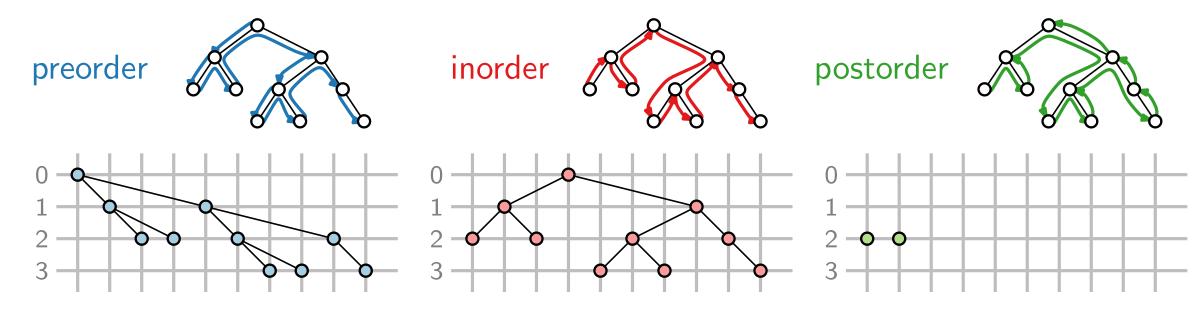
1. Choose y-coordinates: y(u) = depth(u)



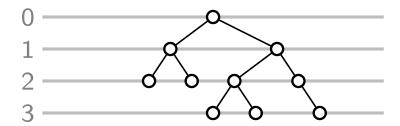


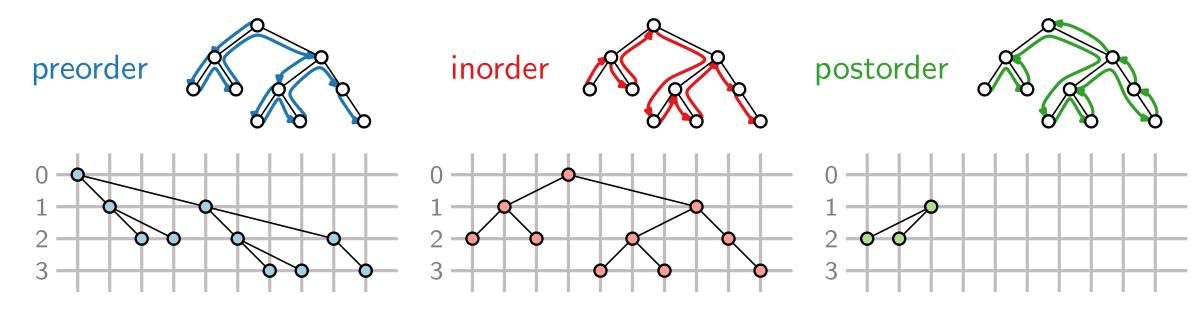
1. Choose y-coordinates: y(u) = depth(u)



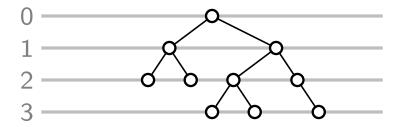


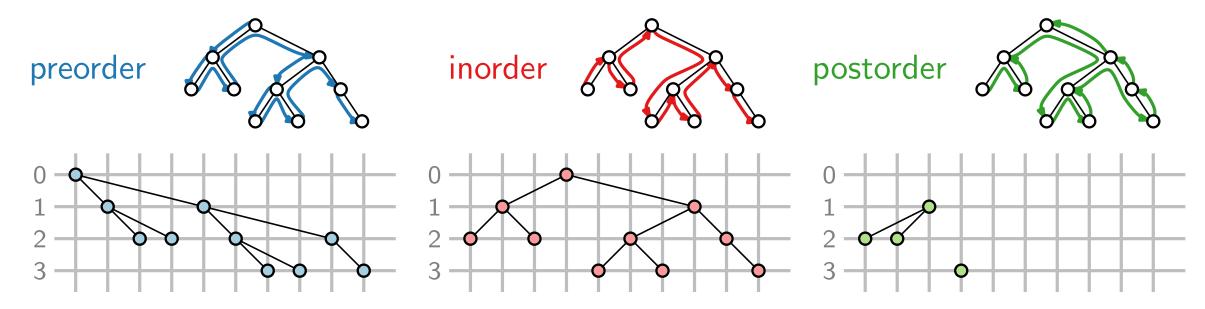
1. Choose y-coordinates: y(u) = depth(u)



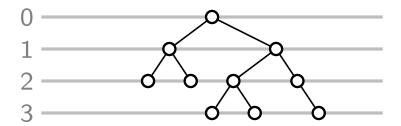


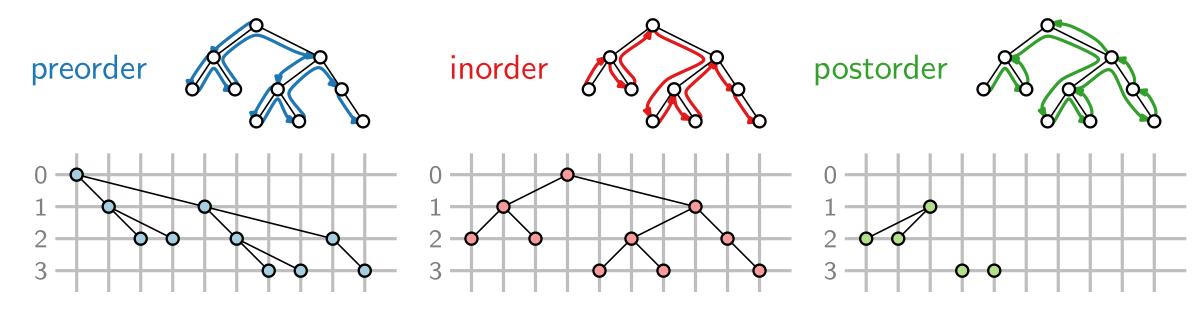
1. Choose y-coordinates: y(u) = depth(u)



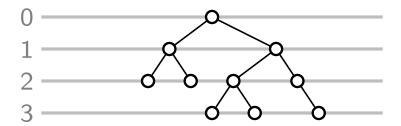


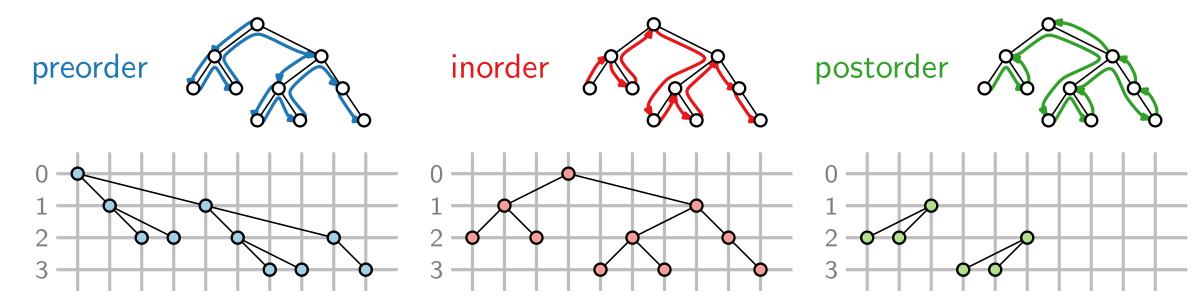
1. Choose y-coordinates: y(u) = depth(u)



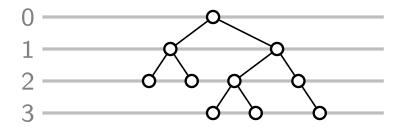


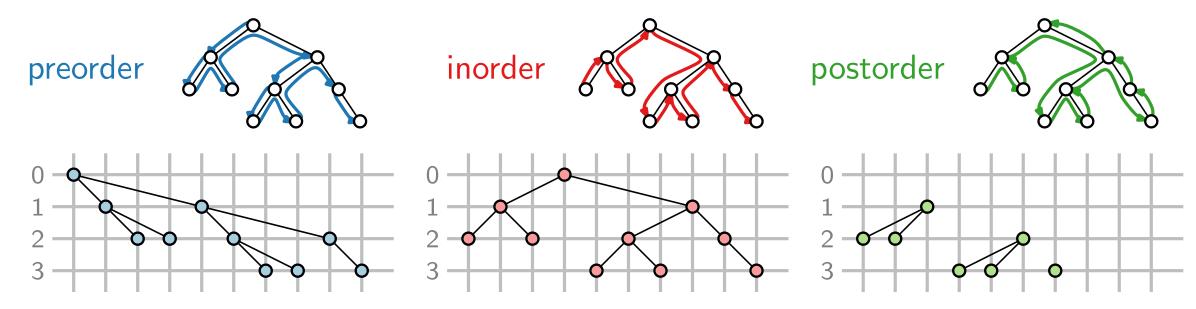
1. Choose y-coordinates: y(u) = depth(u)



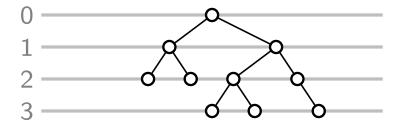


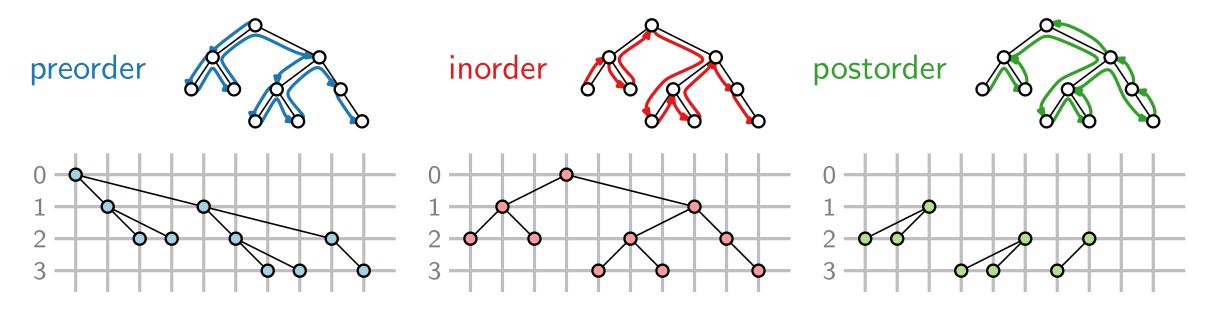
1. Choose y-coordinates: y(u) = depth(u)



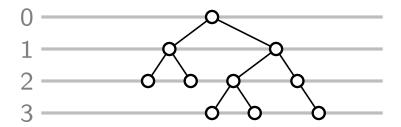


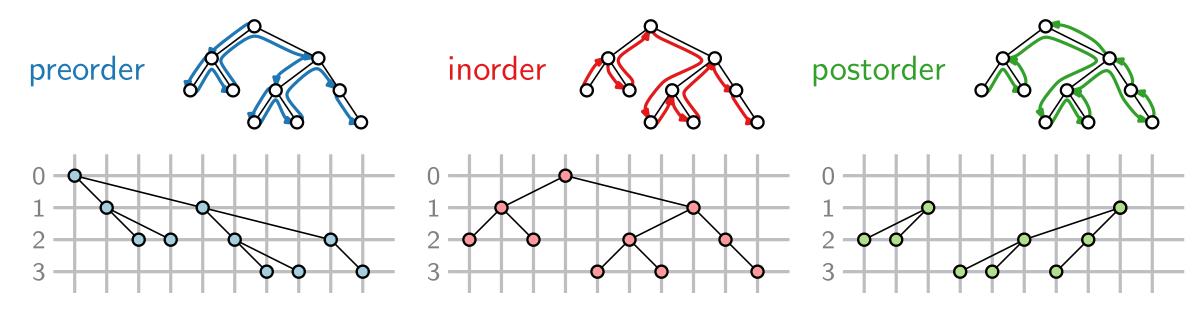
1. Choose y-coordinates: y(u) = depth(u)



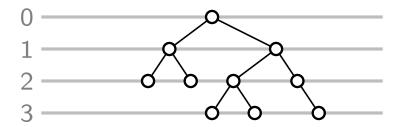


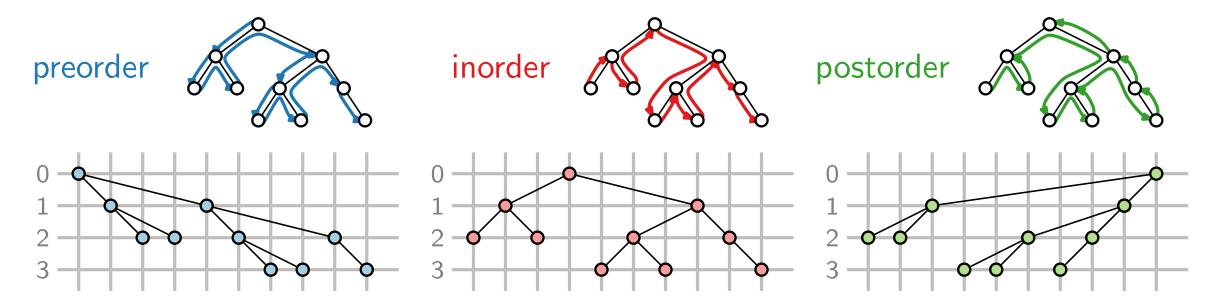
1. Choose y-coordinates: y(u) = depth(u)



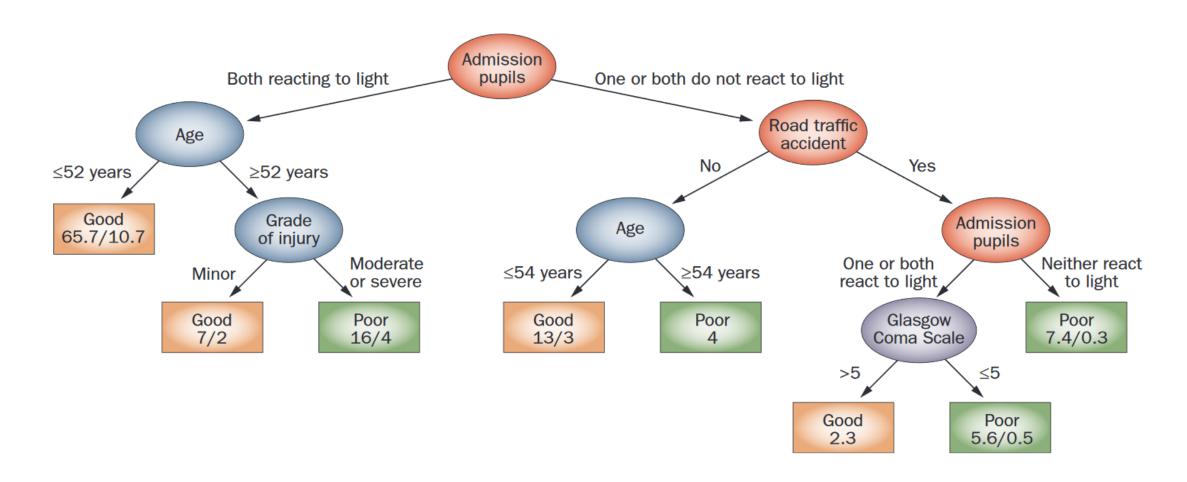


1. Choose y-coordinates: y(u) = depth(u)





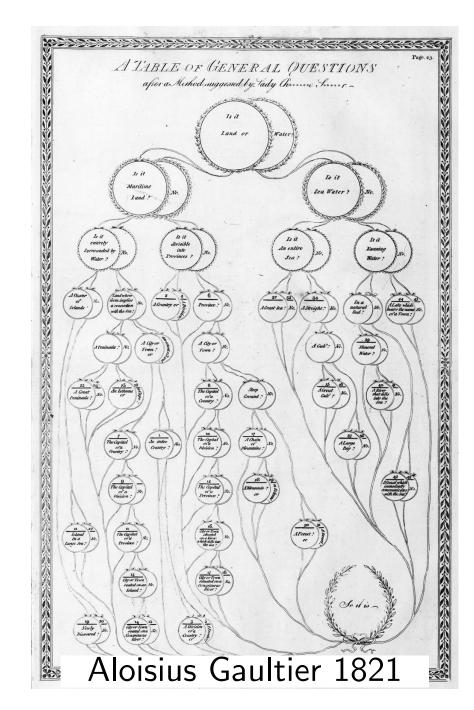
Layered Drawings – Applications

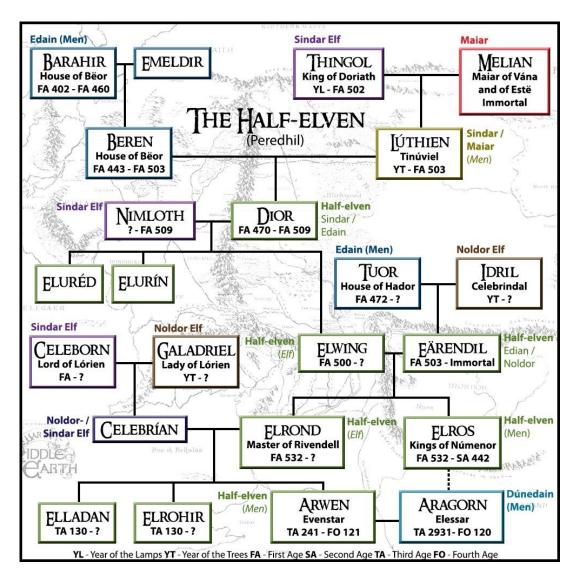


Decision tree for outcome prediction after traumatic brain injury

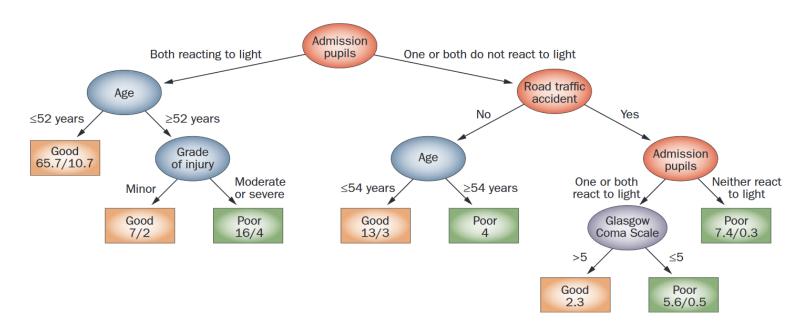
Source: Nature Reviews Neurology

Layered Drawings – Applications

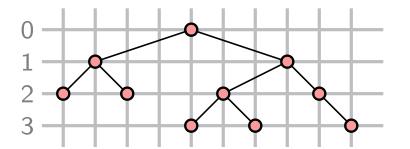




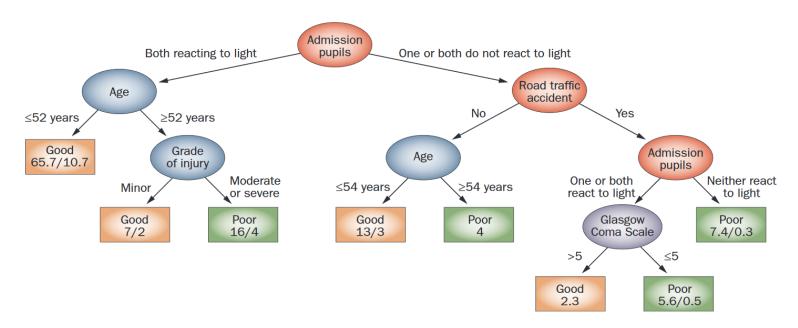
Family tree of LOTR elves and half-elves



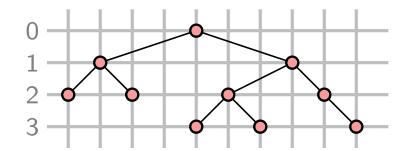
What are properties of the layout?



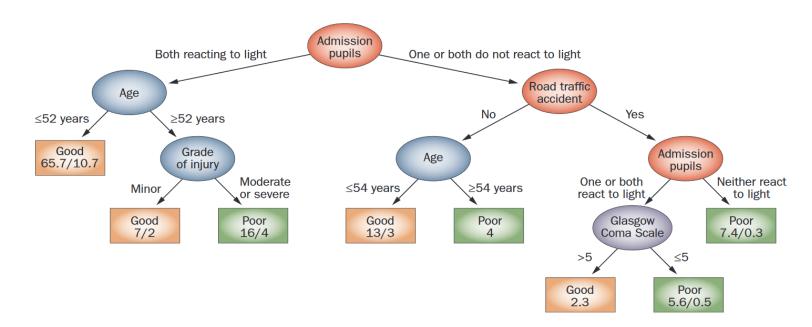
5 - 1



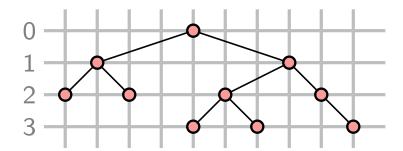
- What are properties of the layout?
- What are the drawing conventions?

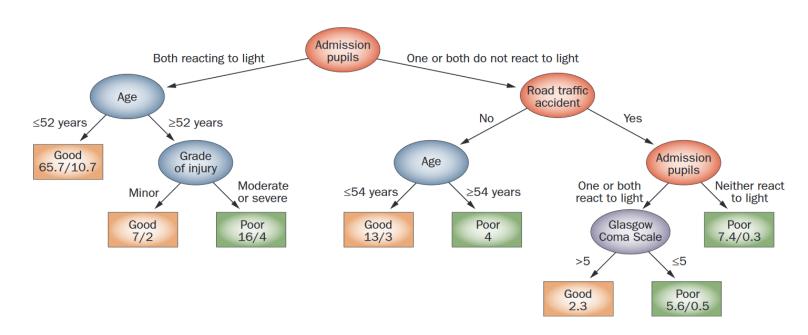


5 - 2

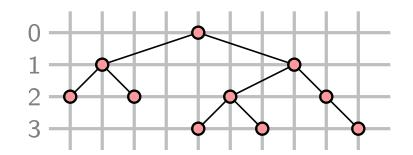


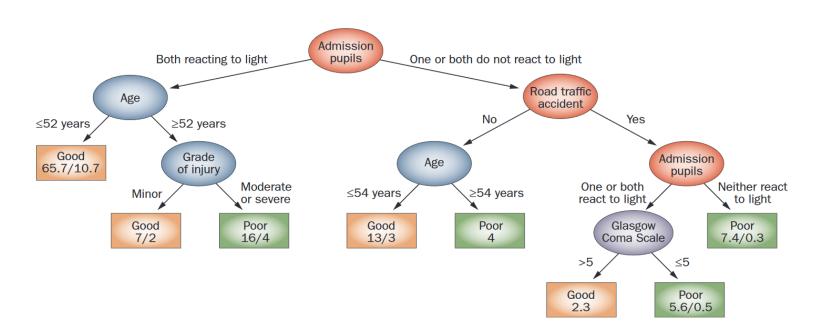
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



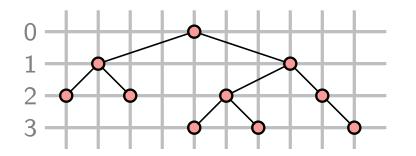


- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



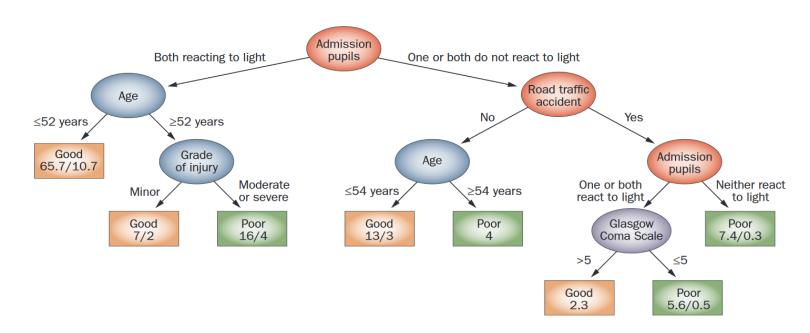


- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

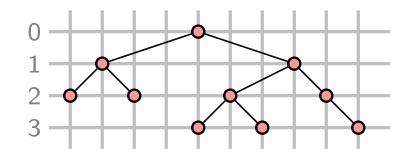


Drawing conventions

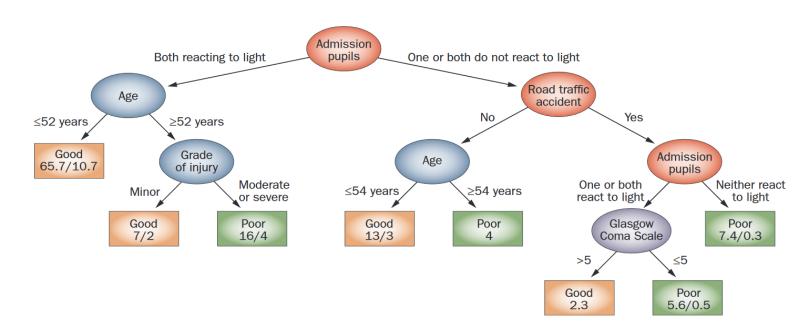
Vertices lie on layers and have integer coordinates



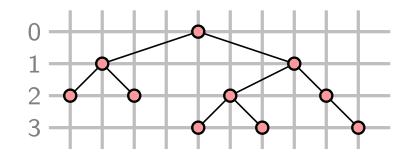
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



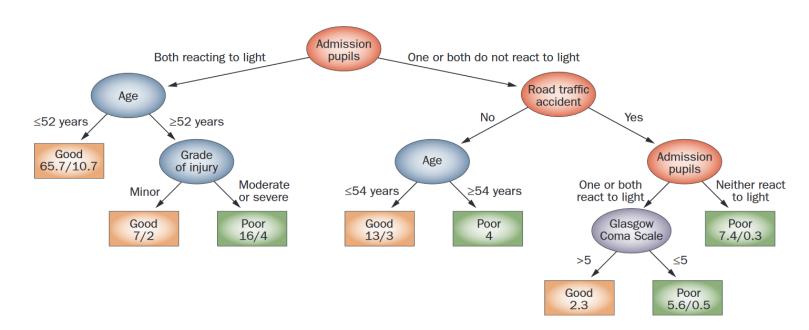
- Vertices lie on layers and have integer coordinates
- Parent centered above children



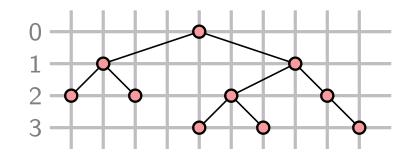
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



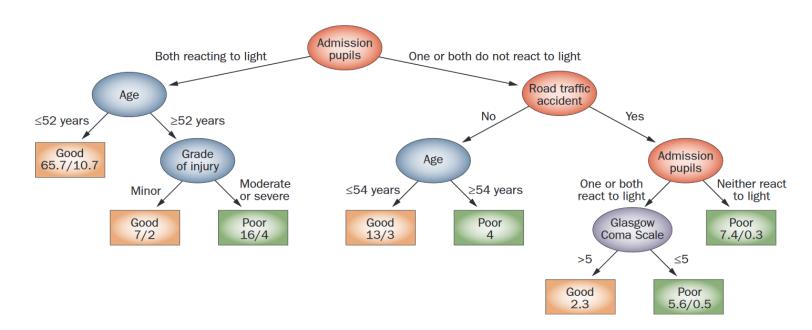
- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments



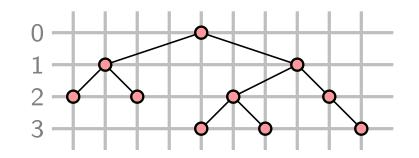
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



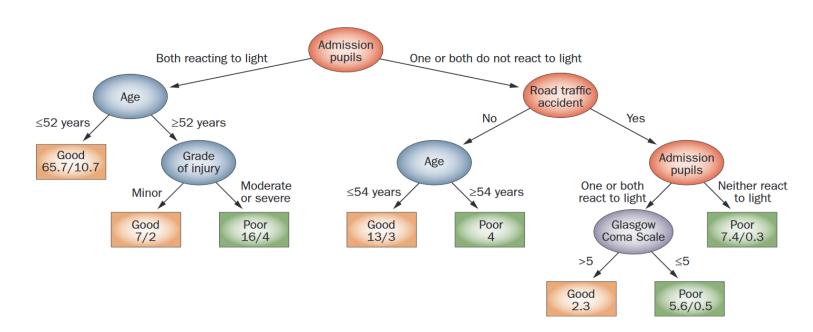
- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings



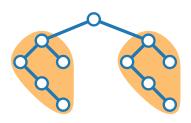
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

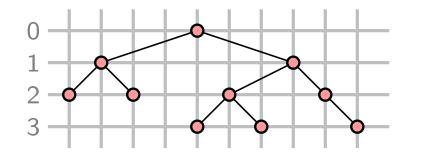


- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

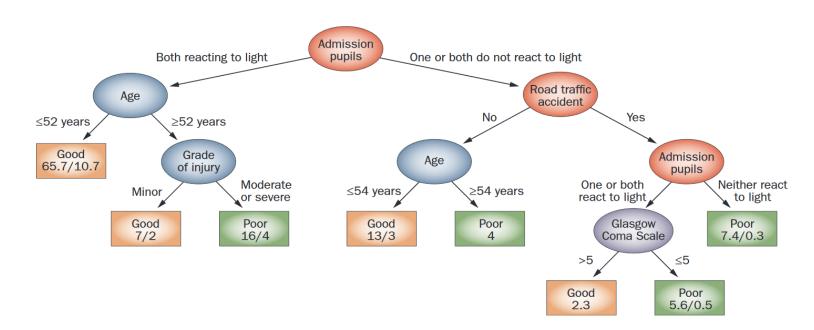


- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



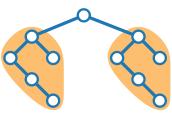


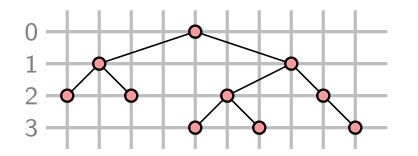
- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings



- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



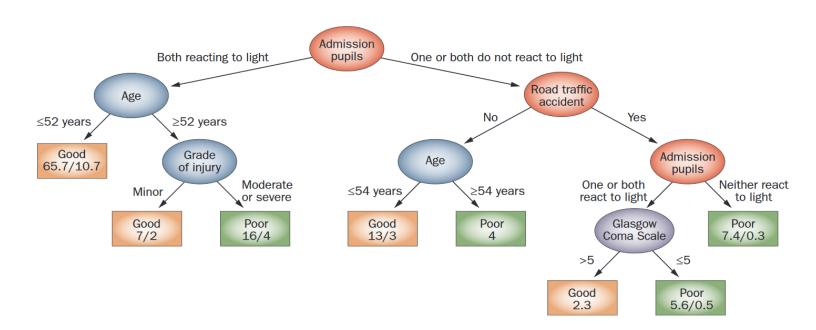




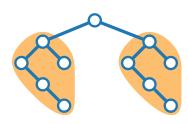
Drawing conventions

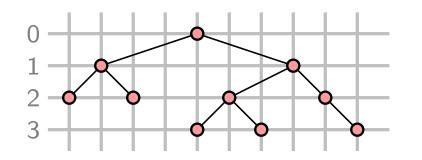
- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics



- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



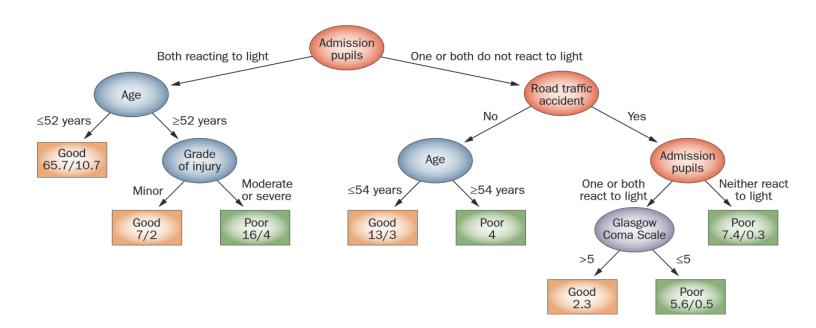


Drawing conventions

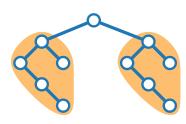
- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

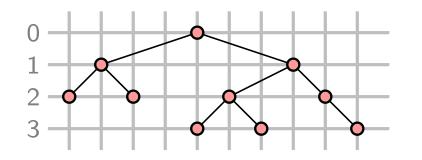
Drawing aesthetics

Area



- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?





Drawing conventions

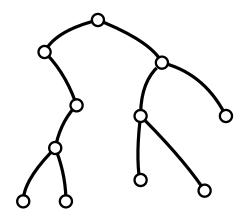
- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics

- Area
- Symmetries

Input: A binary tree T

Output: A layered drawing of T

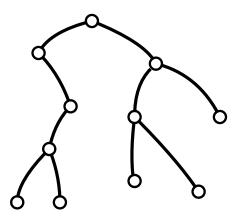


Input: A binary tree T

Output: A layered drawing of T

Base case:

Divide:

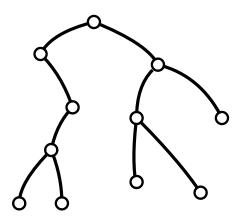


Input: A binary tree T

Output: A layered drawing of T

Base case: A single vertex

Divide:



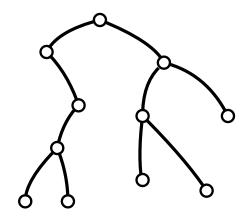
Input: A binary tree T

Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to

draw the left and right subtrees



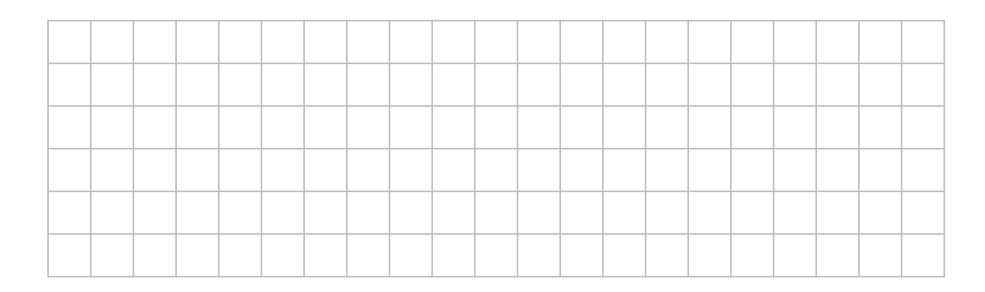
Input: A binary tree T

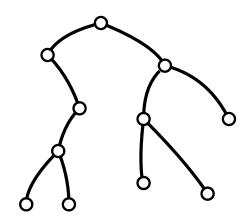
Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to

draw the left and right subtrees





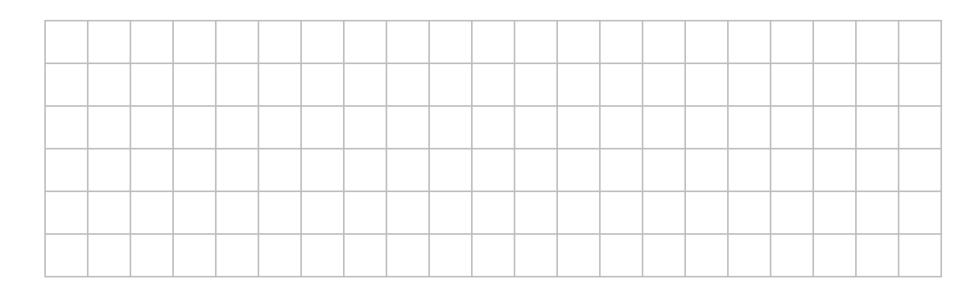
Input: A binary tree T

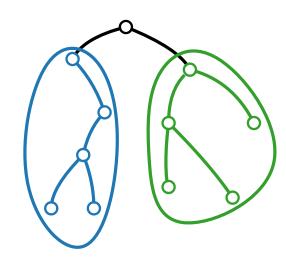
Output: A layered drawing of T

Base case: A single vertex o

Divide: Recursively apply the algorithm to

draw the left and right subtrees





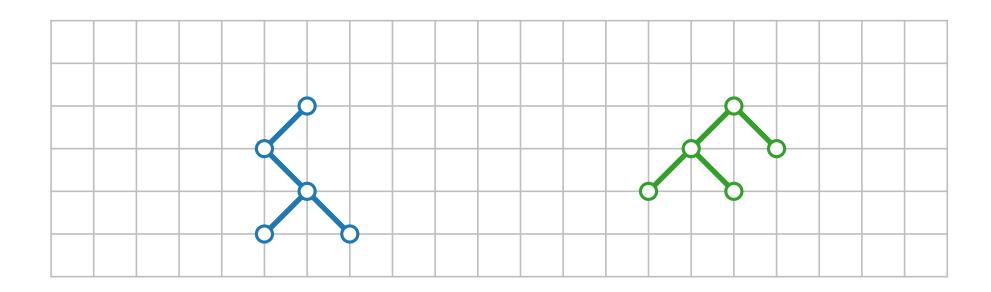
Input: A binary tree T

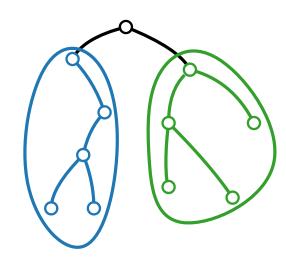
Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to

draw the left and right subtrees





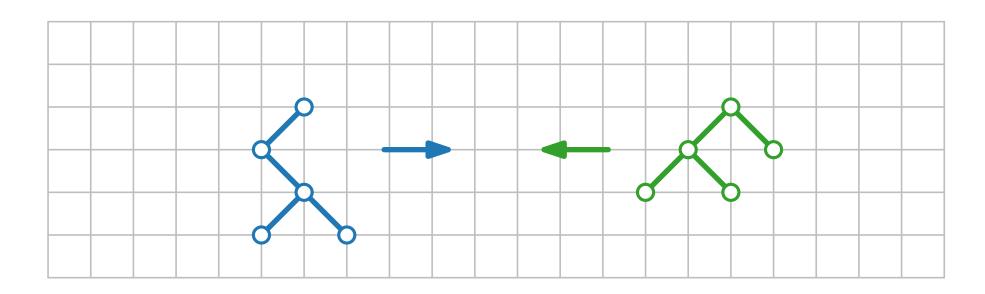
Input: A binary tree T

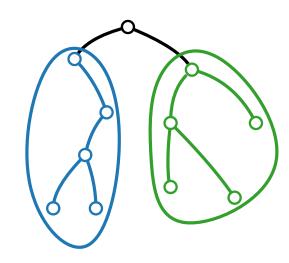
Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to

draw the left and right subtrees





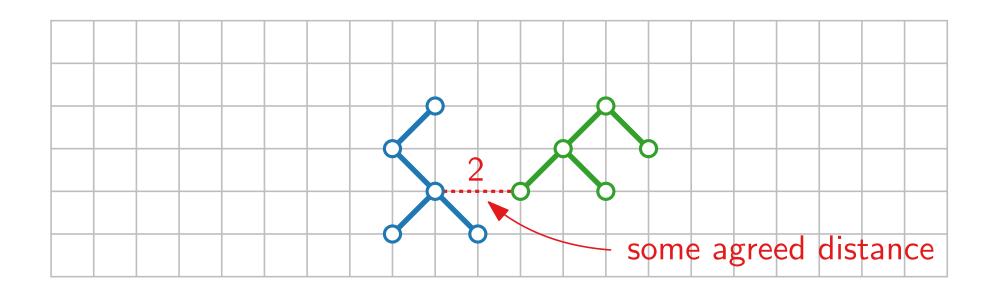
Input: A binary tree T

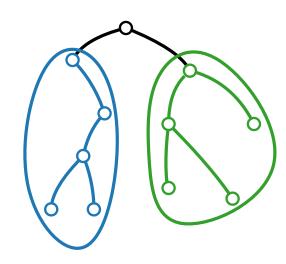
Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to

draw the left and right subtrees





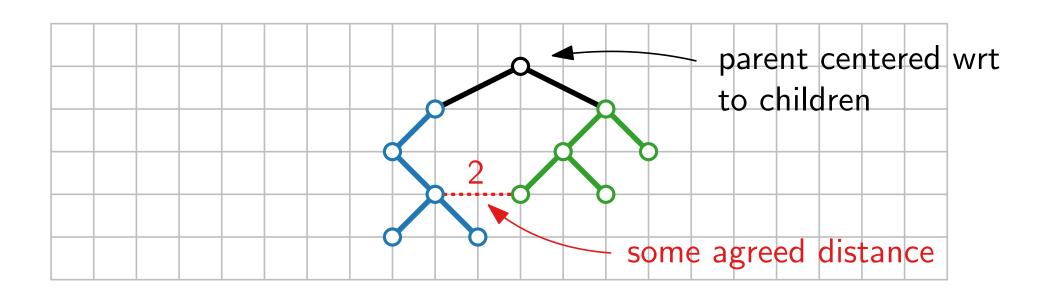
Input: A binary tree T

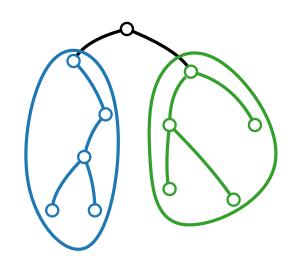
Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to

draw the left and right subtrees





Input: A binary tree T

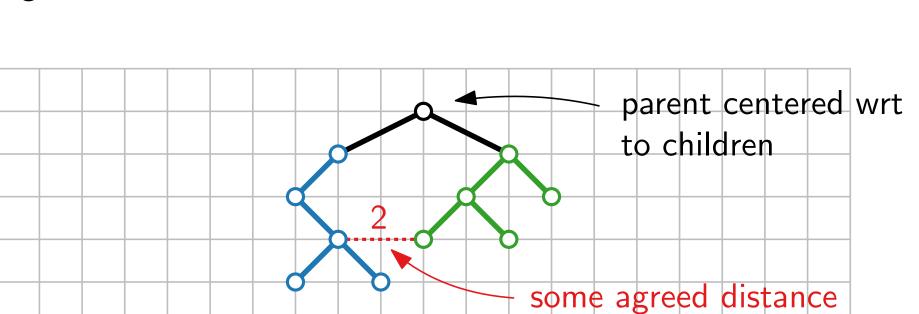
Output: A layered drawing of T

Base case: A single vertex o

Divide: Recursively apply the algorithm to

draw the left and right subtrees

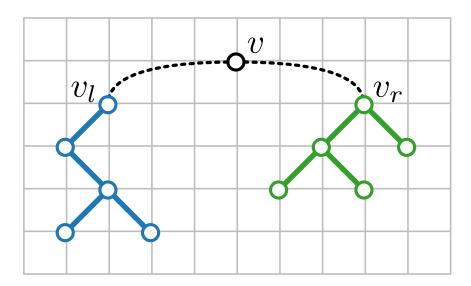
Conquer:



sometimes 3 apart for grid drawing!

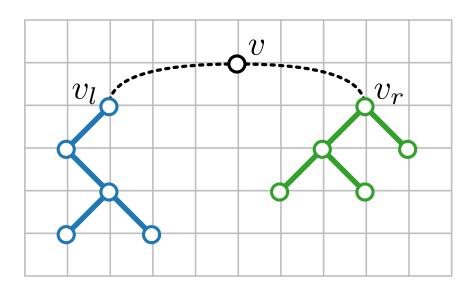
Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child



Phase 1 – postorder traversal:

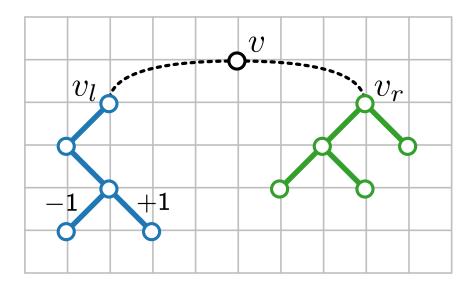
■ For each vertex compute horizontal displacement of left and right child



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

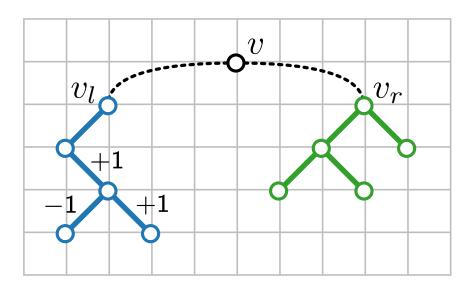
■ For each vertex compute horizontal displacement of left and right child



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

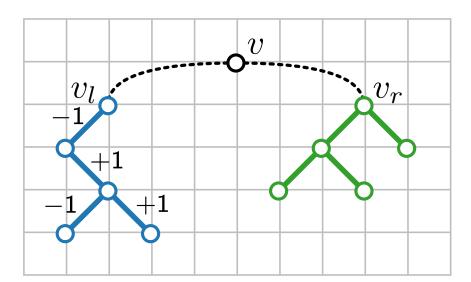
■ For each vertex compute horizontal displacement of left and right child



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

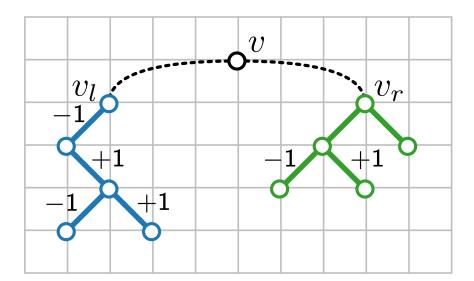
■ For each vertex compute horizontal displacement of left and right child



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

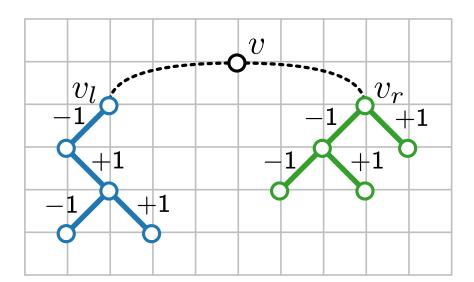
■ For each vertex compute horizontal displacement of left and right child



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

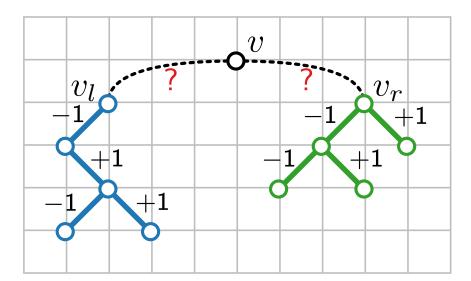
■ For each vertex compute horizontal displacement of left and right child



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

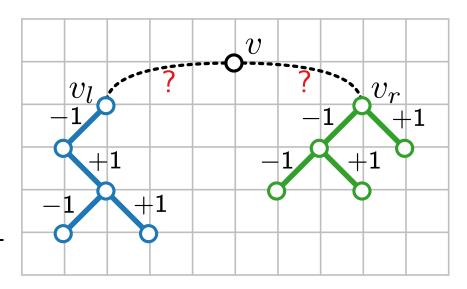


Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets



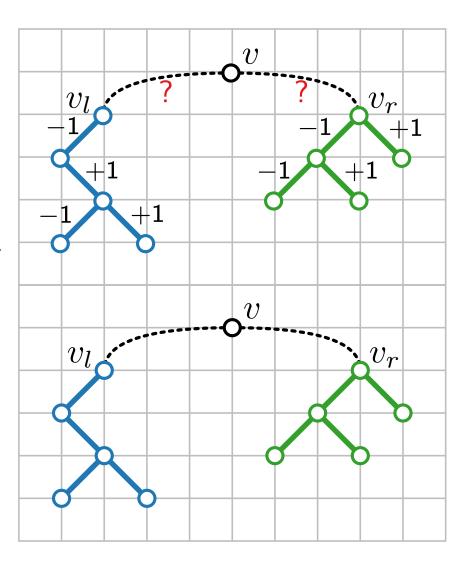
Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:

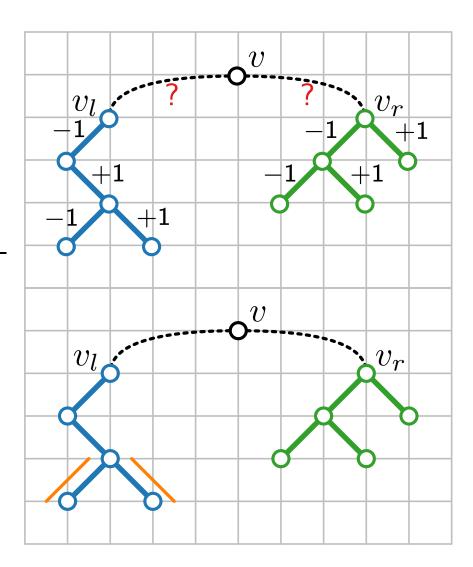


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:

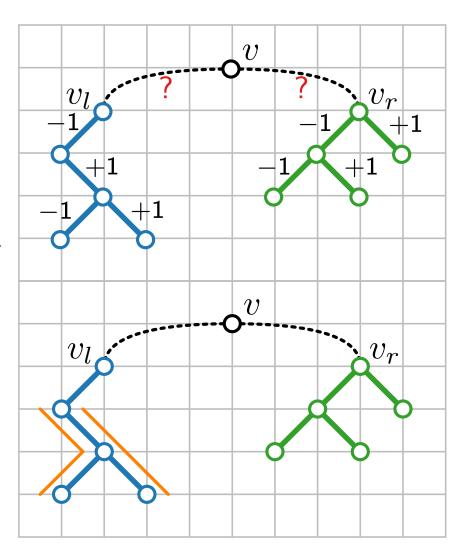


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:

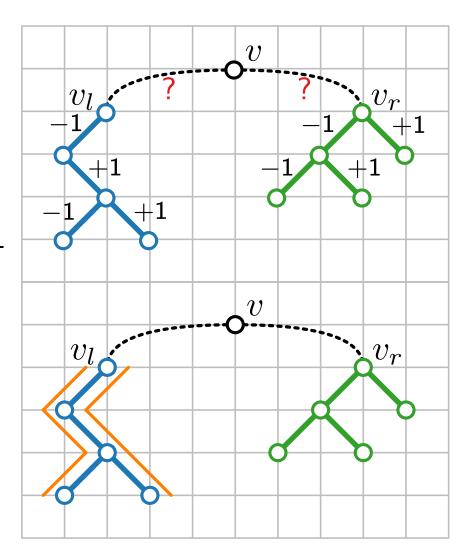


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:

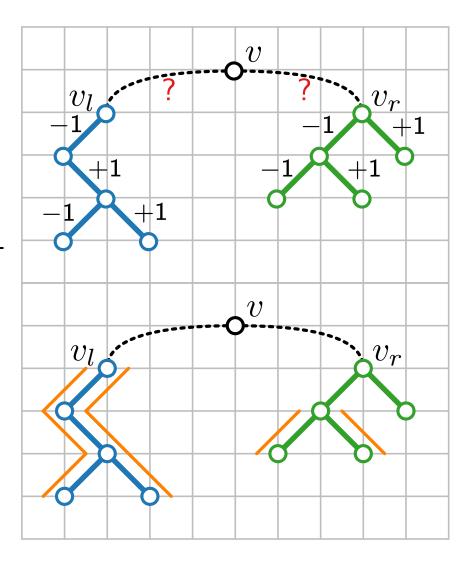


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:

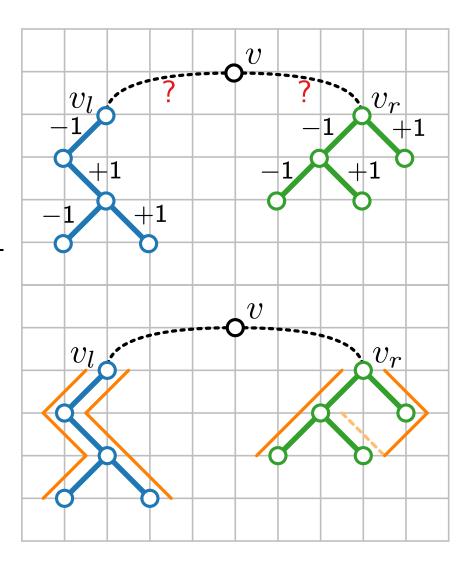


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:

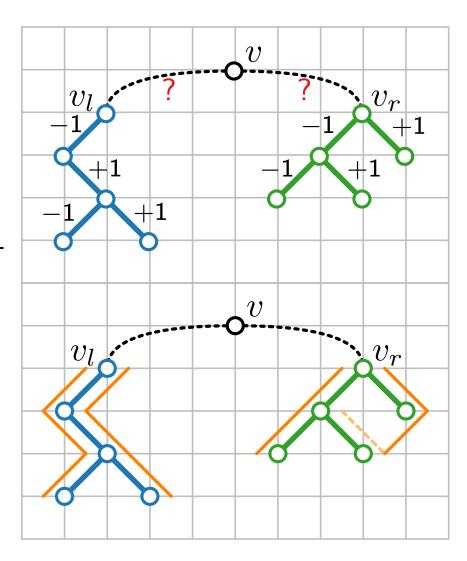


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

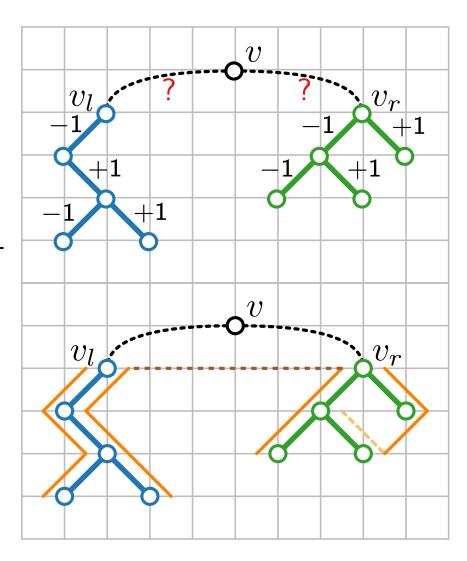


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

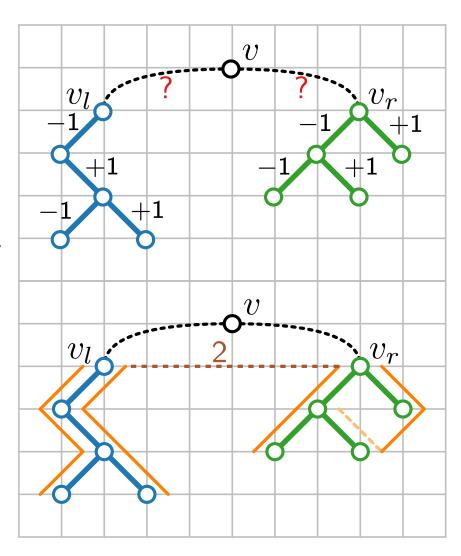


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

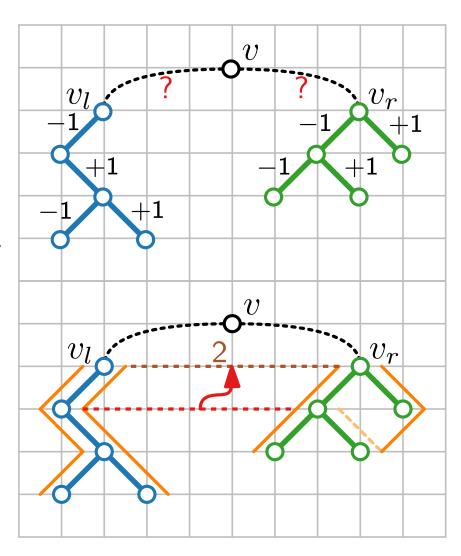


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

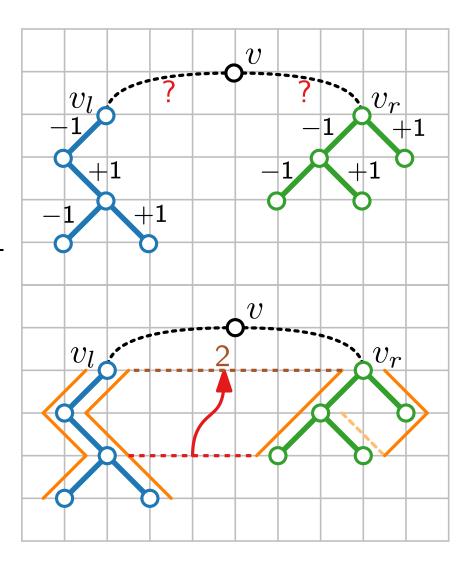


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

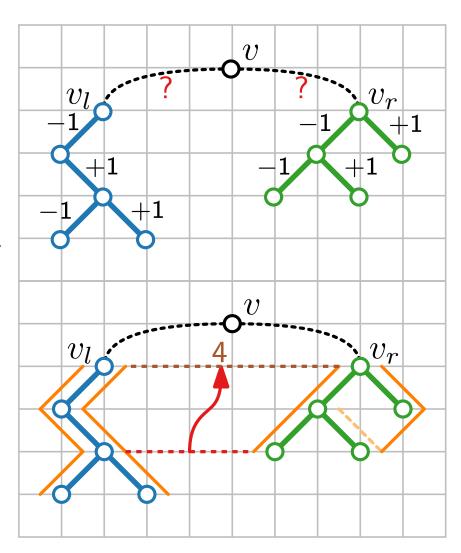


Phase 1 – postorder traversal:

■ For each vertex compute horizontal displacement of left and right child

- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r

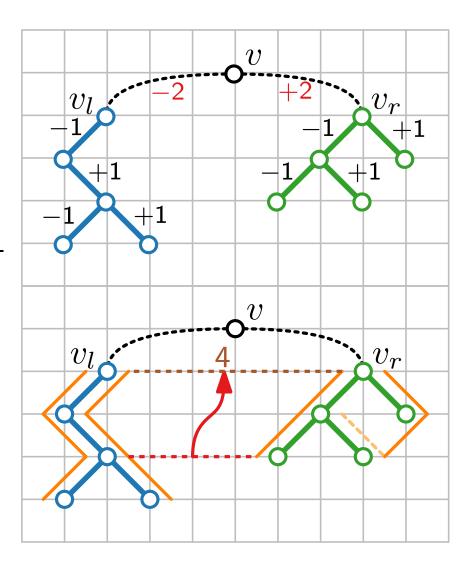
Phase 2 – preorder traversal:



Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r

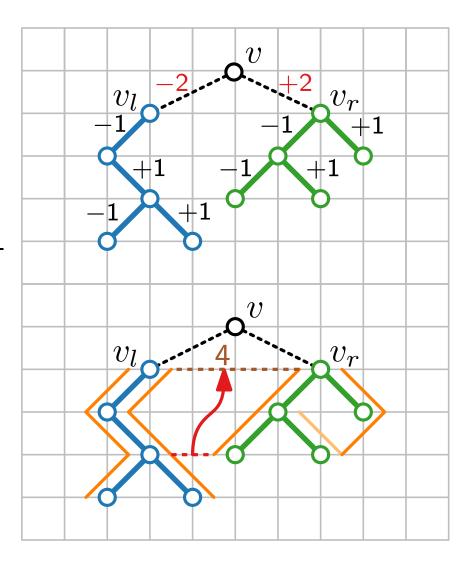
Phase 2 – preorder traversal:



Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

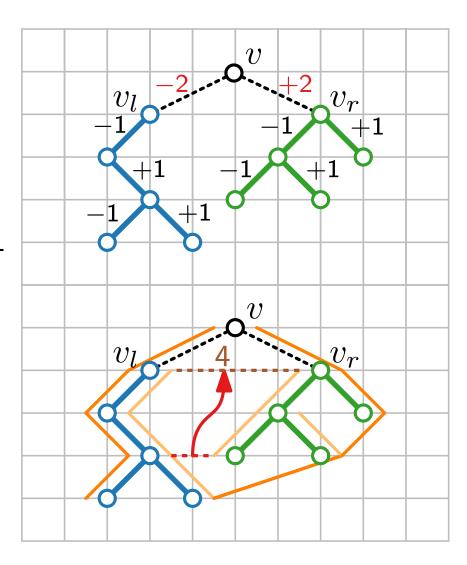
Phase 2 – preorder traversal:



Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:



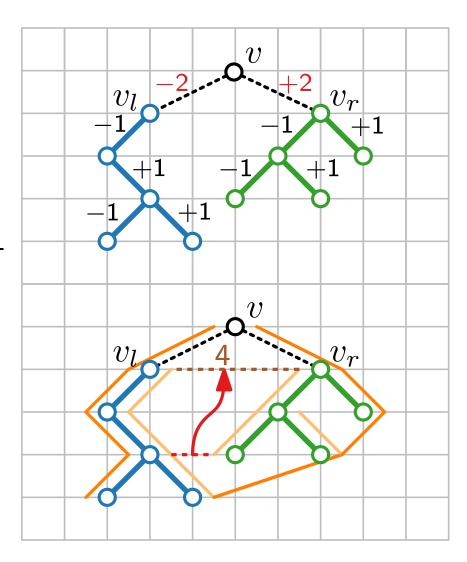
Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



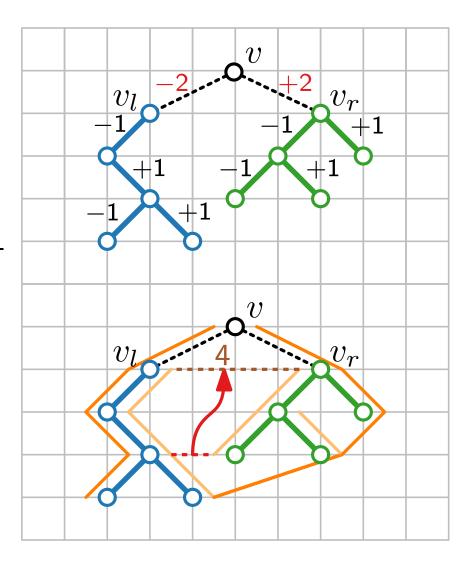
Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



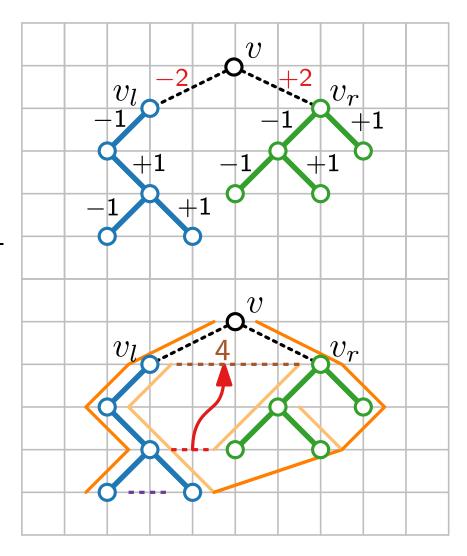
Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



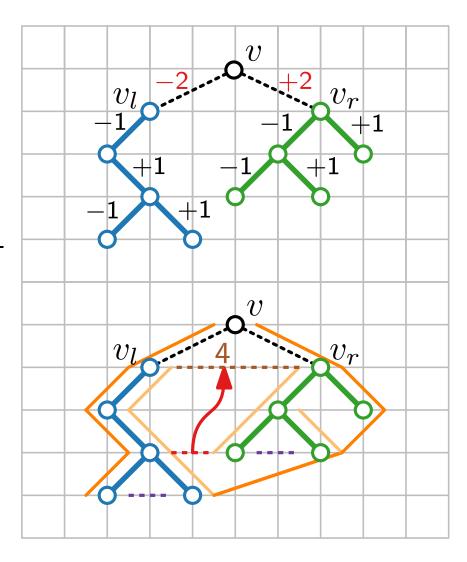
Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



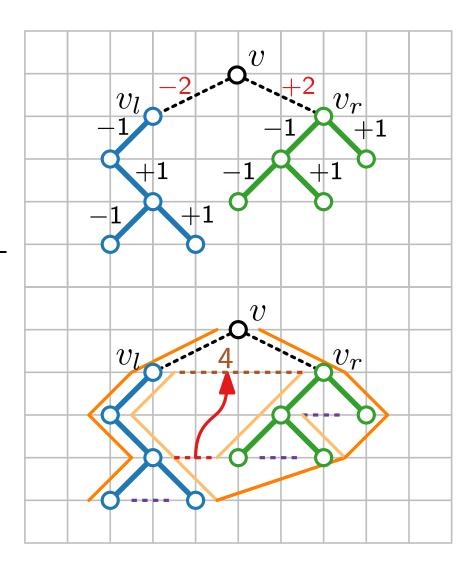
Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



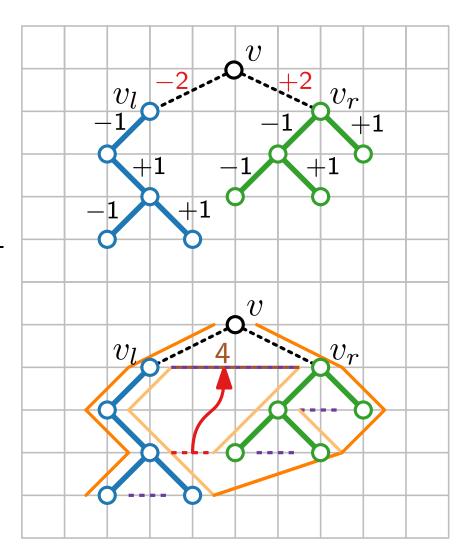
Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



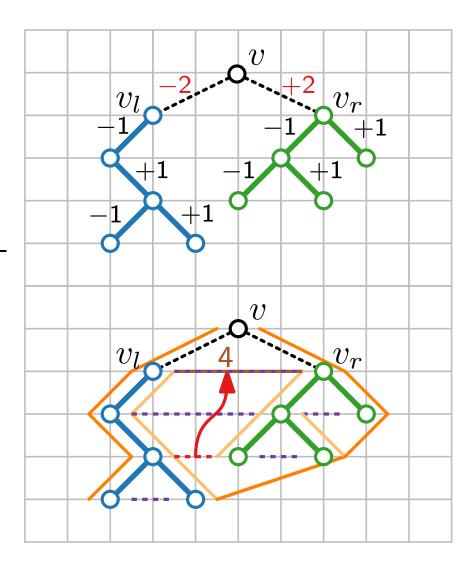
Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



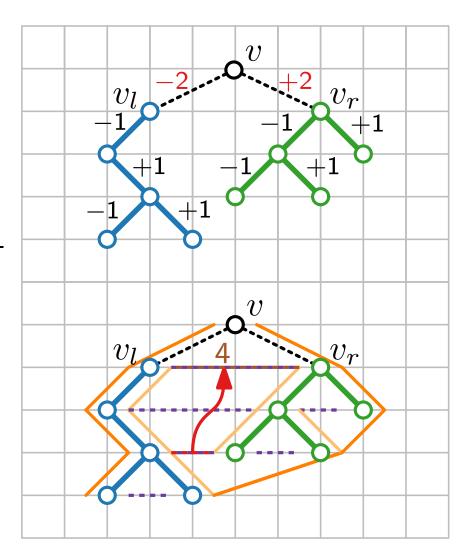
Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



Phase 1 – postorder traversal:

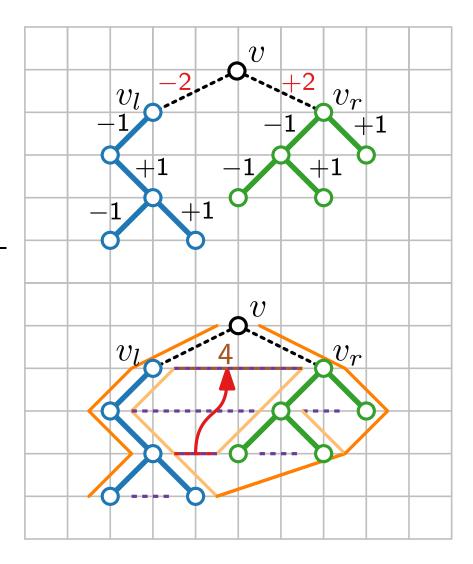
- For each vertex compute horizontal displacement of left and right child
- \blacksquare x-offset $(v_l) = -\lceil \frac{d_v}{2} \rceil$, x-offset $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = \min$. horiz. distance between v_l and v_r

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?

How often do we have to walk along a contour?



- Less than n = # vertices times!

Layered Drawings – Result

Theorem.

[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

Layered Drawings – Result

Theorem.

[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

Γ is planar, straight-line and strictly downward

Layered Drawings – Result

Theorem.

[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)

Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1

Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ -

Theorem.

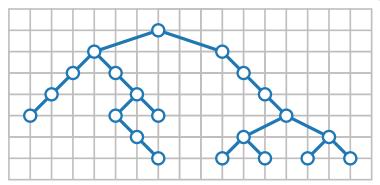
[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children
- **Area of** Γ is in $\mathcal{O}(n^2)$ but not optimal!

Theorem.

[Reingold & Tilford '81]

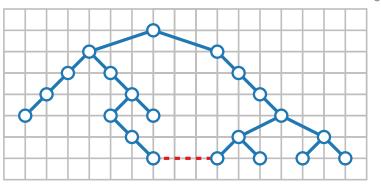
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children
- **Area of** Γ is in $\mathcal{O}(n^2)$ but not optimal!



Theorem.

[Reingold & Tilford '81]

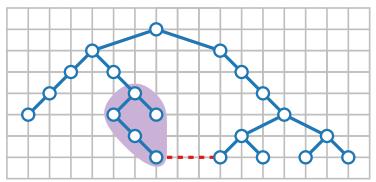
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children
- **Area of** Γ is in $\mathcal{O}(n^2)$ but not optimal!



Theorem.

[Reingold & Tilford '81]

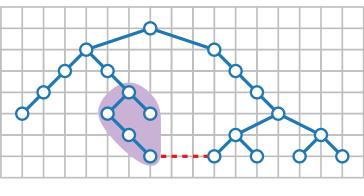
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children
- **Area of** Γ is in $\mathcal{O}(n^2)$ but not optimal!

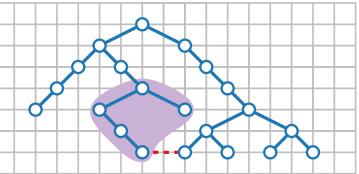


Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children
- **Area of** Γ is in $\mathcal{O}(n^2)$ but not optimal!





Theorem.

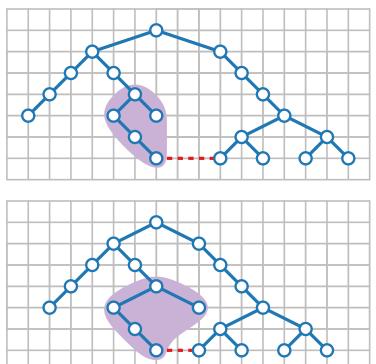
[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

NP-hard

Area of Γ is in $\mathcal{O}(n^2)$ – but not optimal!



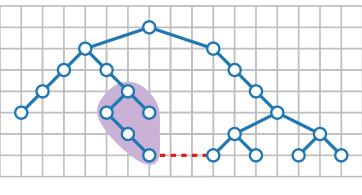
Theorem.

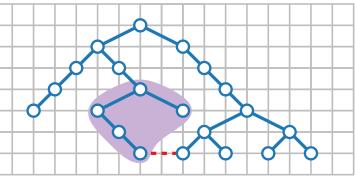
[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- lacksquare Γ is layered: y-coordinate of vertex v is $-\mathsf{depth}(v)$
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation





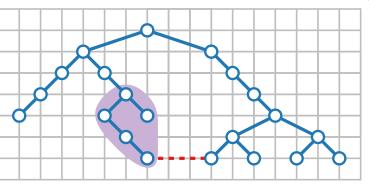
Theorem.

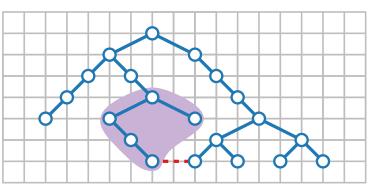
[Reingold & Tilford '81]

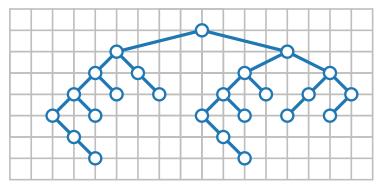
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation







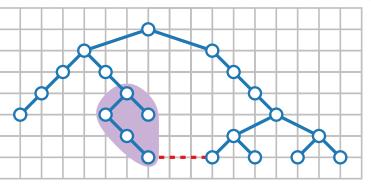
Theorem.

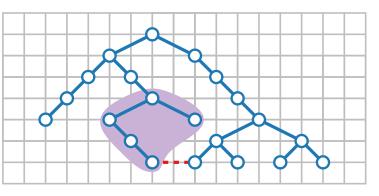
[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation





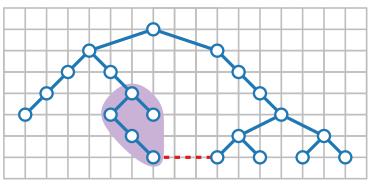
Theorem.

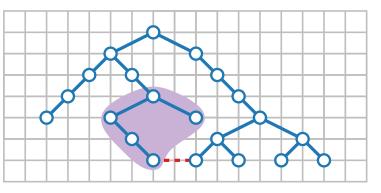
[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection





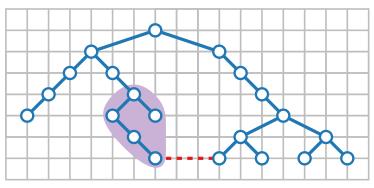
Theorem.

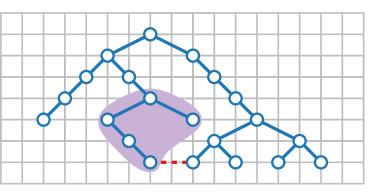
[Reingold & Tilford '81]

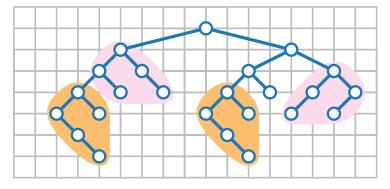
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection







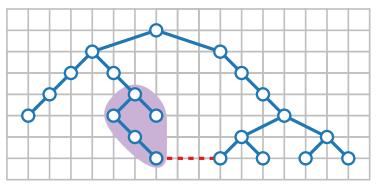
Theorem. rooted

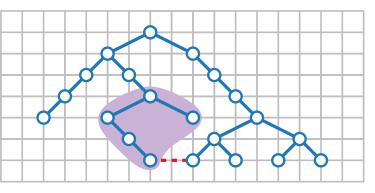
[Reingold & Tilford '81]

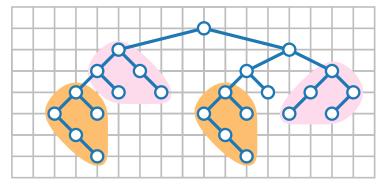
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection







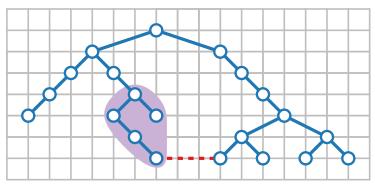
Theorem. rooted

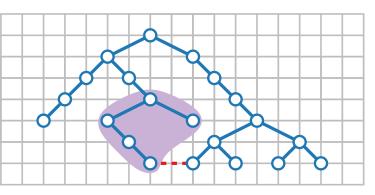
[Reingold & Tilford '81]

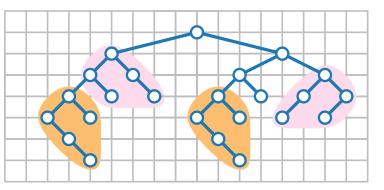
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection







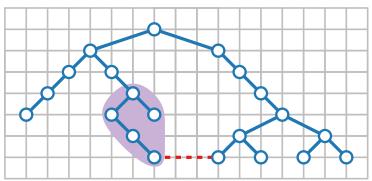
Theorem. rooted

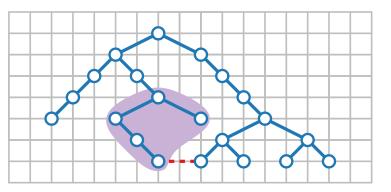
[Reingold & Tilford '81]

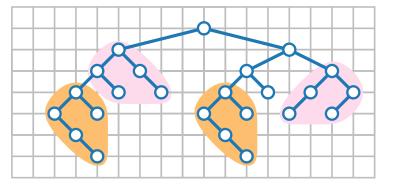
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection







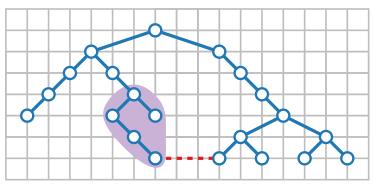
Theorem. rooted

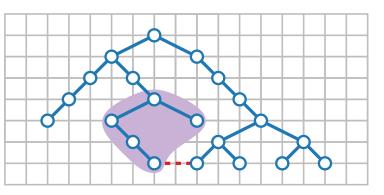
[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

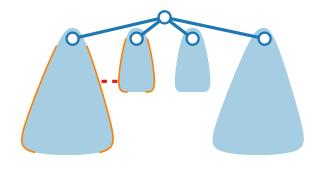
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- lacksquare Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection









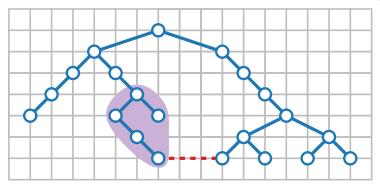
Theorem. rooted

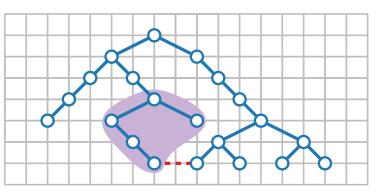
[Reingold & Tilford '81]

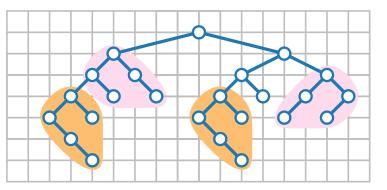
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

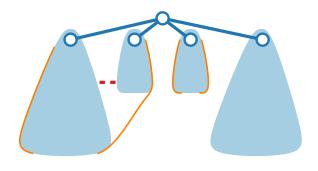
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection









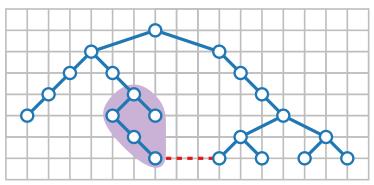
Theorem. rooted

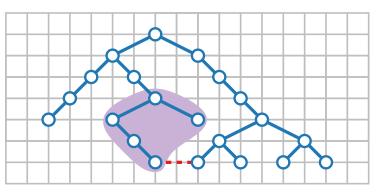
[Reingold & Tilford '81]

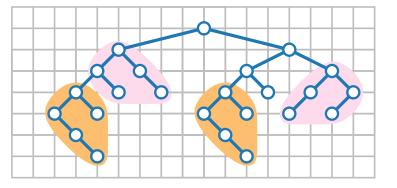
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

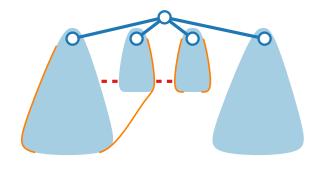
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection









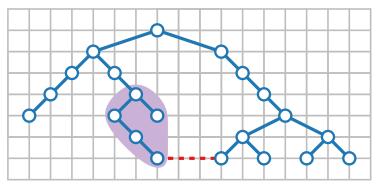
Theorem. rooted

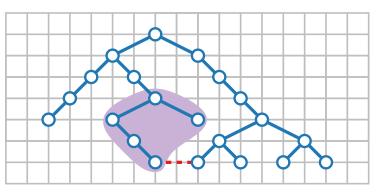
[Reingold & Tilford '81]

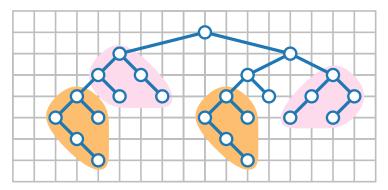
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

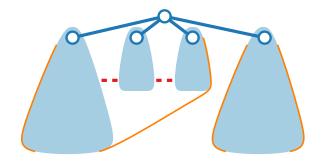
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection









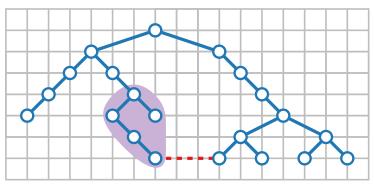
Theorem. rooted

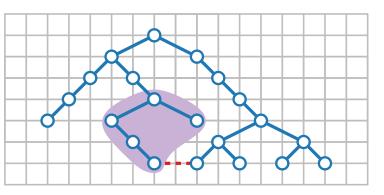
[Reingold & Tilford '81]

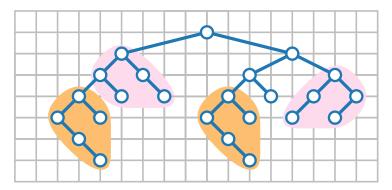
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

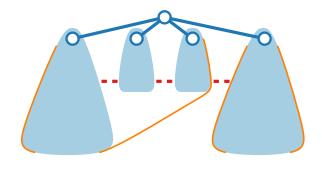
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection









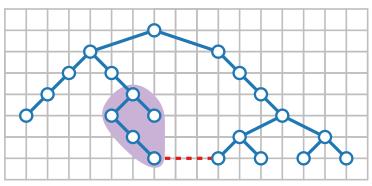
Theorem. rooted

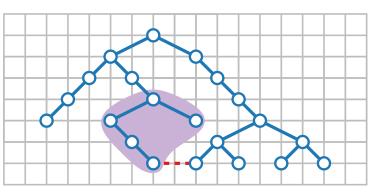
[Reingold & Tilford '81]

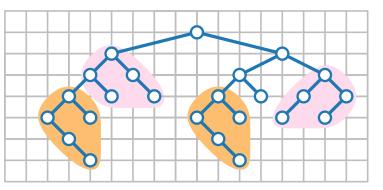
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

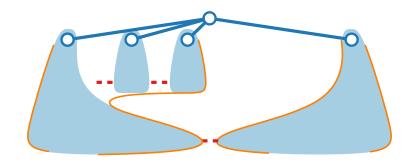
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection









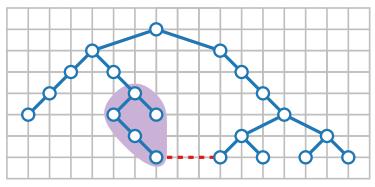
Theorem. rooted

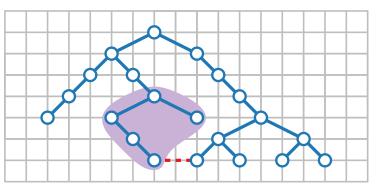
[Reingold & Tilford '81]

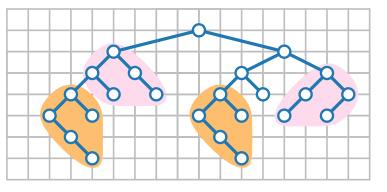
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

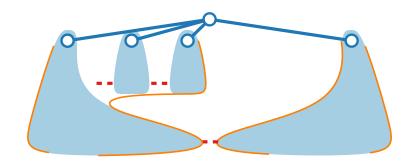
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children

- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection





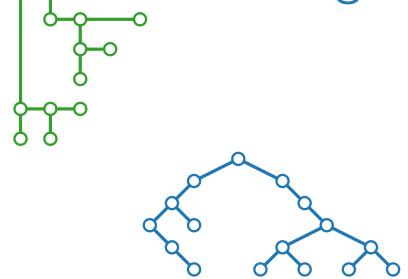




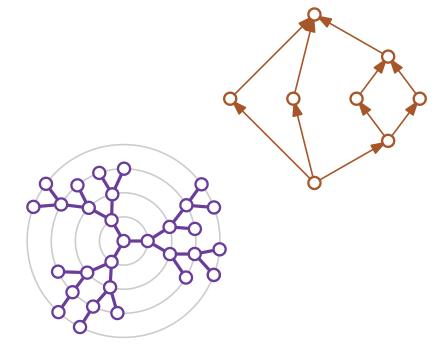
Visualization of Graphs

Lecture 1b:

Drawing Trees and Series-Parallel Graphs



Part II: HV-Drawings



Applications

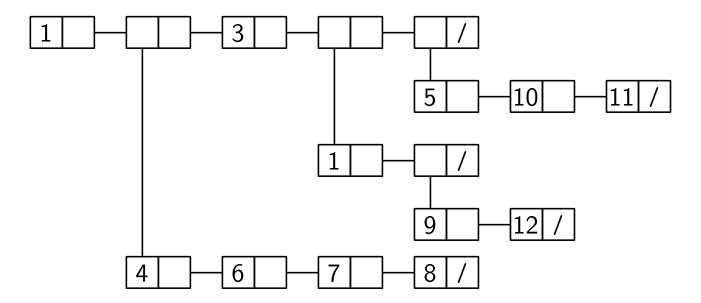
Cons cell diagram in LISP

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values

Applications

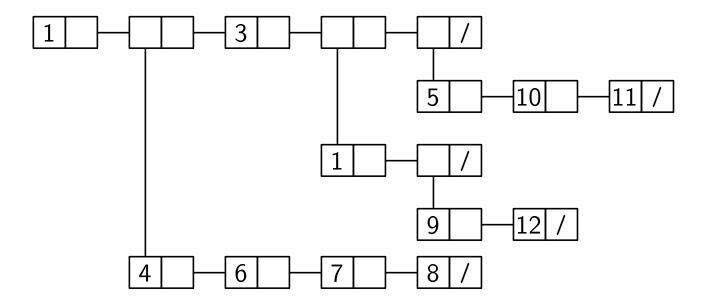
- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values

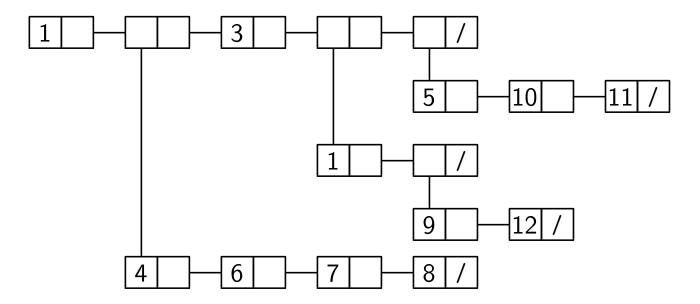


Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



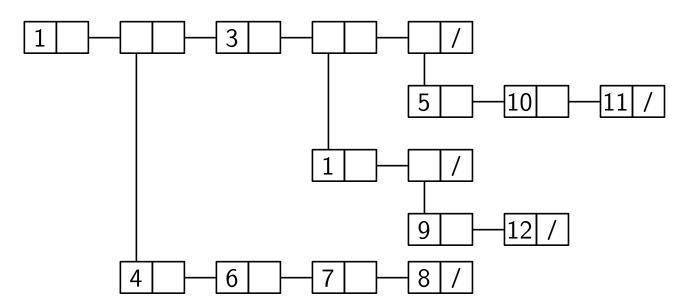
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

Children are vertically or horizontally aligned with their parent

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



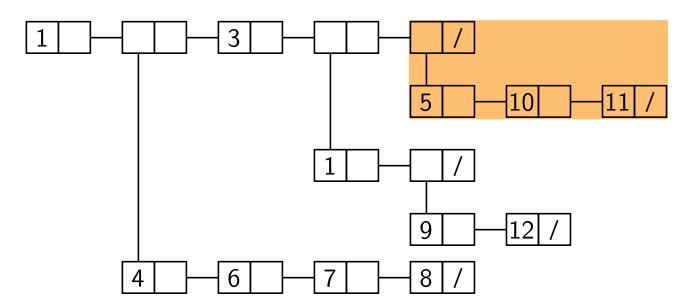
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



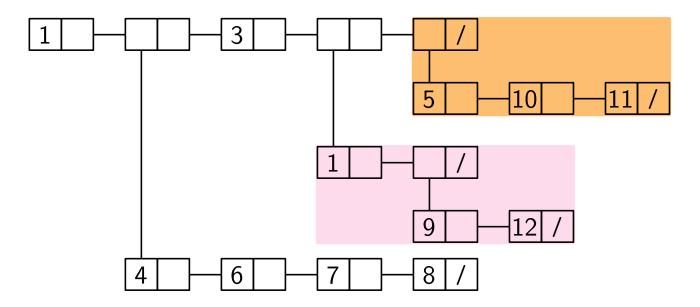
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



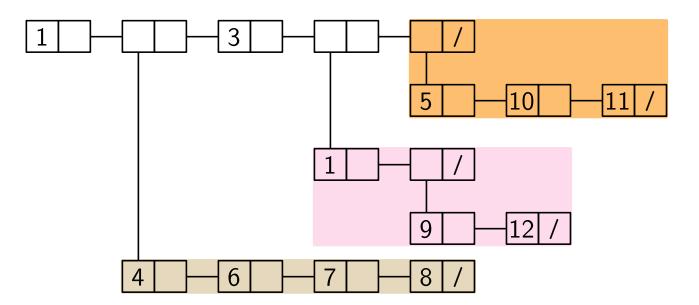
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



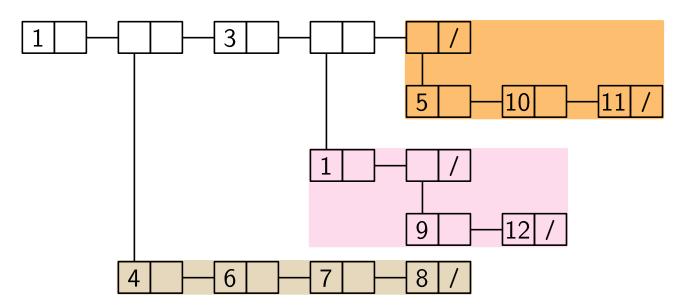
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



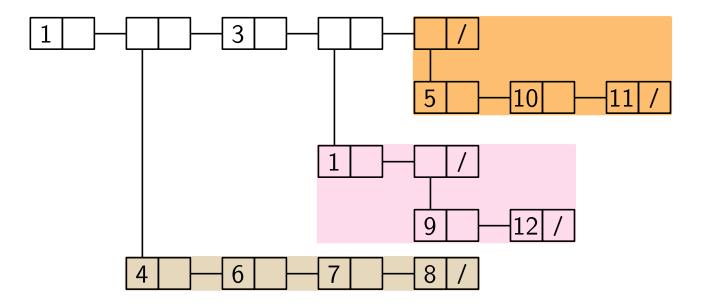
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint
- Edges are strictly down- or rightwards

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint
- Edges are strictly down- or rightwards

Drawing aesthetics

■ Height, width, area

Input: A binary tree T

Output: An HV-drawing of T

Input: A binary tree T

Output: An HV-drawing of T

Base case: 9

Input: A binary tree T

Output: An HV-drawing of T

Base case: **Q**

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Input: A binary tree T

Output: An HV-drawing of T

Base case: 9

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer:



Input: A binary tree T

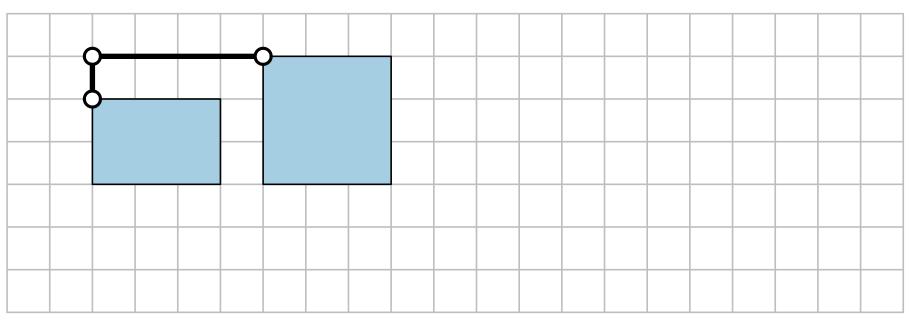
Output: An HV-drawing of T

Base case: Q

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer: horizontal combination



Input: A binary tree T

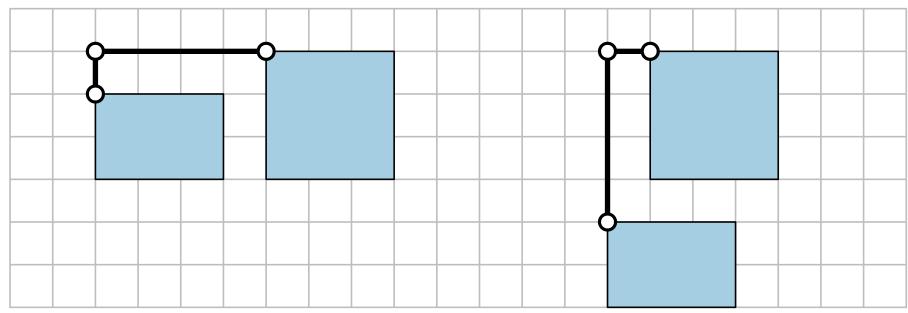
Output: An HV-drawing of T

Base case: Q

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer: horizontal combination vertical combination



Right-heavy approach

Always apply horizontal combination

- Always apply horizontal combination
- Place the larger subtree to the right

- Always apply horizontal combination
- Place the larger subtree to the right ← *This can change the embedding!*

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

0

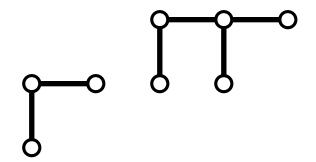
 C

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

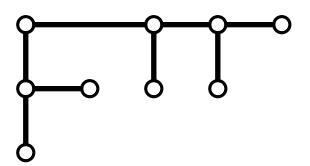
- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

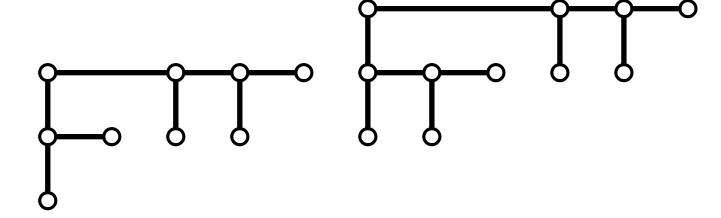


- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

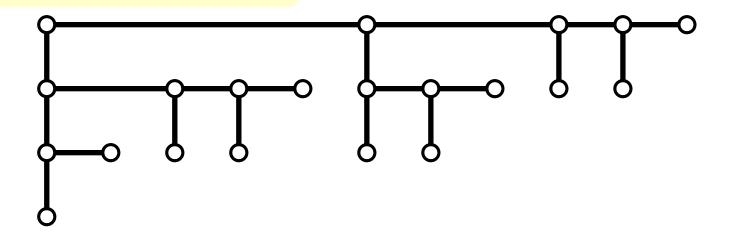


- Always apply horizontal combination
- Place the larger subtree to the right \leftarrow This can change the embedding! Size of subtree := number of vertices



- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

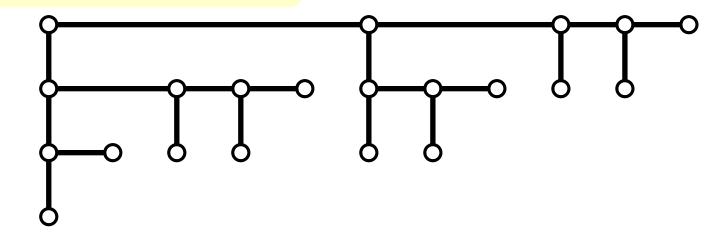
 Size of subtree := number of vertices



Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

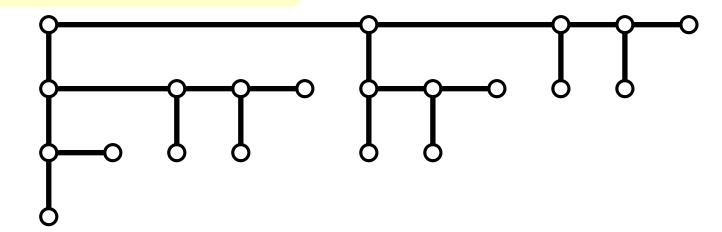


- width at most and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

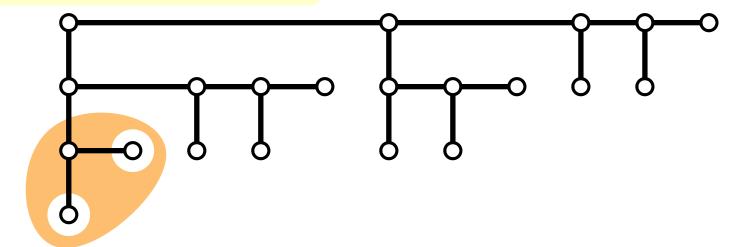


- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

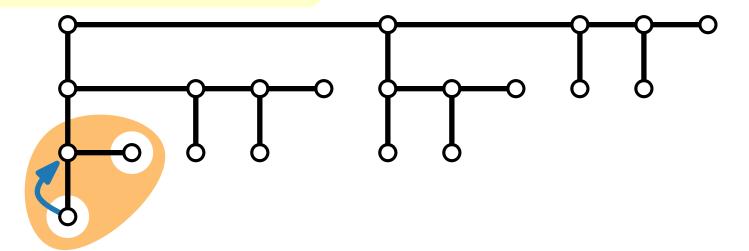


- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

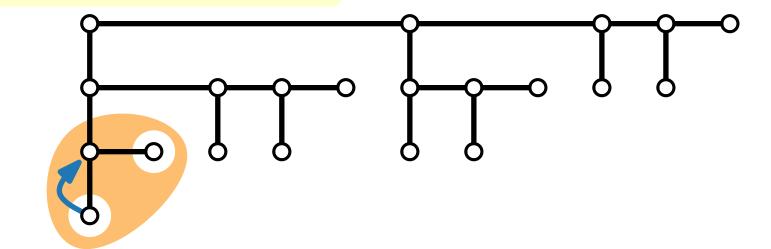


- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices



at least ·2

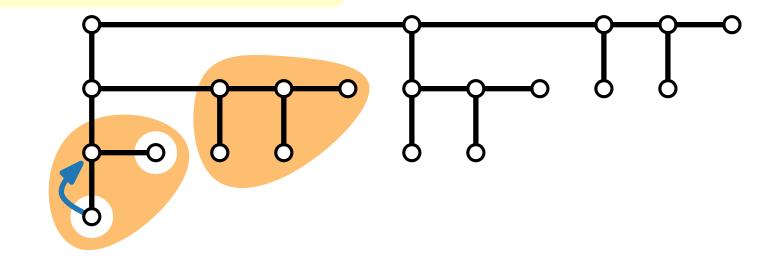
- lacksquare width at most n-1 and
- height at most

Right-heavy approach

at least ·2

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

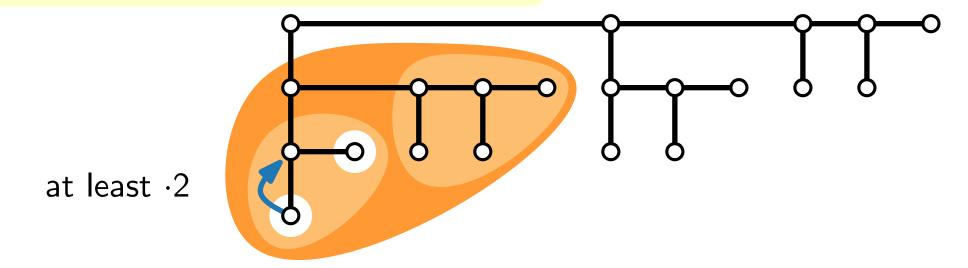


- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

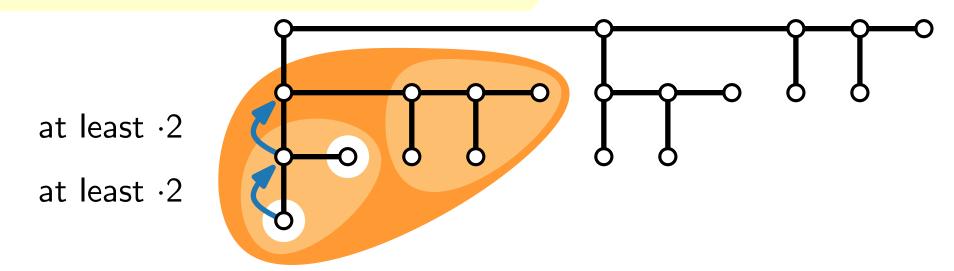


- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices



- lacksquare width at most n-1 and
- height at most

Right-heavy approach

Always apply horizontal combination

■ Place the larger subtree to the right ← This can change the embedding!

Size of subtree := number of vertices

at least ·2
at least ·2

- lacksquare width at most n-1 and
- height at most

Right-heavy approach

Always apply horizontal combination

■ Place the larger subtree to the right ← This can change the embedding!

Size of subtree := number of vertices

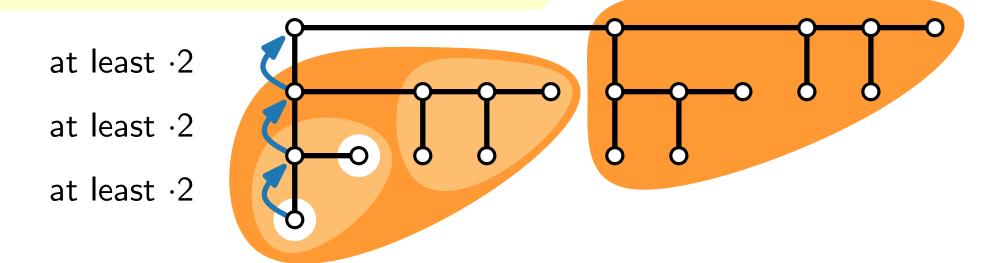
at least ·2
at least ·2
at least ·2

- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices



- lacksquare width at most n-1 and
- \blacksquare height at most $\log n$.

Right-heavy approach

Always apply horizontal combination

■ Place the larger subtree to the right ← This can change the embedding!

Size of subtree := number of vertices

at least ·2
at least ·2
at least ·2
How to implement this in linear time?

- lacksquare width at most n-1 and
- \blacksquare height at most $\log n$.

Theorem.

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- Width is at most n-1

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- Width is at most n-1
- \blacksquare Height is at most $\log n$

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Theorem. rooted

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree

Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree

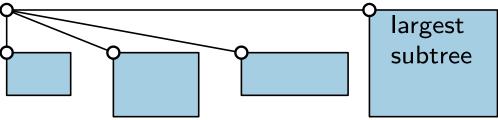
largest subtree

Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree

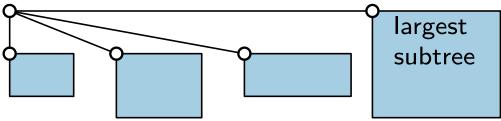


Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree

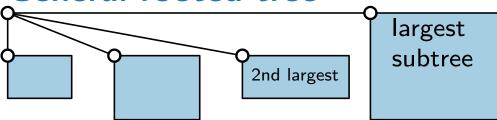


Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree



Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree largest subtree

Optimal area?

Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacksquare Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree | largest | subtree |

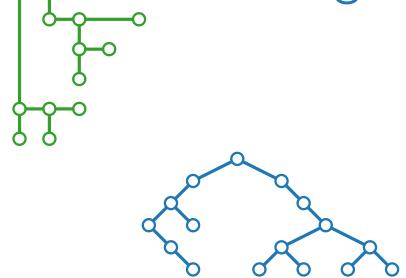
Optimal area?

Not with divide & conquer approach, but can be computed with Dynamic Programming.

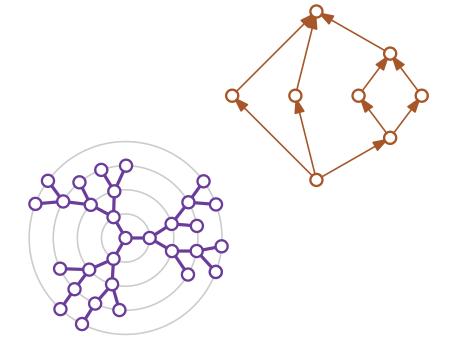
Visualization of Graphs

Lecture 1b:

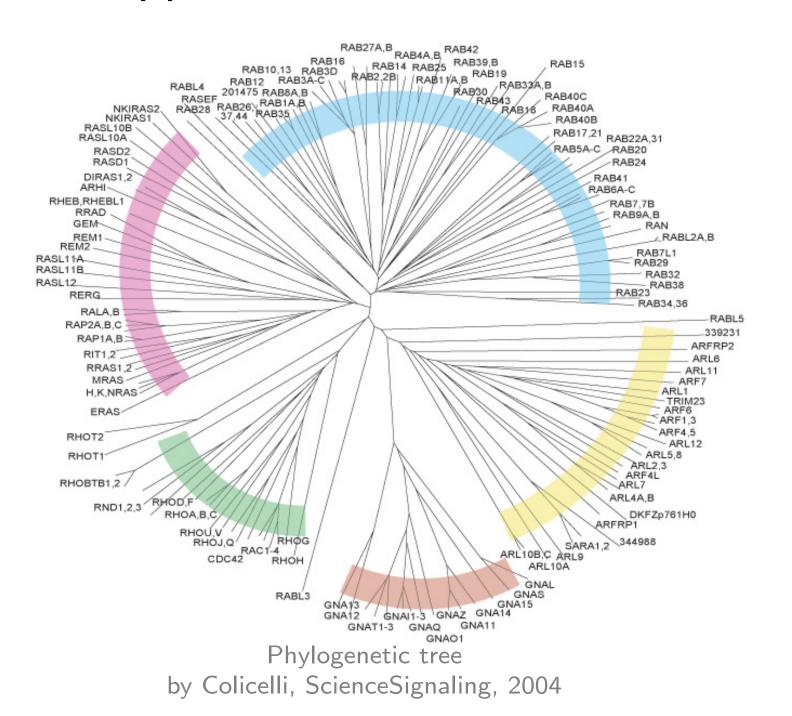
Drawing Trees and Series-Parallel Graphs



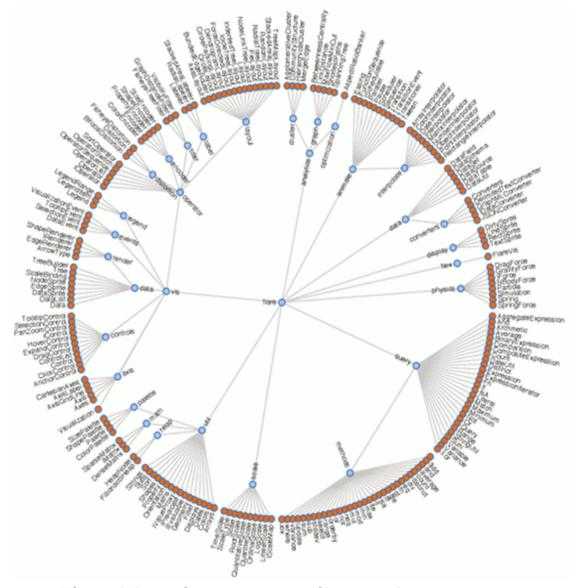
Part III: Radial Layouts



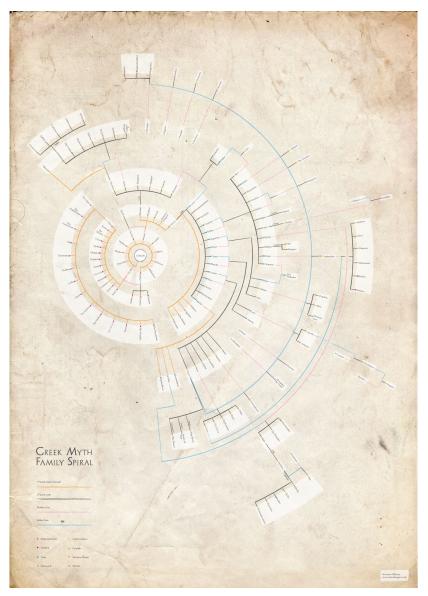
Radial Layouts – Applications



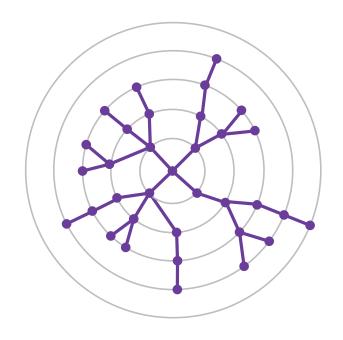
Radial Layouts – Applications



Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

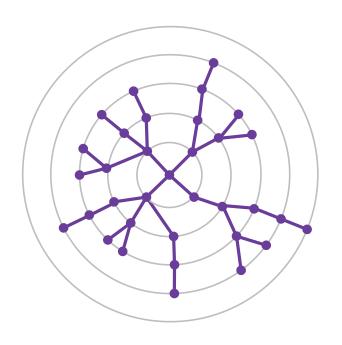


Greek Myth Family by Ribecca, 2011



Drawing conventions

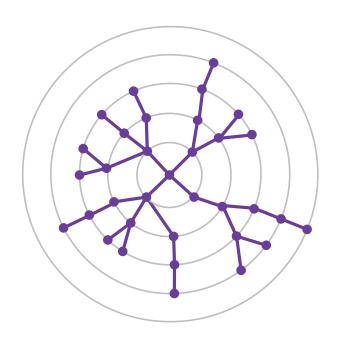
Drawing aesthetics



Drawing conventions

Vertices lie on circular layers according to their depth

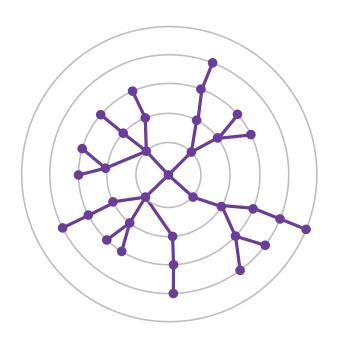
Drawing aesthetics



Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

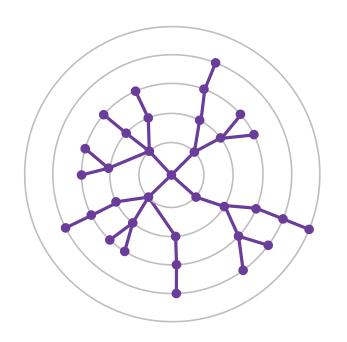


Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

Distribution of the vertices



Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

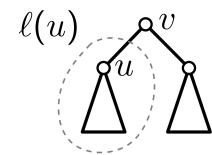
Drawing aesthetics

Distribution of the vertices

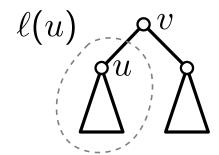
How can an algorithm optimize the distribution of the vertices?

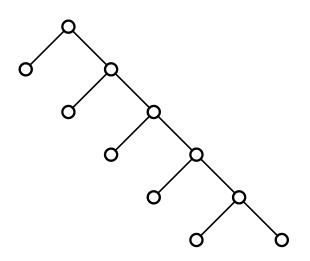
Idea

Idea

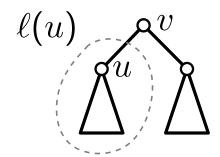


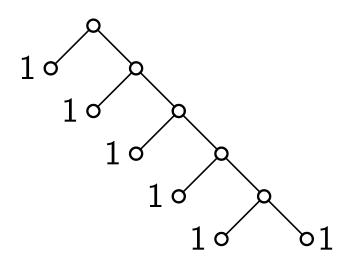
Idea



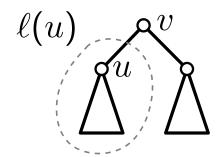


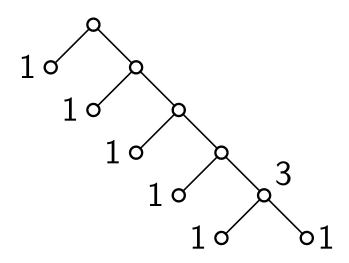
Idea



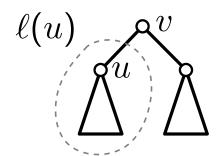


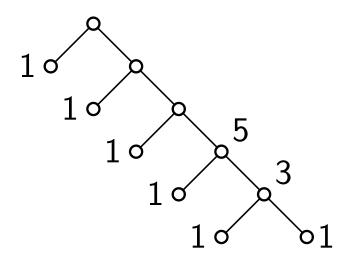
Idea



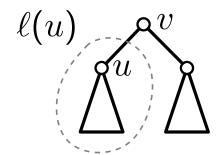


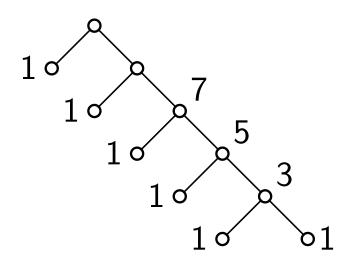
Idea



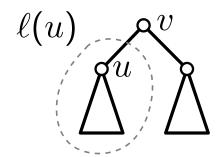


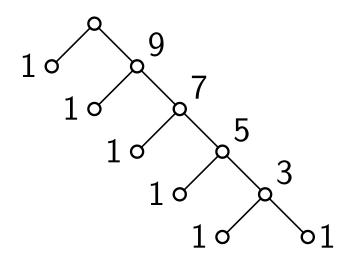
Idea



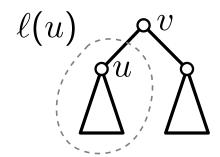


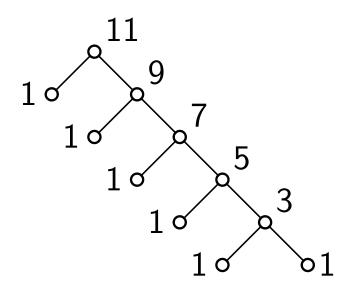
Idea





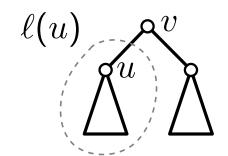
Idea

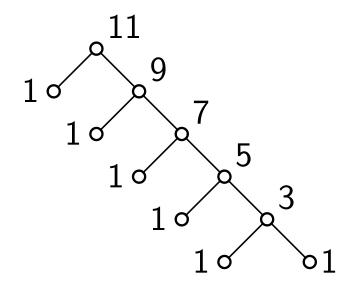




Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

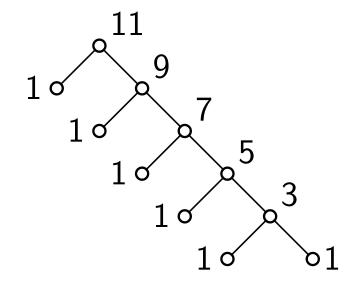


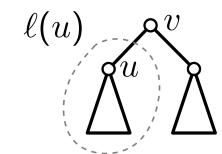


Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

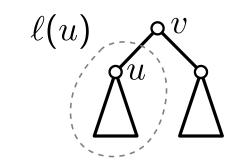


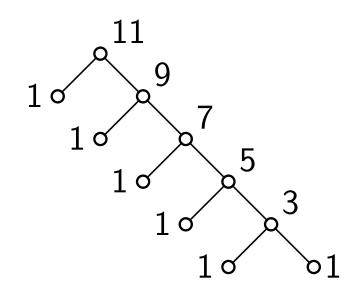


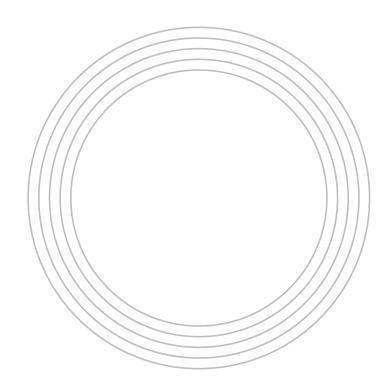
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$



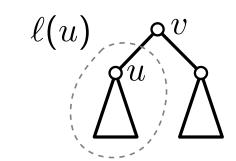


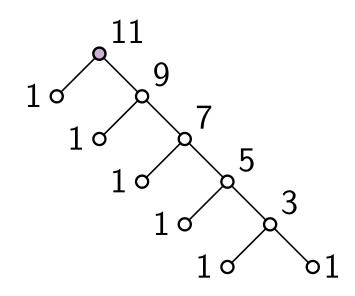


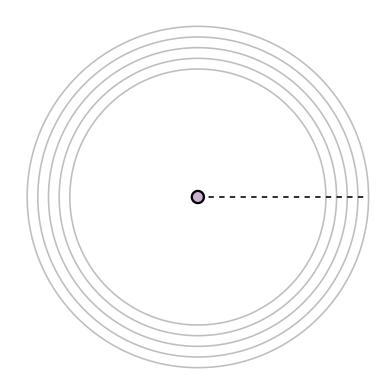
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$



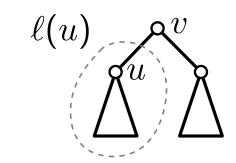


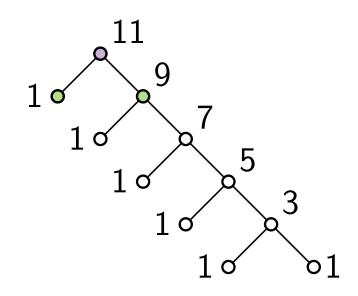


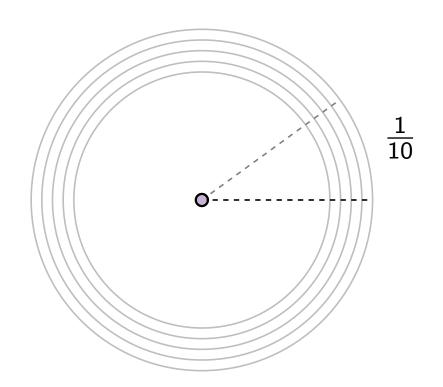
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$



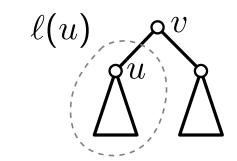


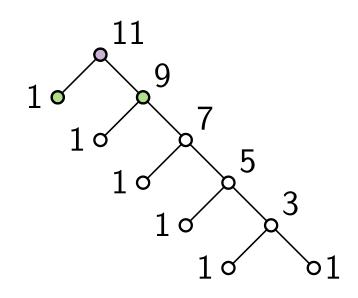


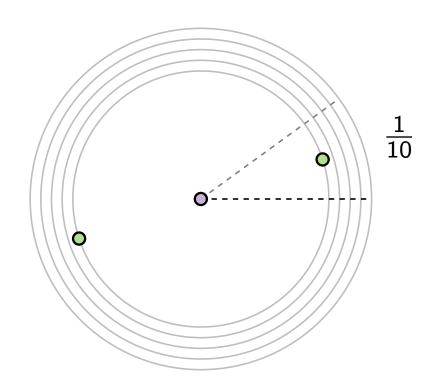
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$



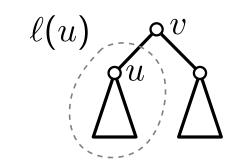


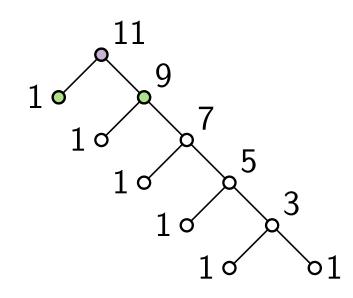


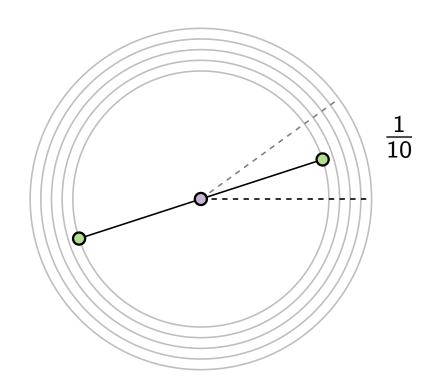
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$



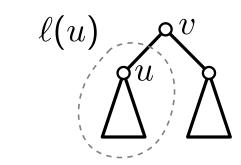


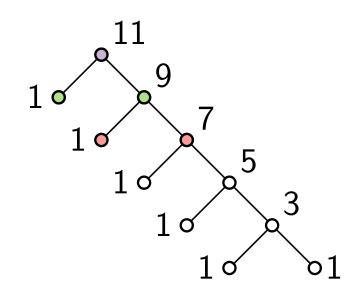


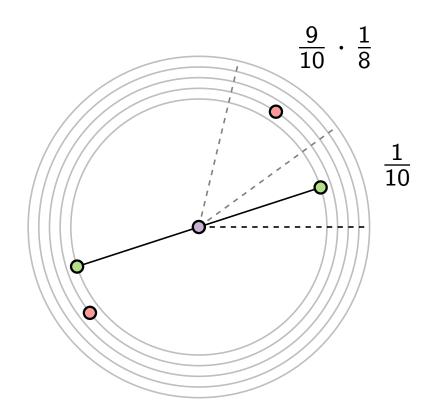
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$



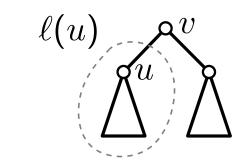


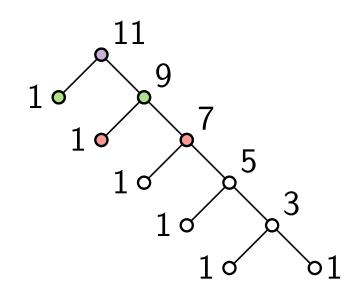


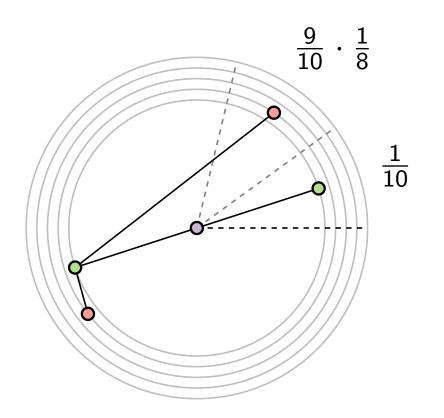
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$



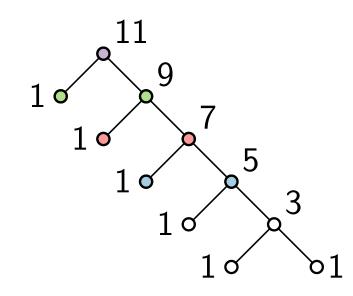


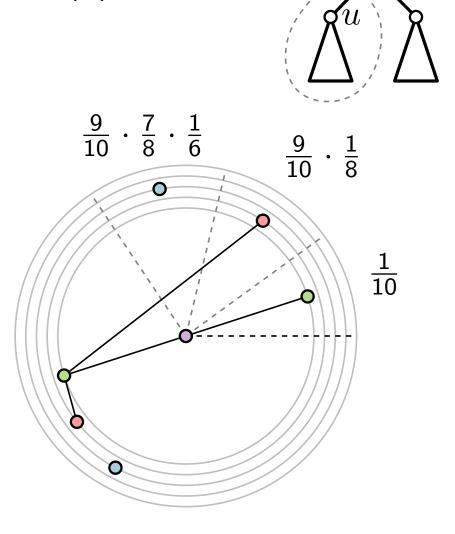


Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$

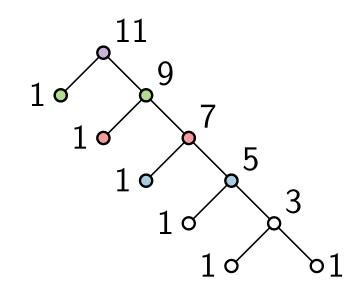


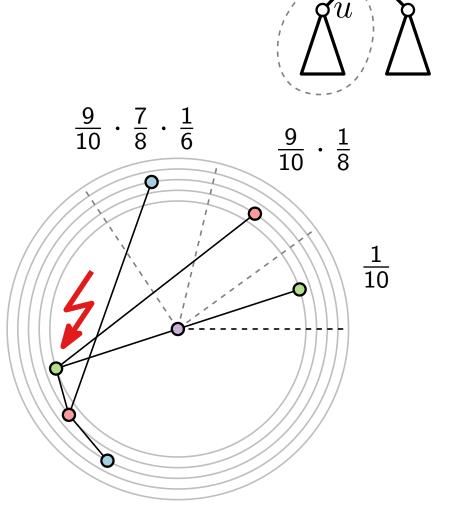


Idea

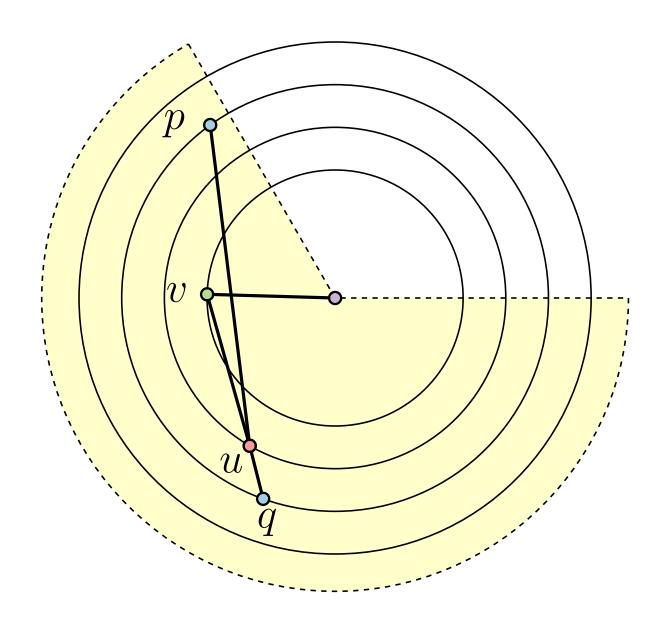
Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$

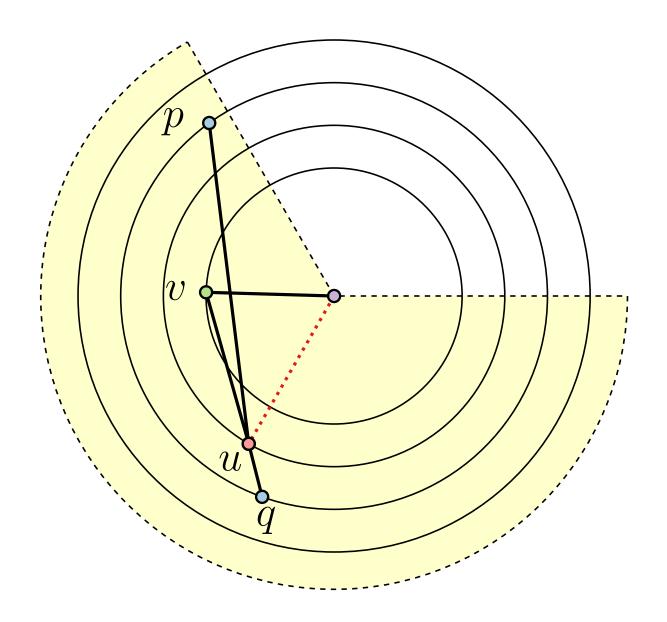


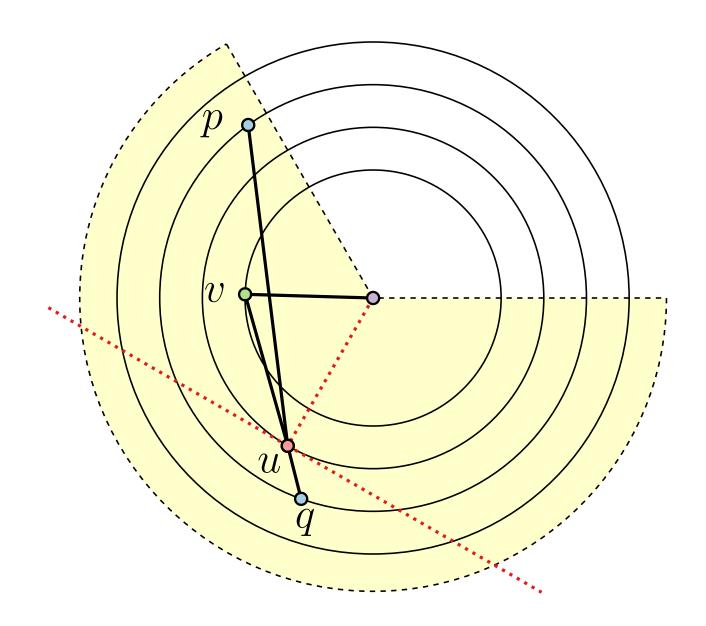


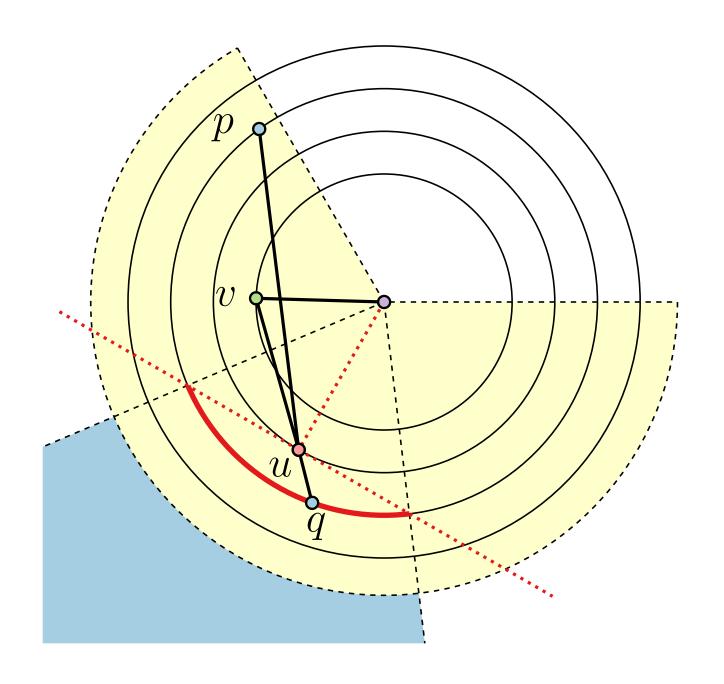
Radial Layouts – How To Avoid Crossings

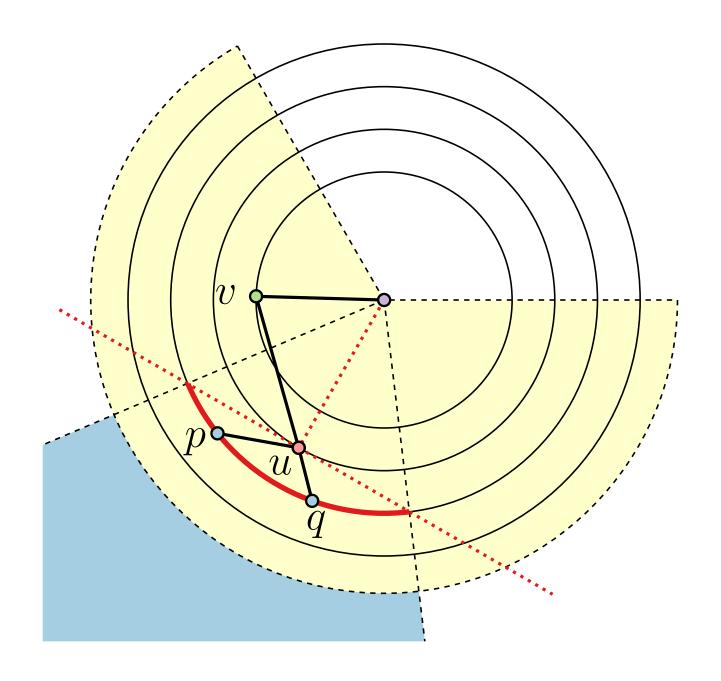


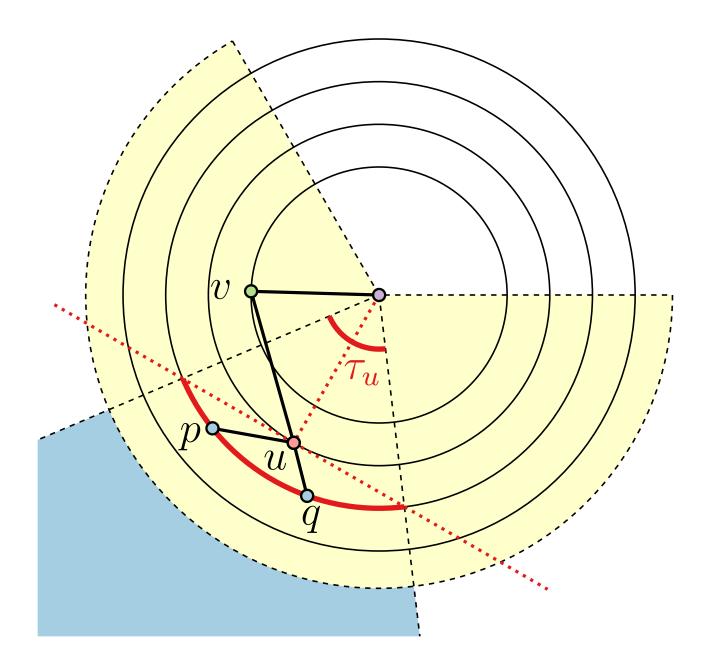
Radial Layouts – How To Avoid Crossings



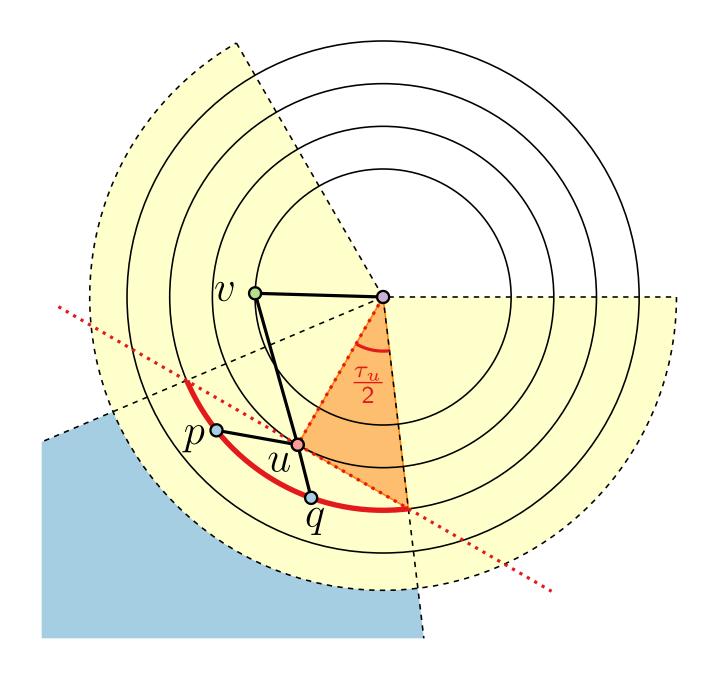








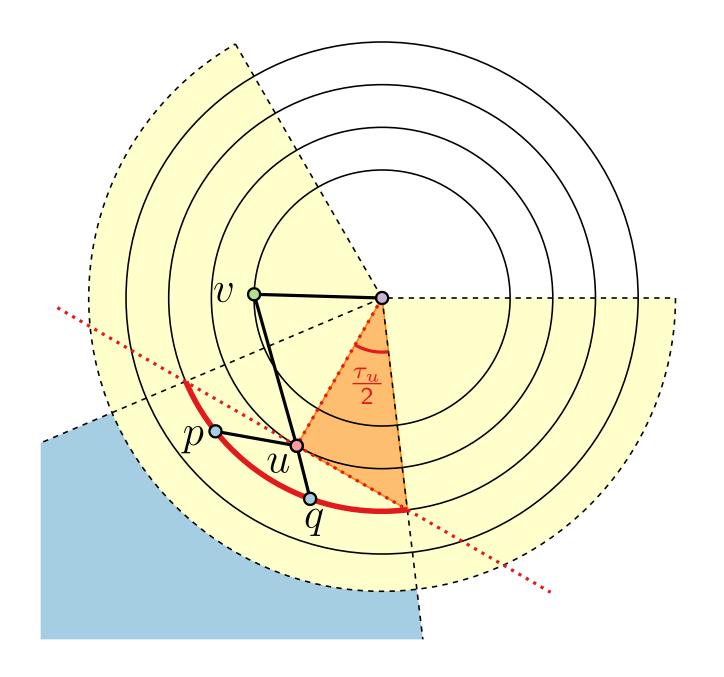
 τ_u - angle of the wedge corresponding to vertex u



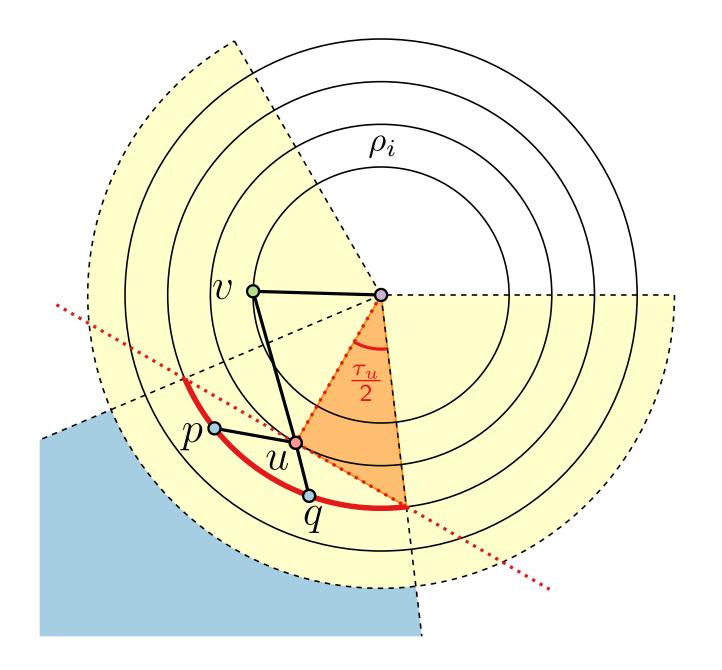
 τ_u - angle of the wedge corresponding to vertex u



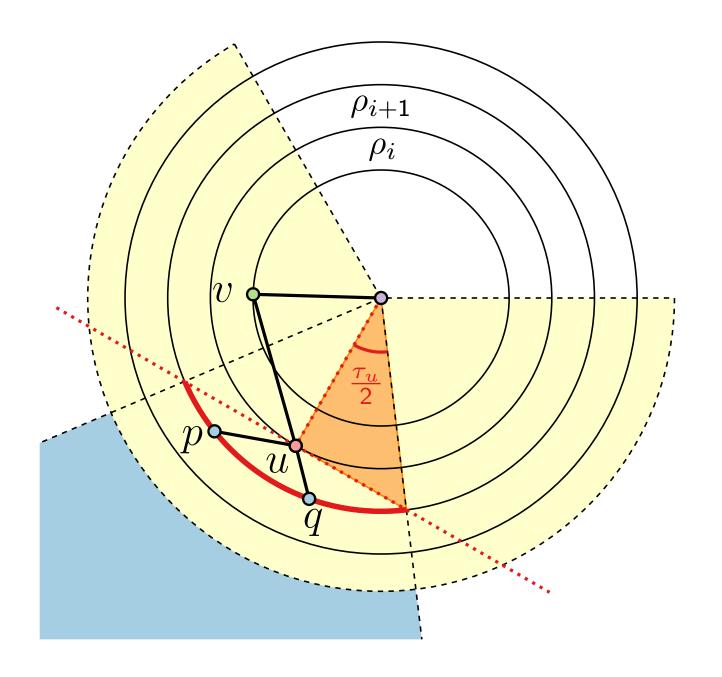
- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u



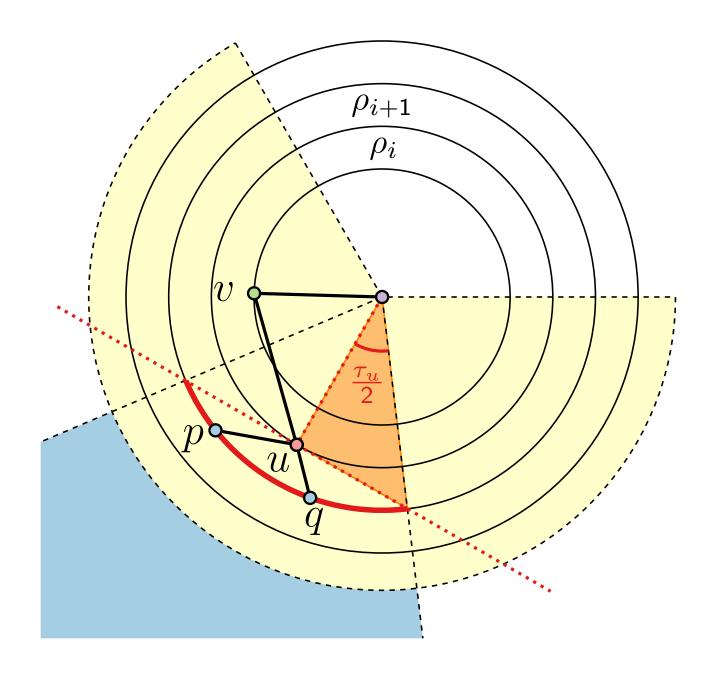
- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ho_i radius of layer i



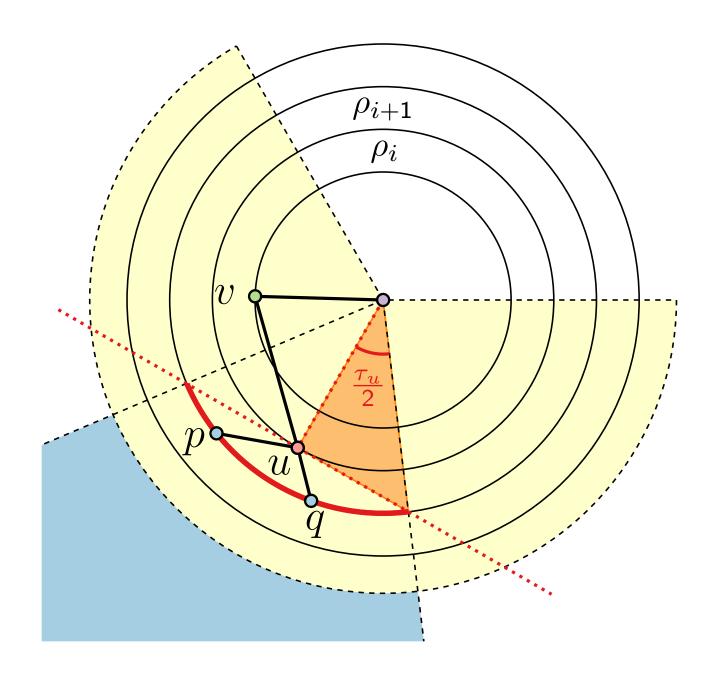
- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ho_i radius of layer i



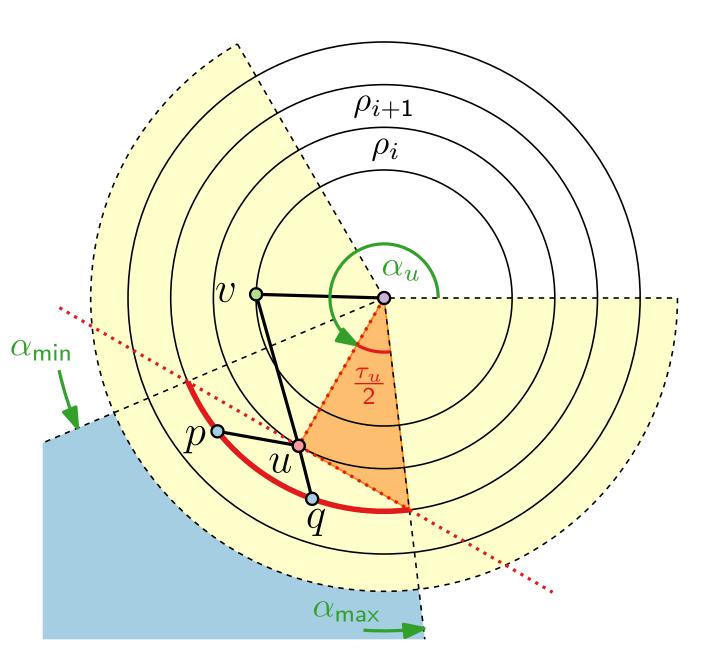
- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ho_i radius of layer i



- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ho_i radius of layer i
- $\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$



- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- $ightharpoonup
 ho_i$ radius of layer i
- lacksquare $\cos rac{ au_u}{2} = rac{
 ho_i}{
 ho_{i+1}}$



- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- $ightharpoonup
 ho_i$ radius of layer i

$$lacksquare$$
 $\cos rac{ au_u}{2} = rac{
ho_i}{
ho_{i+1}}$

- Alternative:

$$\alpha_{\min} = \alpha_u - \arccos \frac{\rho_i}{\rho_{i+1}}$$

$$\alpha_{\max} = \alpha_u + \arccos \frac{\rho_i}{\rho_{i+1}}$$

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
    // vertex positions in polar coordinates
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
       postorder(w)
      \ell(v) \leftarrow \ell(v) + \ell(w)
```

```
preorder(vertex v, t, lpha_{\sf min}, lpha_{\sf max})
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex positions in polar coordinates
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
      postorder(w)
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

preorder(vertex v, t, α_{\min} , α_{\max})

$$d_v \leftarrow \rho_t$$

$$\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$$

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)
                                                                                     preorder(vertex v, t, \alpha_{\sf min}, \alpha_{\sf max})
                                                                                         d_v \leftarrow \rho_t
\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2
begin
    postorder(r)
    preorder(r, 0, 0, 2\pi)
    return (d_v, \alpha_v)_{v \in V(T)}
    // vertex positions in polar coordinates
postorder(vertex v)
    \ell(v) \leftarrow 1
    foreach child w of v do
       postorder(w)
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex positions in polar coordinates
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \rho_t
\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, lpha_{\sf min}, lpha_{\sf max})
                                                       //output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
     if t > 0 then
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                                      //output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
       if t > 0 then
             \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
           \alpha_{\mathsf{max}} \leftarrow \mathsf{min}\{\alpha_{\mathsf{max}}, \alpha_v + \mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                                //output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
            \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
          \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                             //output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\mathsf{min}}
      foreach child w of v do
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                               //output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
          \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
 \begin{array}{|c|c|} \mathsf{postorder}(\mathsf{vertex}\ v) \\ \hline & \ell(v) \leftarrow 1 \\ & \mathbf{foreach}\ \mathsf{child}\ w\ \mathsf{of}\ v\ \mathbf{do} \\ \hline & postorder(w) \\ & \ell(v) \leftarrow \ell(v) + \ell(w) \end{array}
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                           //output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
          preorder(w, t + 1, left, right)
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                         //output
    \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
     if t > 0 then
          \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
     foreach child w of v do
          right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})
          preorder(w, t + 1, left, right)
           left \leftarrow right
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
\ell(v) \leftarrow 1 \ell(v) \leftarrow 1 foreach child w of v do \ell(v) \leftarrow \ell(v) \leftarrow \ell(v)
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                         //output
    \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
     if t > 0 then
          \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
     foreach child w of v do
          right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})
          preorder(w, t + 1, left, right)
           left \leftarrow right
```

Runtime?

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
\ell(v) \leftarrow 1
\ell(v) \leftarrow 1
\ell(v) \leftarrow 1
\ell(v) \leftarrow 0
\ell(v) \leftarrow 0
\ell(v) \leftarrow \ell(v) \leftarrow \ell(v)
```

Runtime? O(n)

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                      //output
    \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
     foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
          preorder(w, t + 1, left, right)
           left \leftarrow right
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                            //output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
          \alpha_{\mathsf{max}} \leftarrow \mathsf{min}\{\alpha_{\mathsf{max}}, \alpha_v + \mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
          preorder(w, t + 1, left, right)
            left \leftarrow right
```

Runtime? $\mathcal{O}(n)$

Correctness?

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
\ell(v) \leftarrow 1
\ell(v) \leftarrow 1
\ell(v) \leftarrow 1
\ell(v) \leftarrow 0
\ell(v) \leftarrow 0
\ell(v) \leftarrow \ell(v) \leftarrow \ell(v)
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
                                                         //output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\mathsf{max}} \leftarrow \mathsf{min}\{\alpha_{\mathsf{max}}, \alpha_v + \mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
          preorder(w, t + 1, left, right)
            left \leftarrow right
```

Runtime? $\mathcal{O}(n)$ Correctness?

Theorem.

Let T be a tree with n vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of T s.t.:

Theorem.

Let T be a tree with n vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of T s.t.:

Γ is radial drawing

Theorem.

Let T be a tree with n vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of T s.t.:

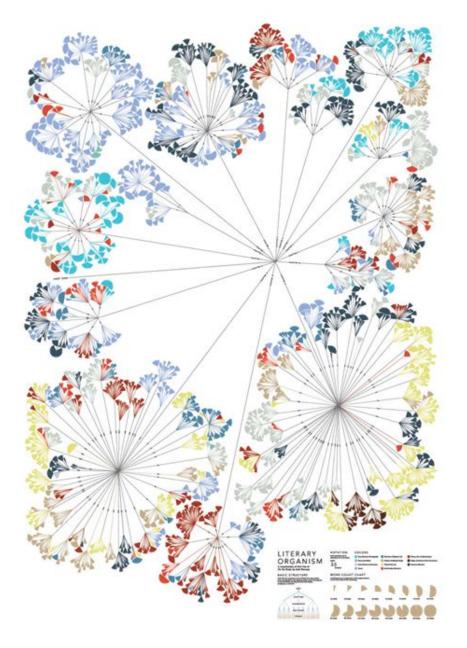
- Γ is radial drawing
- Vertices lie on circle according to their depth

Theorem.

Let T be a tree with n vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of T s.t.:

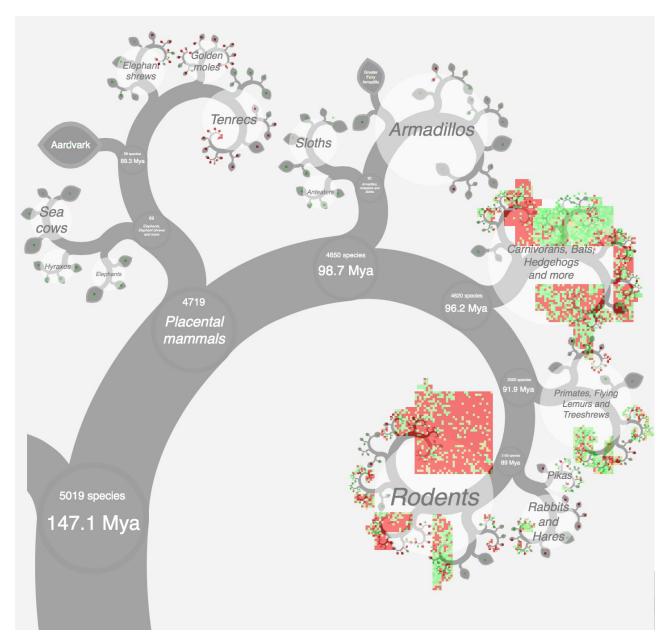
- Γ is radial drawing
- Vertices lie on circle according to their depth
- Area quadratic in max-degree(T) \times height(T) (see [GD Ch. 3.1.3] if interested)

Other tree visualisation styles



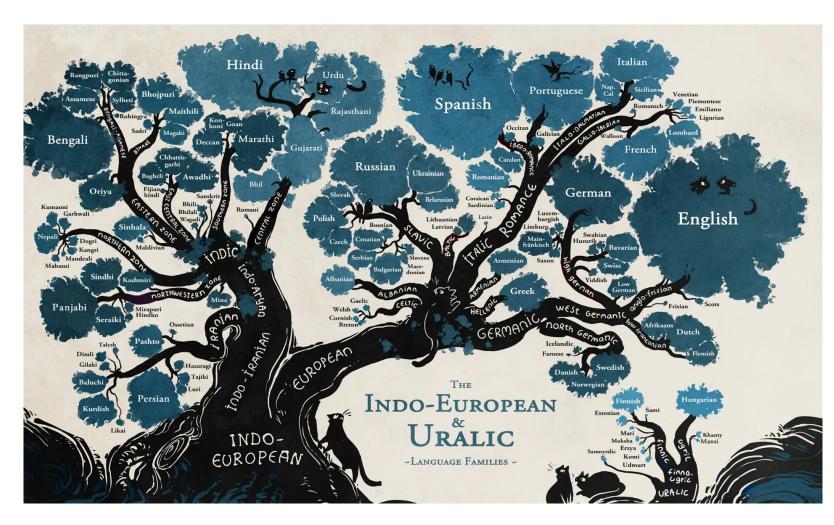
Writing Without Words:
The project explores methods to visualises the differences in writing styles of different authors.

Similar to ballon layout

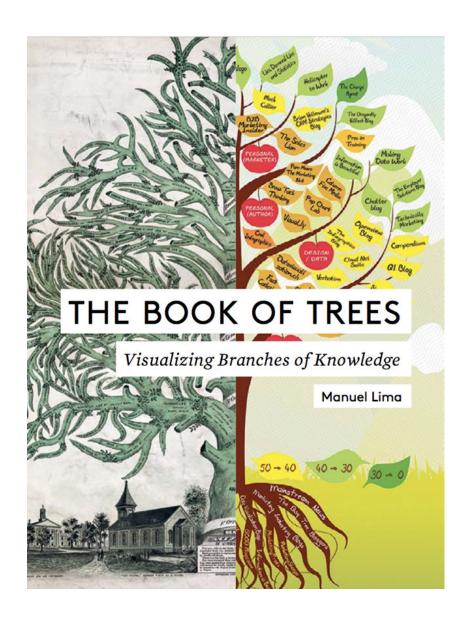


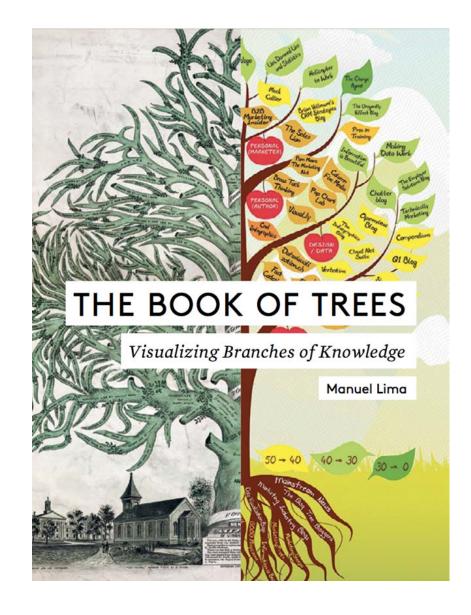
A phylogenetically organised display of data for all placental mammal species.

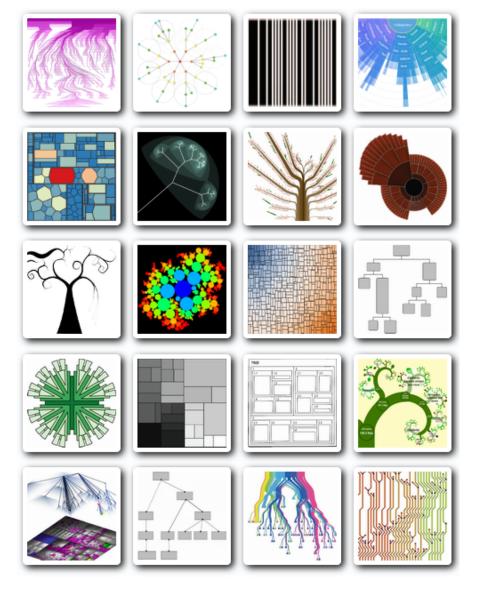
Fractal layout



A language family tree – in pictures





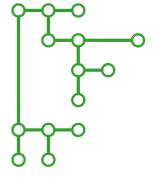


treevis.net

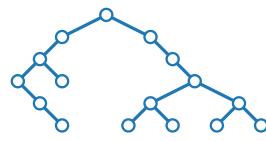
Visualization of Graphs

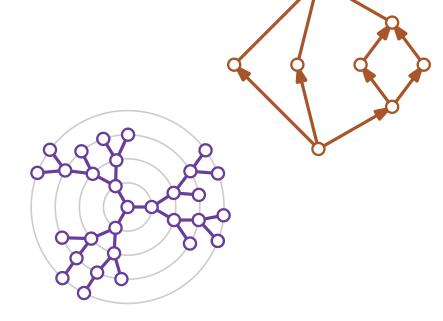
Lecture 1b:

Drawing Trees and Series-Parallel Graphs



Part IV: Series-Parallel Graphs

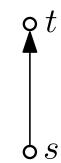


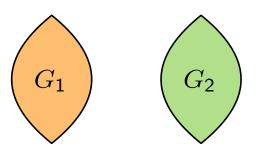


A graph G is series-parallel, if

 \blacksquare it contains a single (directed) edge (s, t), or

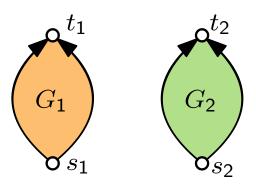
- \blacksquare it contains a single (directed) edge (s, t), or
- \blacksquare it consists of two series-parallel graphs G_1 , G_2



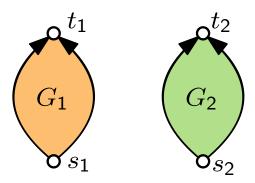


- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2





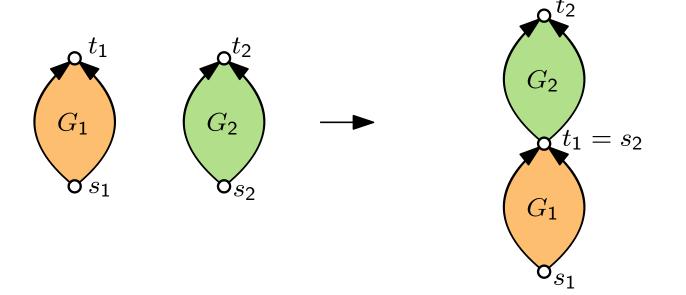
- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:



A graph G is series-parallel, if

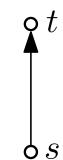
- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

Series composition

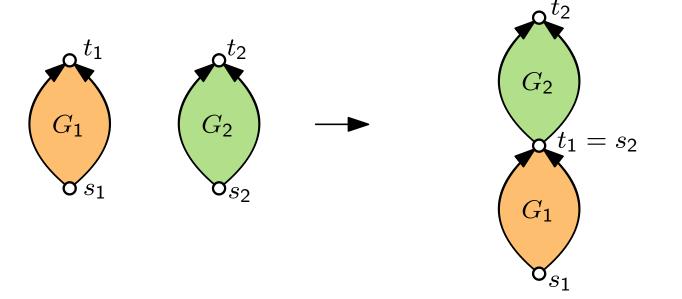


A graph G is series-parallel, if

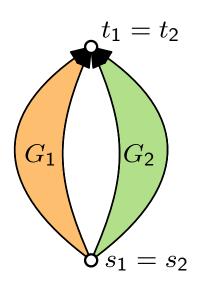
- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:



Series composition



Parallel composition

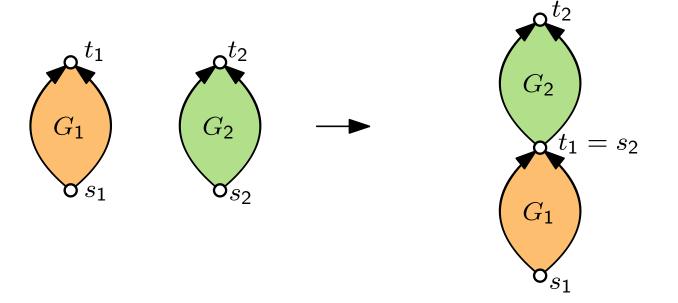


A graph G is series-parallel, if

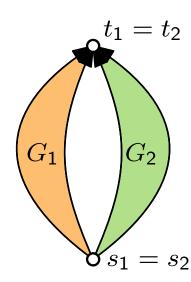
- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

Convince yourself that series-parallel graphs are planar!

Series composition



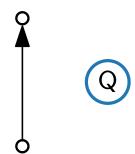
Parallel composition



A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q:

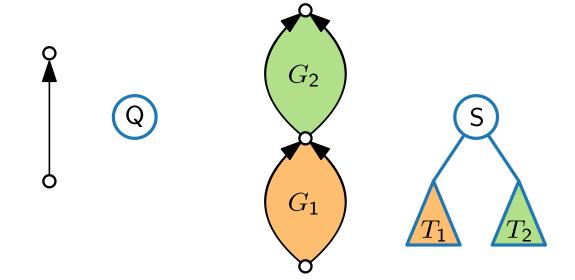
A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q:

■ A Q-node represents a single edge



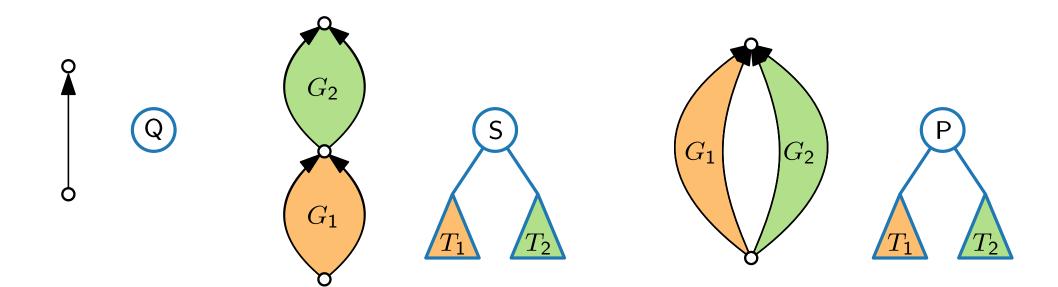
A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q:

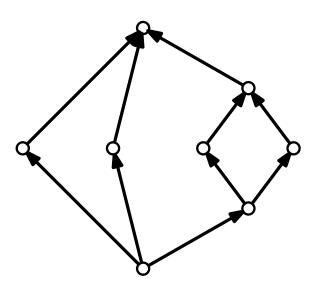
- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2

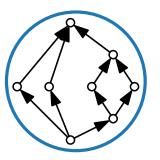


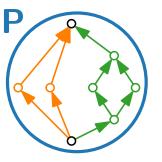
A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q:

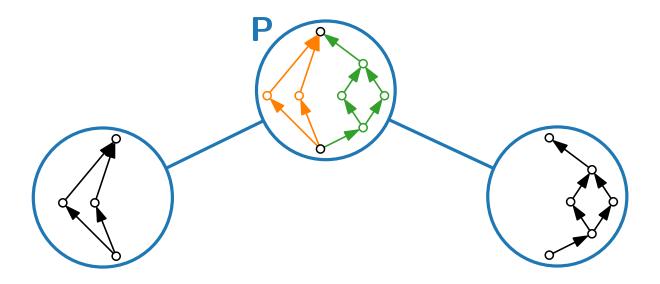
- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2
- A P-node represents a parallel composition; its children T_1 and T_2 represent G_1 and G_2

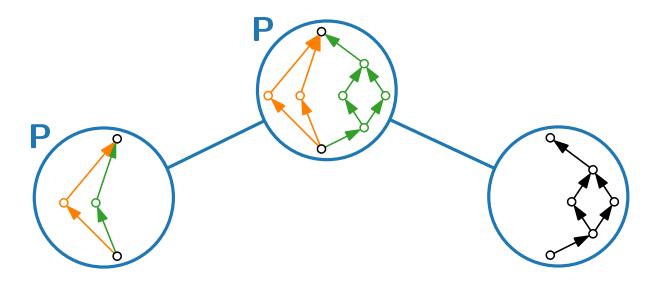


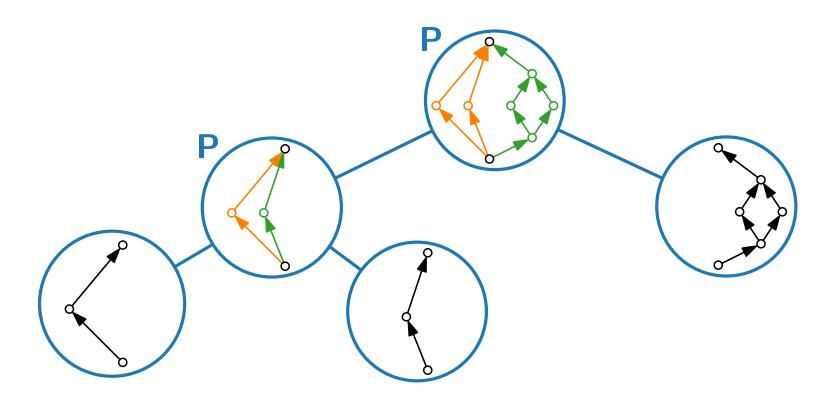


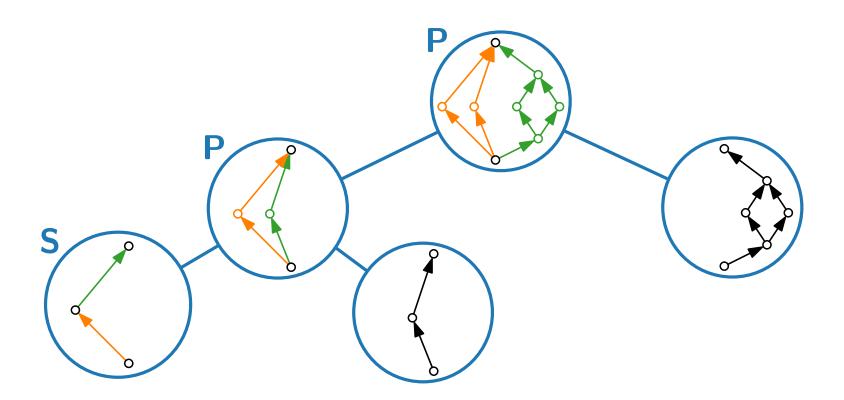


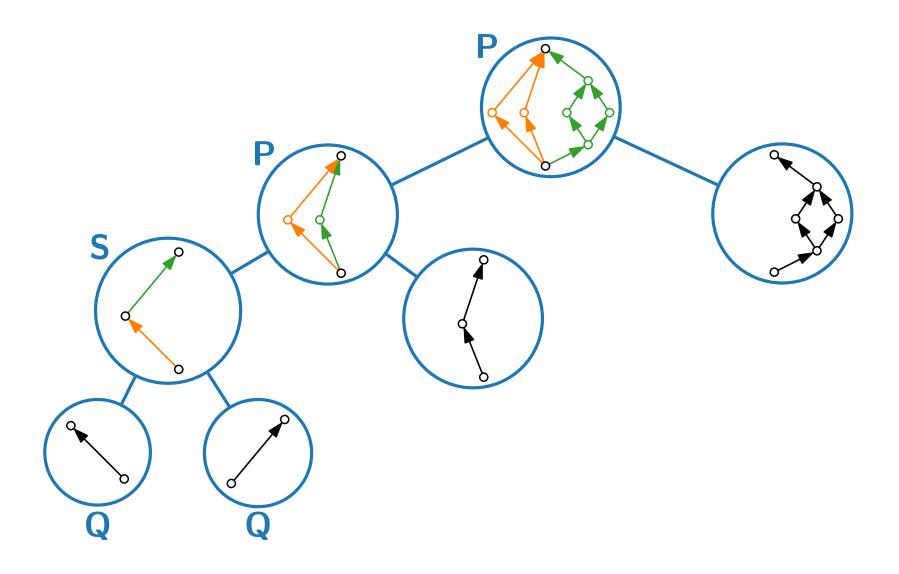


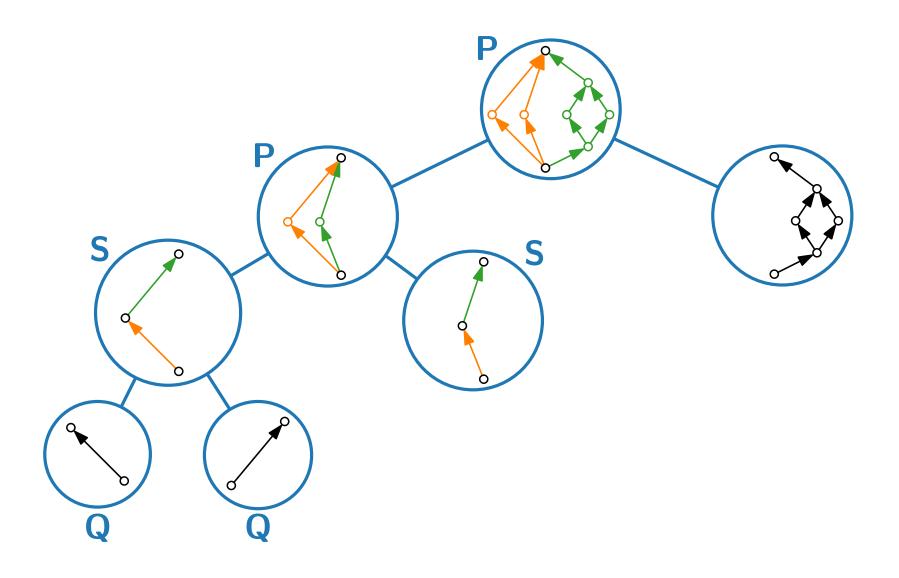


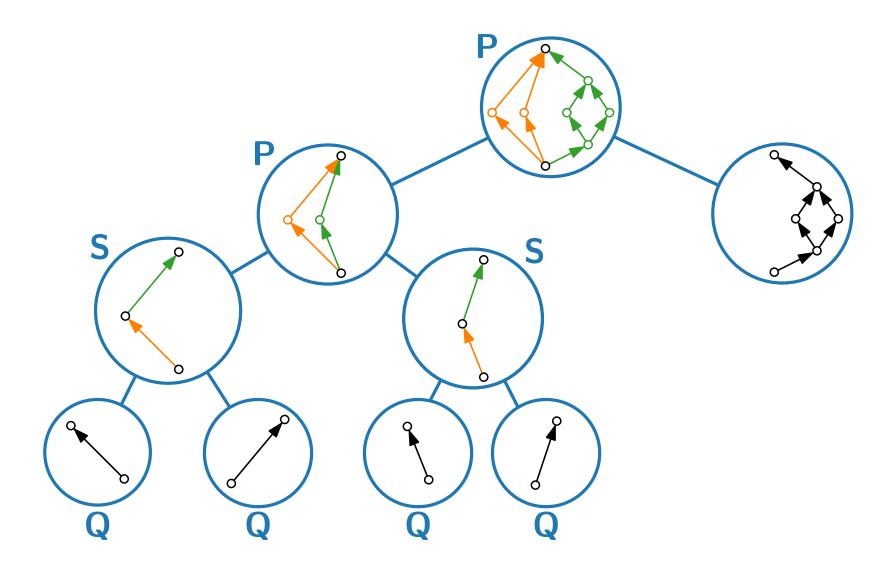


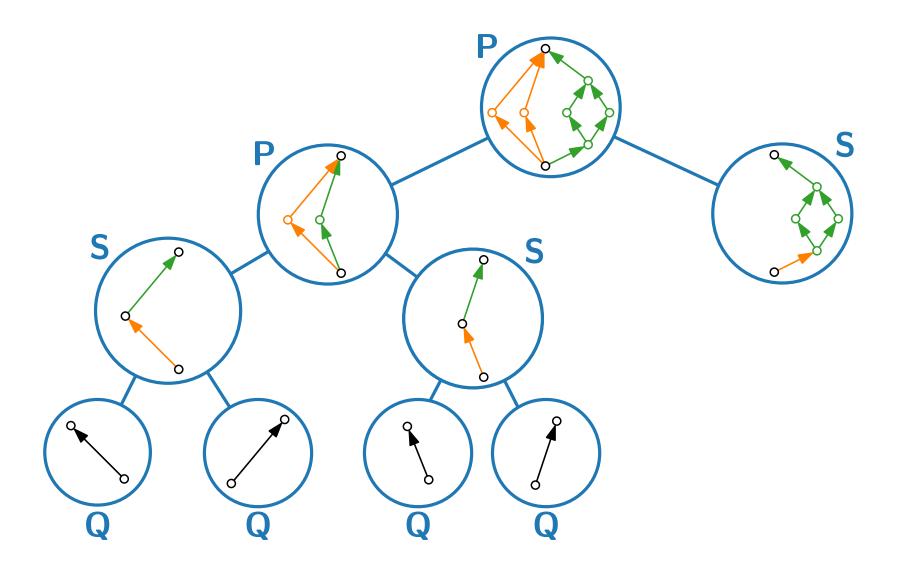


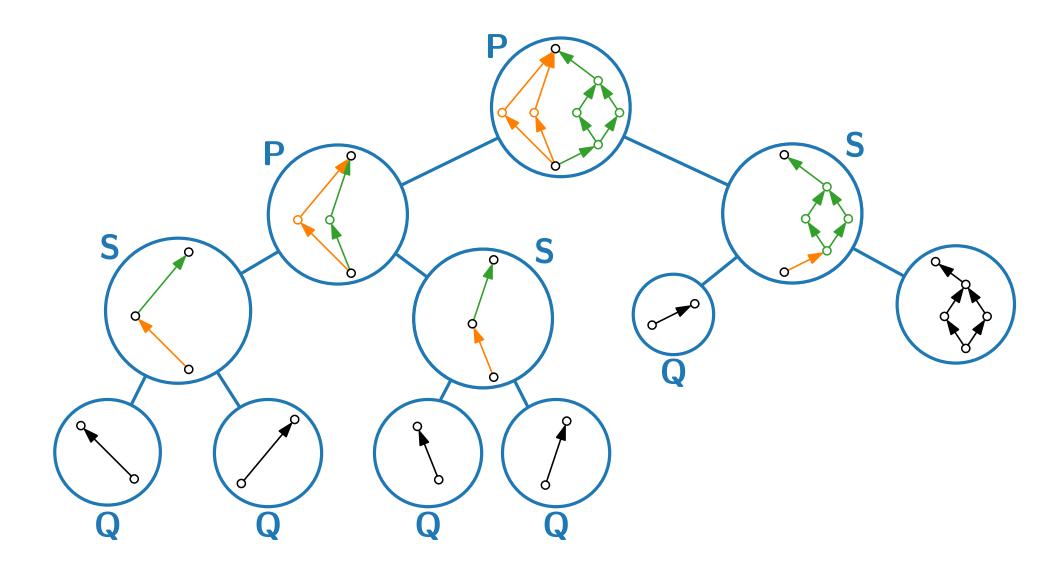


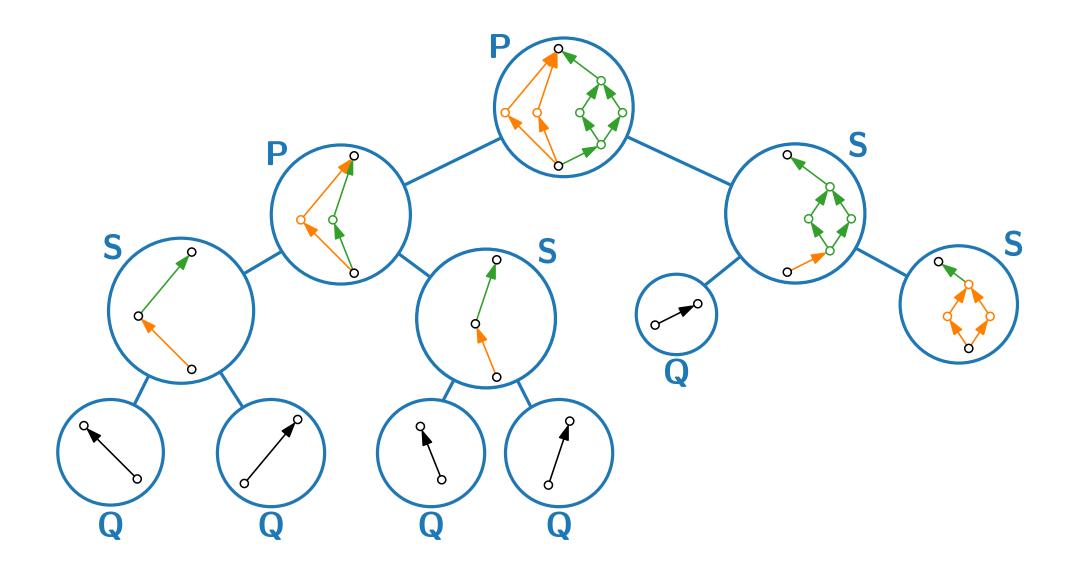


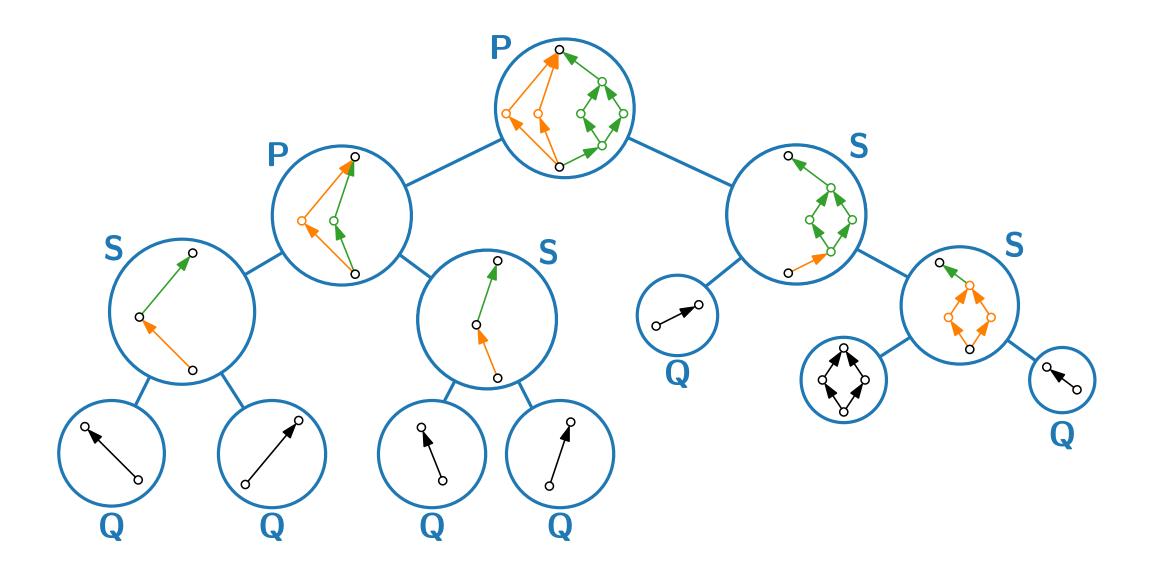


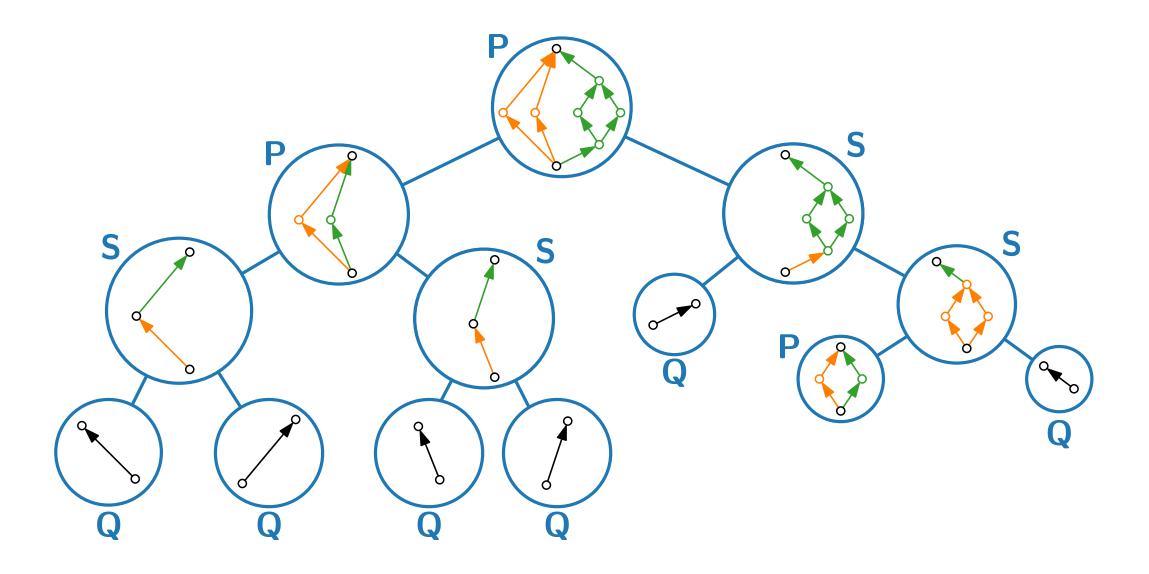


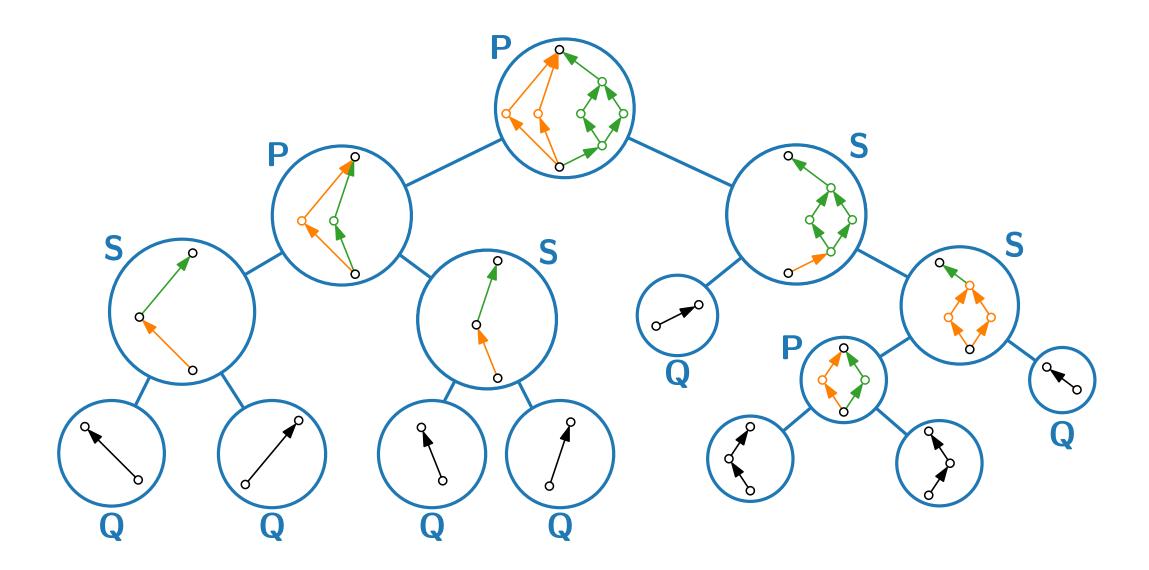


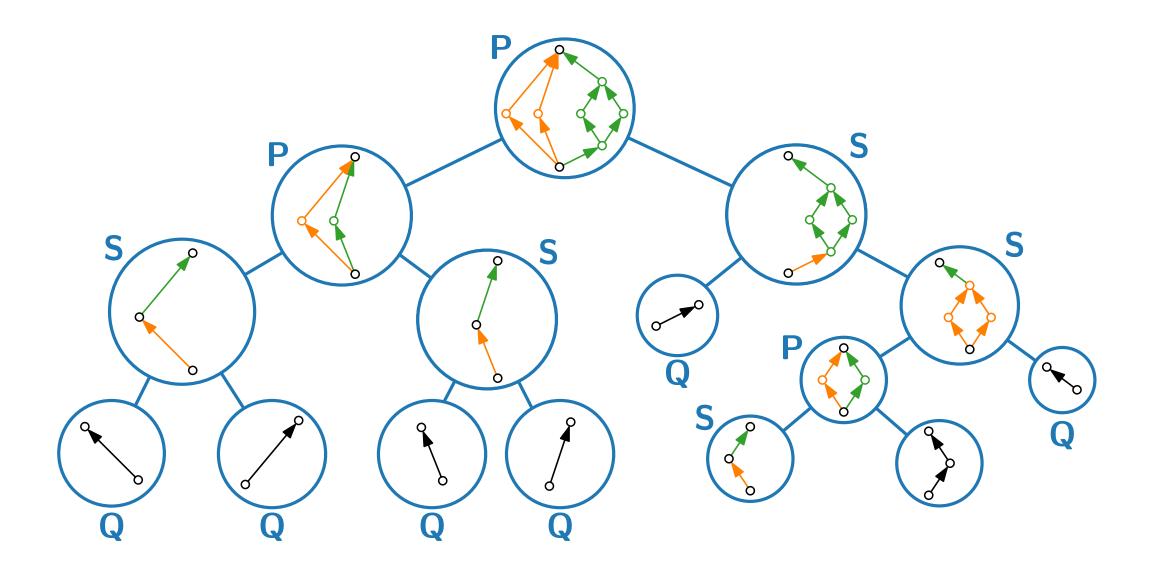


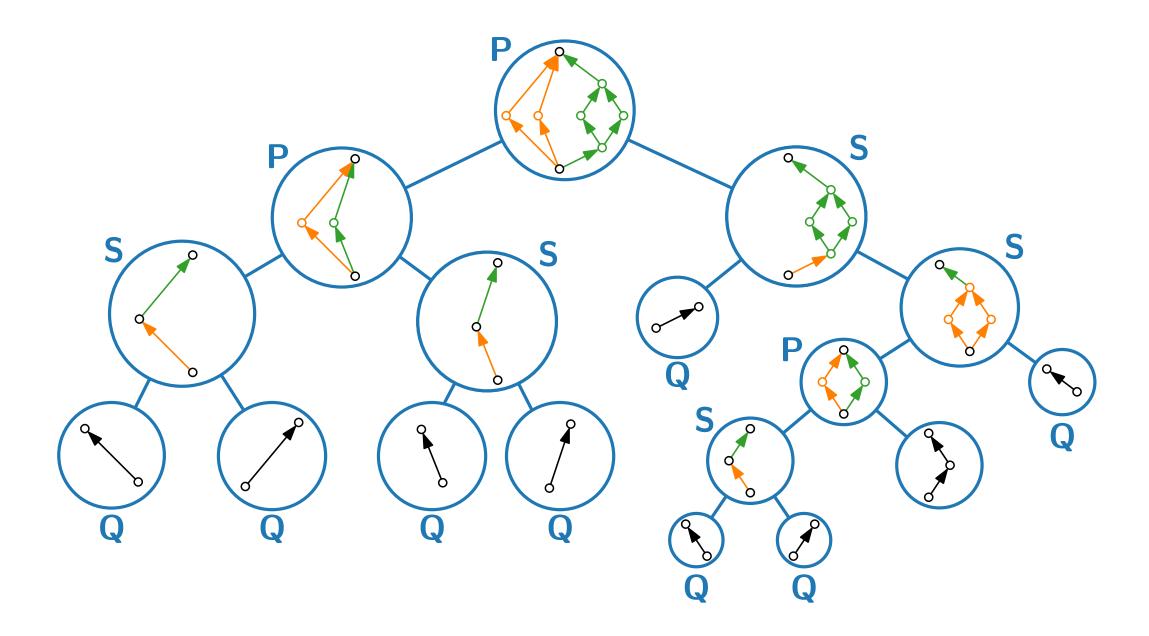


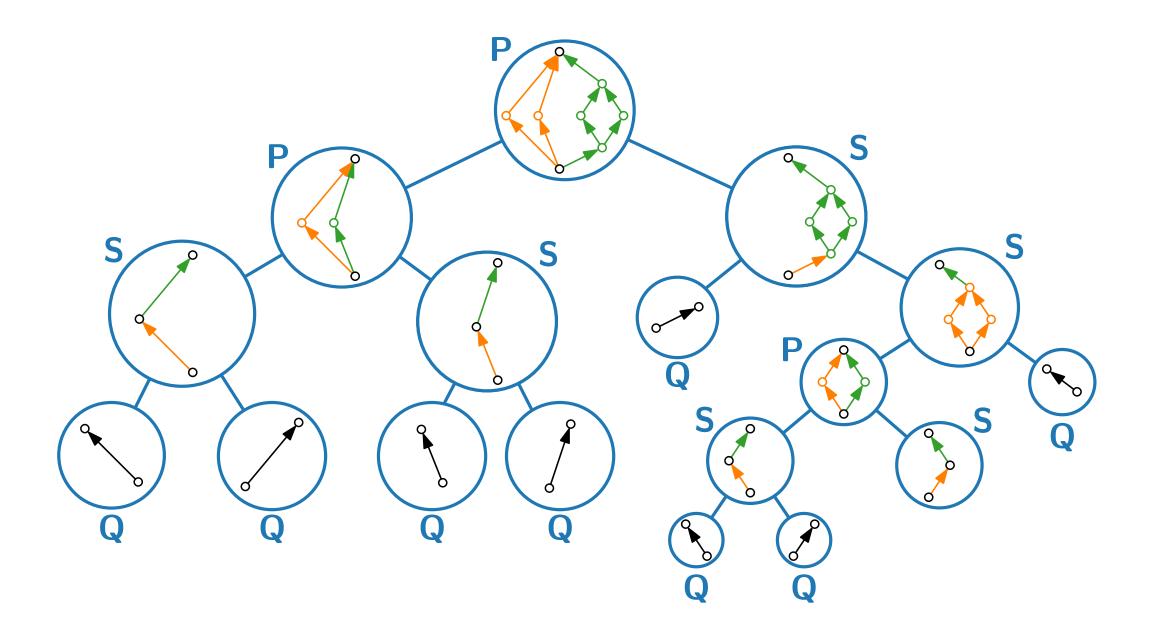




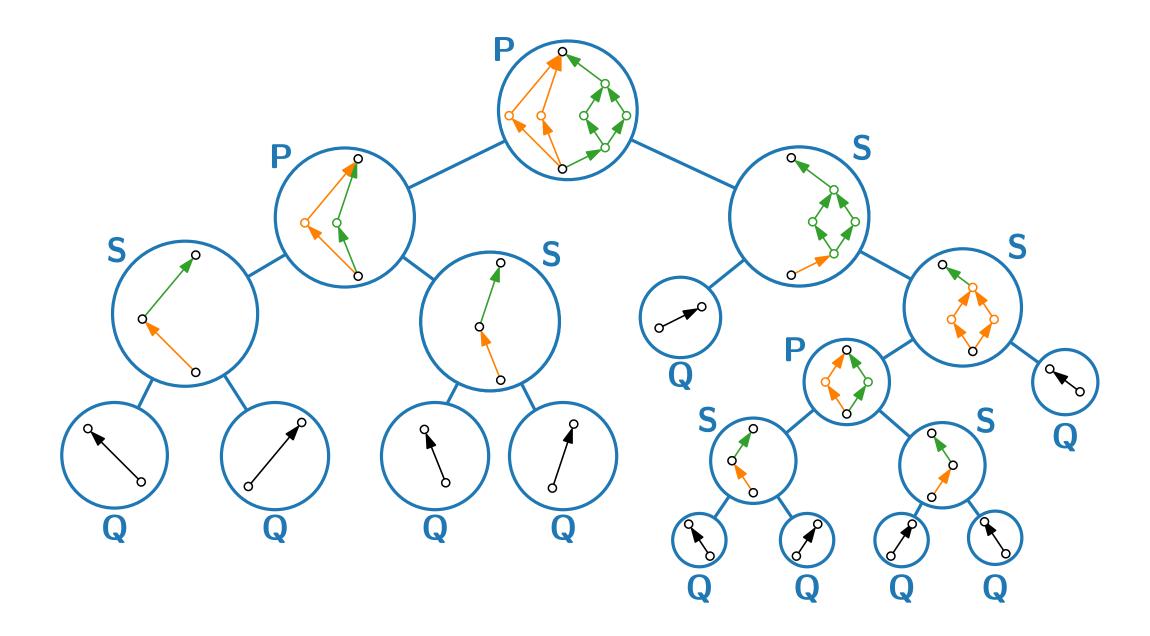




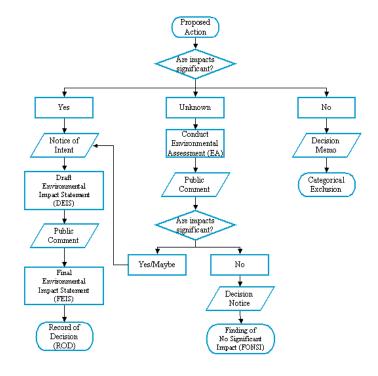




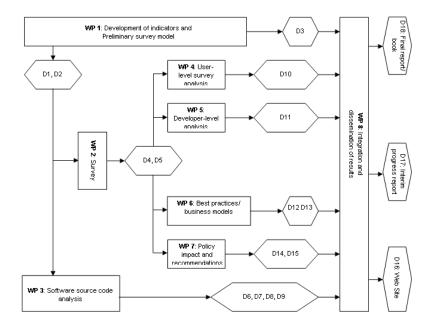
Series-Parallel Graphs – Decomposition Example



Series-Parallel Graphs – Applications



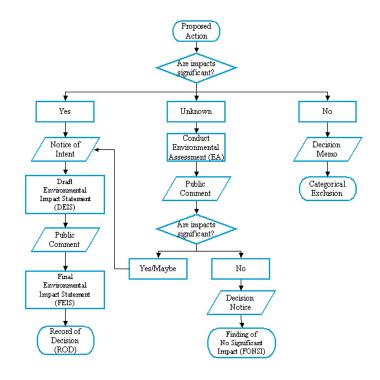
Flowcharts



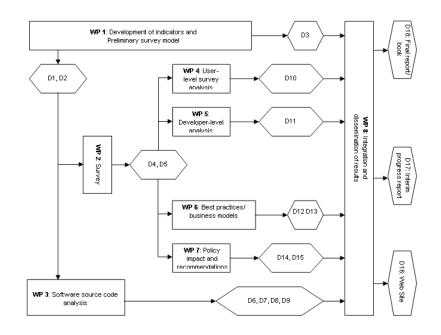
PERT-Diagrams

(Program Evaluation and Review Technique)

Series-Parallel Graphs – Applications



Flowcharts



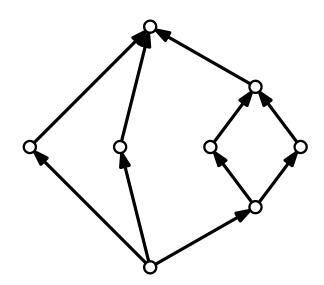
PERT-Diagrams

(Program Evaluation and Review Technique)

Computational complexity:

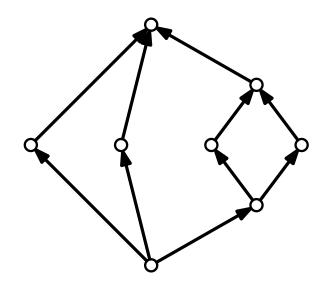
Series-parallel graphs often admit linear-time algorithms for \mathcal{NP} -hard problems, e.g., minimum maximal matching, MIS, Hamiltonian completion

Drawing conventions



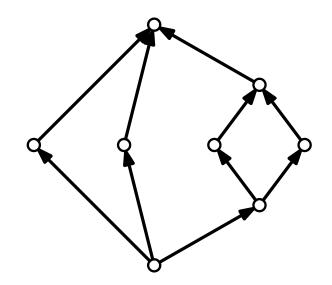
Drawing conventions

Planarity



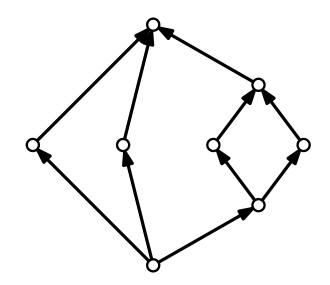
Drawing conventions

- Planarity
- Straight-line edges



Drawing conventions

- Planarity
- Straight-line edges
- Upward

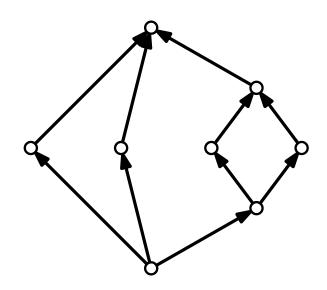


Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics

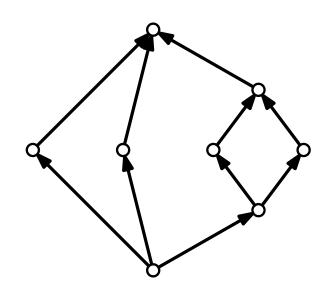
Area



Drawing conventions

- Planarity
- Straight-line edges
- Upward

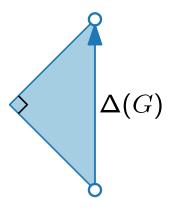
- Area
- Symmetry



Divide & conquer algorithm using the decomposition tree

Divide & conquer algorithm using the decomposition tree

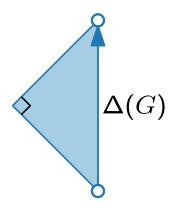
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

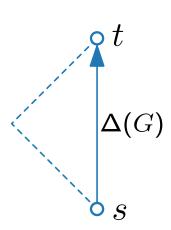


Divide & conquer algorithm using the decomposition tree

■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes

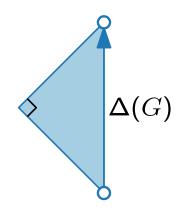


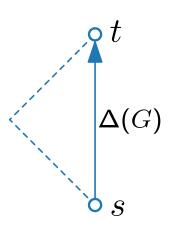


Divide & conquer algorithm using the decomposition tree

lacktriangleright Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes Divide: Draw G_1 and G_2 first





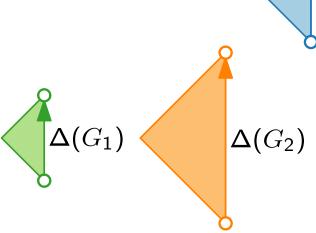
Series-Parallel Graphs – Straight-Line Drawings

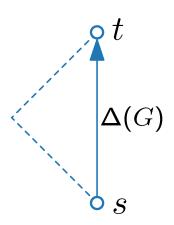
Divide & conquer algorithm using the decomposition tree

■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes

Divide: Draw G_1 and G_2 first



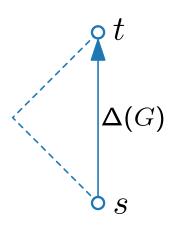


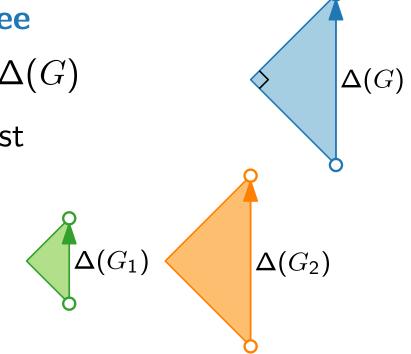
Divide & conquer algorithm using the decomposition tree

■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:





Series-Parallel Graphs – Straight-Line Drawings

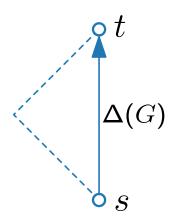
Divide & conquer algorithm using the decomposition tree

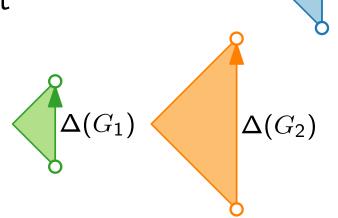
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition





Series-Parallel Graphs – Straight-Line Drawings

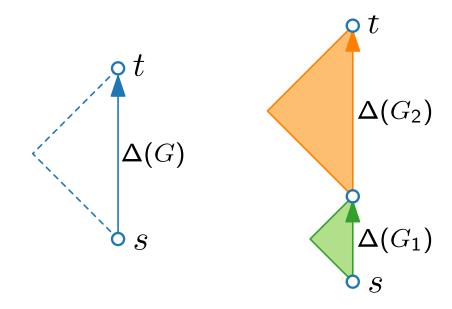
Divide & conquer algorithm using the decomposition tree

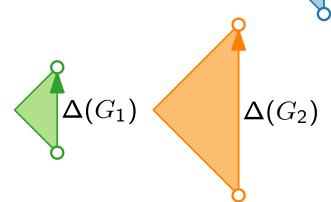
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition





Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

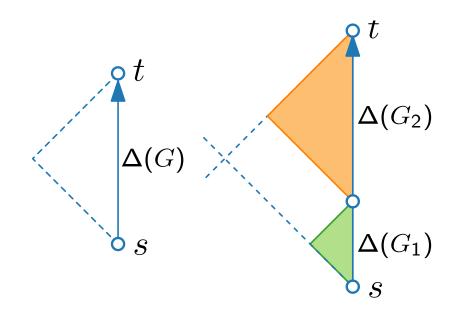
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

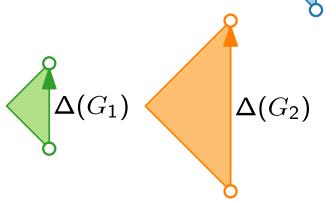
Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition





Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

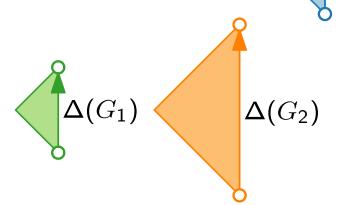
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:

- S-nodes / series composition
- P-nodes / parallel composition





Series-Parallel Graphs – Straight-Line Drawings

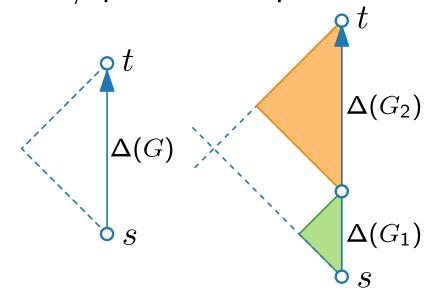
Divide & conquer algorithm using the decomposition tree

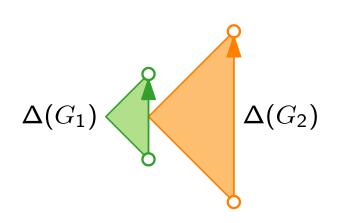
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

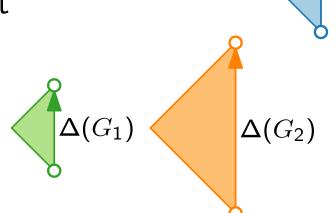
Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:

- S-nodes / series composition
- P-nodes / parallel composition







Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

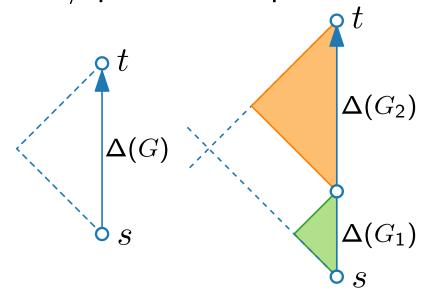
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

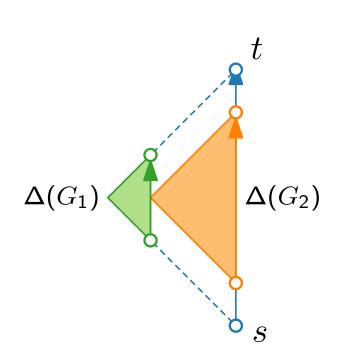
Base case: Q-nodes Divide: Draw G_1 and G_2 first

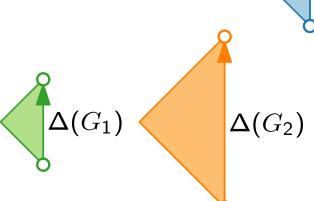
Conquer:

S-nodes / series composition

P-nodes / parallel composition







Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

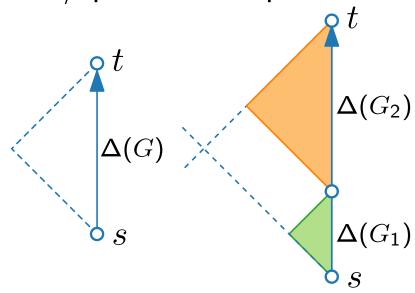
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

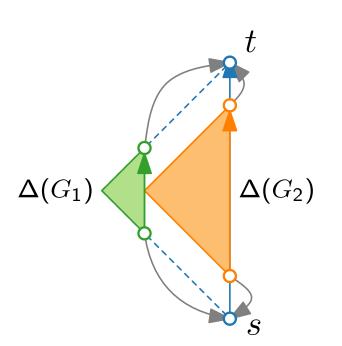
Base case: Q-nodes Divide: Draw G_1 and G_2 first

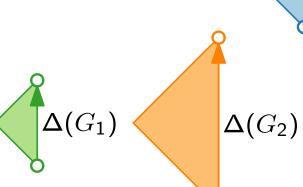
Conquer:

S-nodes / series composition

P-nodes / parallel composition







 $\Delta(G_2)$

Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

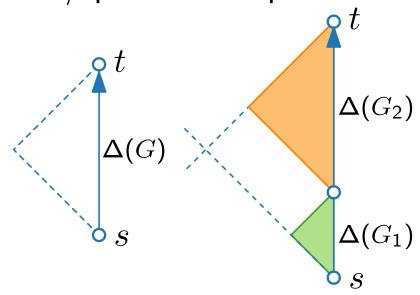
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

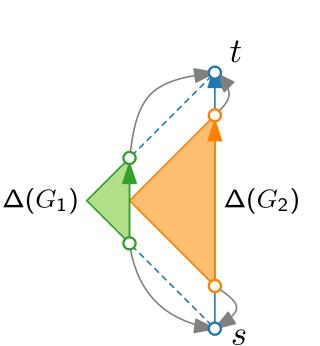
Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition

P-nodes / parallel composition





 $\Delta(G_1)$

Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

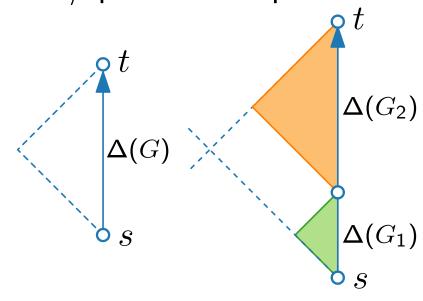
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

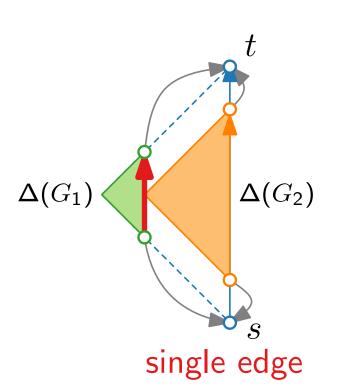
Base case: Q-nodes Divide: Draw G_1 and G_2 first

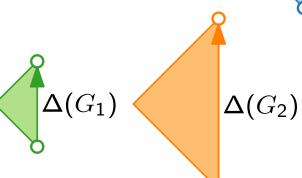
Conquer:

S-nodes / series composition

P-nodes / parallel composition







Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

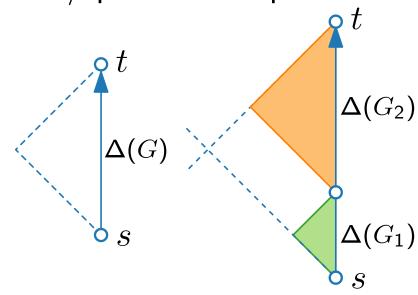
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

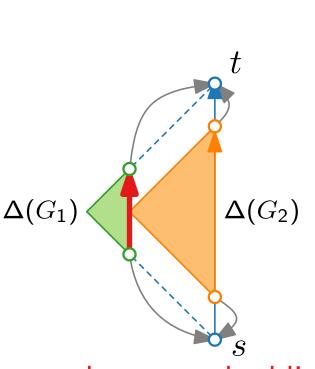
Base case: Q-nodes Divide: Draw G_1 and G_2 first

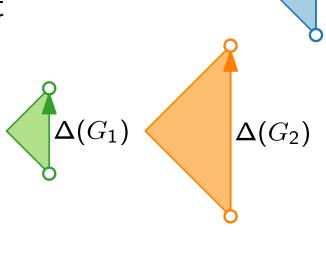
Conquer:

S-nodes / series composition

P-nodes / parallel composition







change embedding!

Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

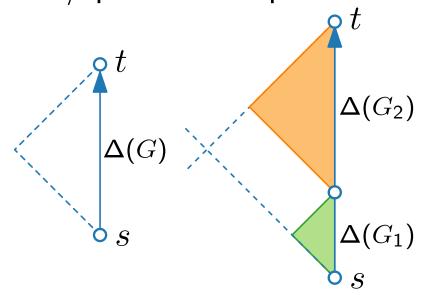
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

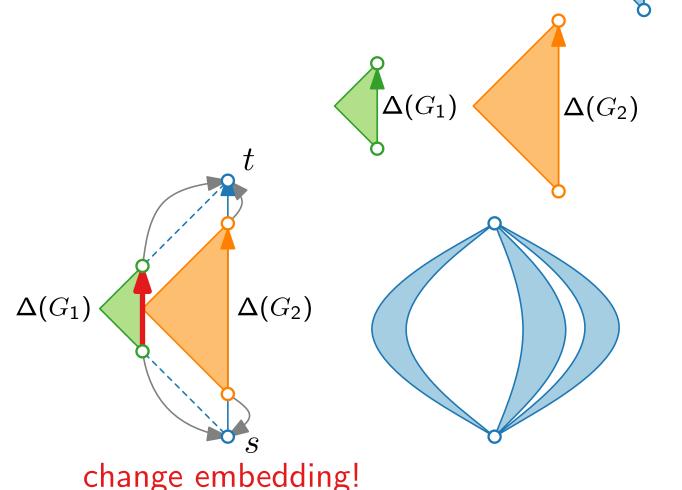
Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition

P-nodes / parallel composition





Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

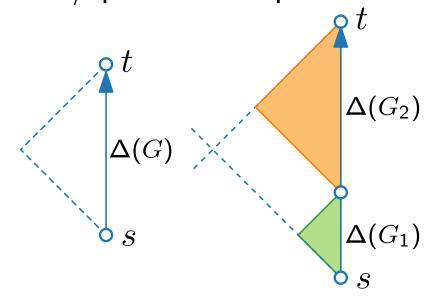
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

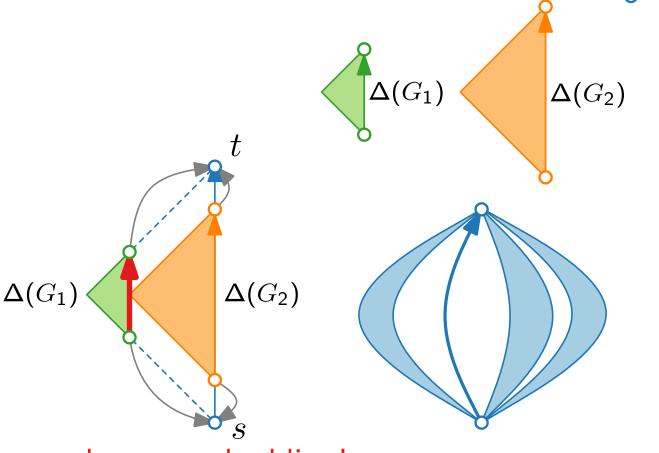
Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition

P-nodes / parallel composition





change embedding!

Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

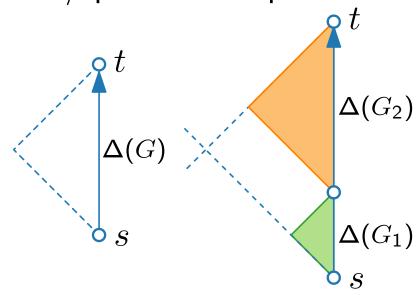
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

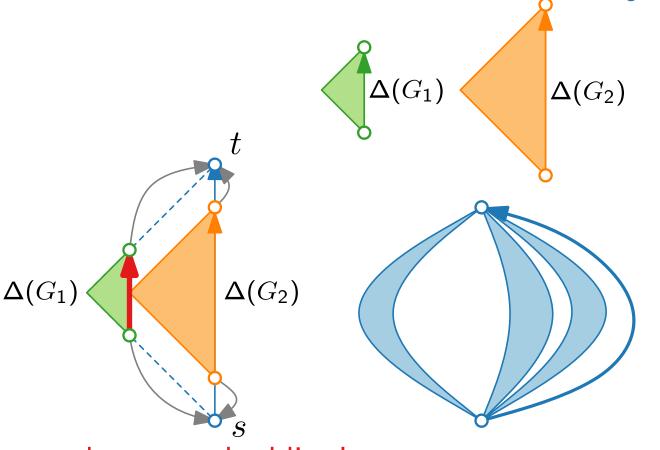
Base case: Q-nodes Divide: Draw G_1 and G_2 first

Conquer:

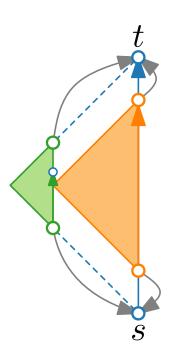
S-nodes / series composition

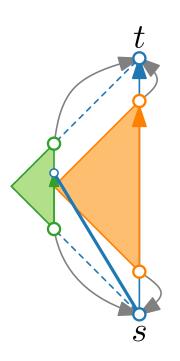
P-nodes / parallel composition

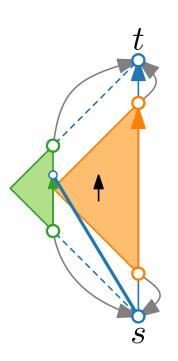


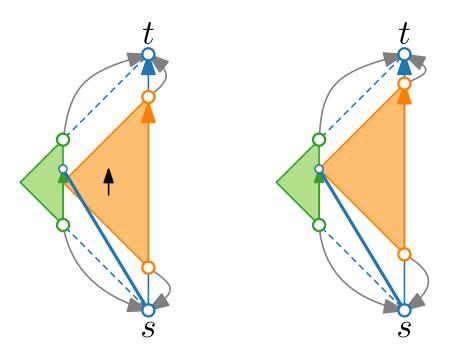


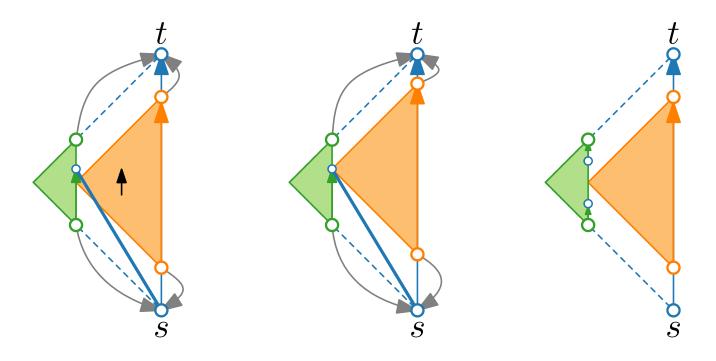
change embedding!

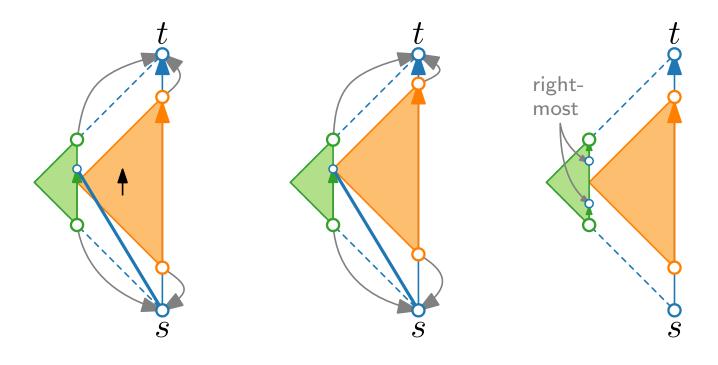


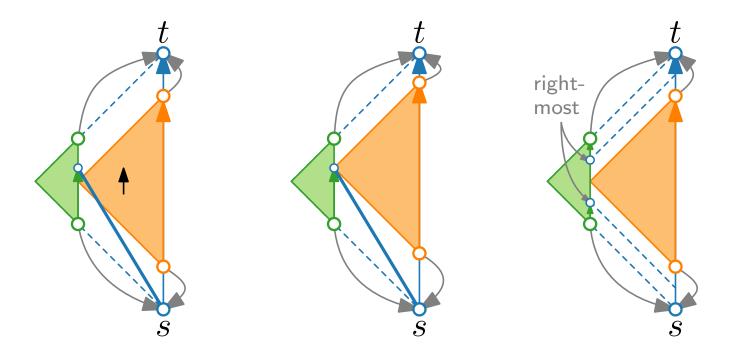


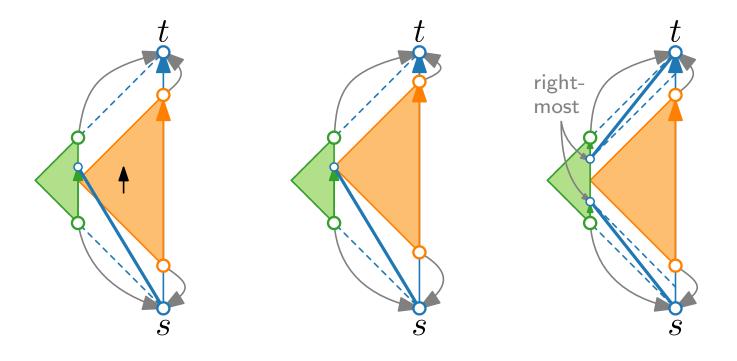


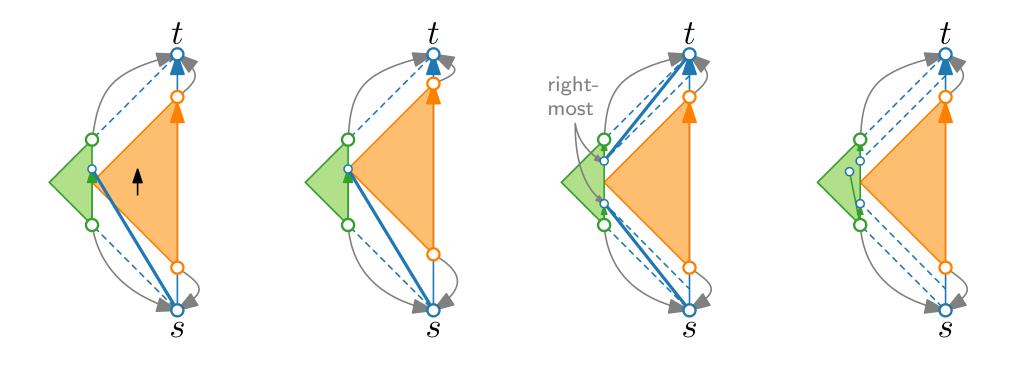


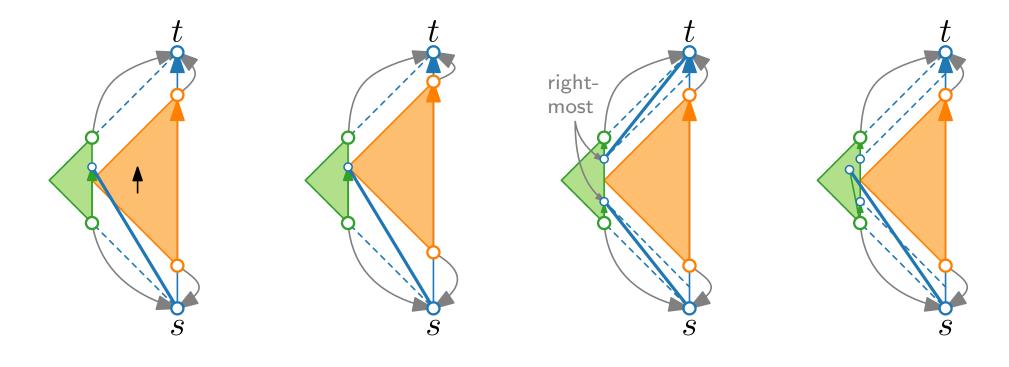


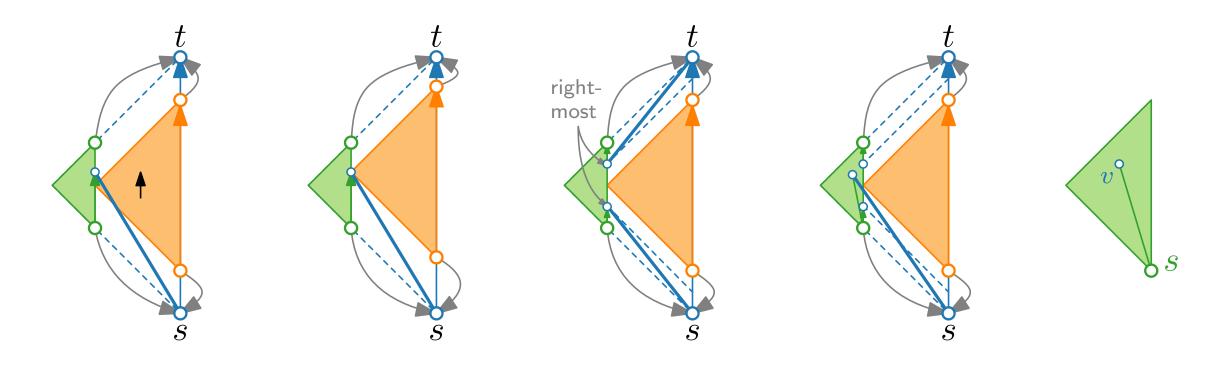


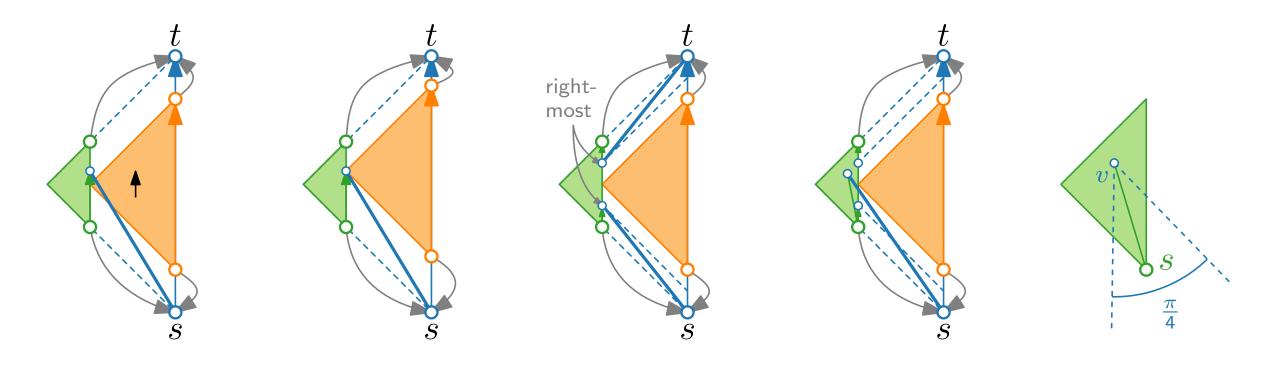


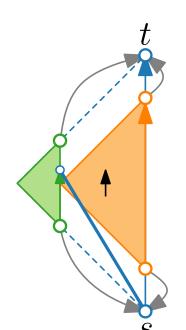


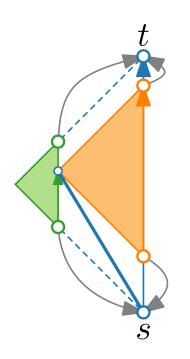


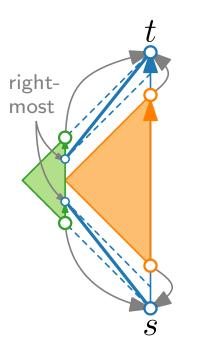


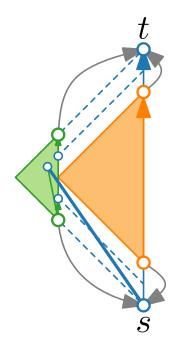


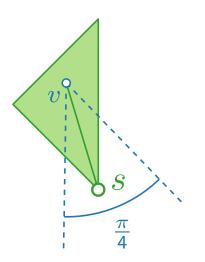






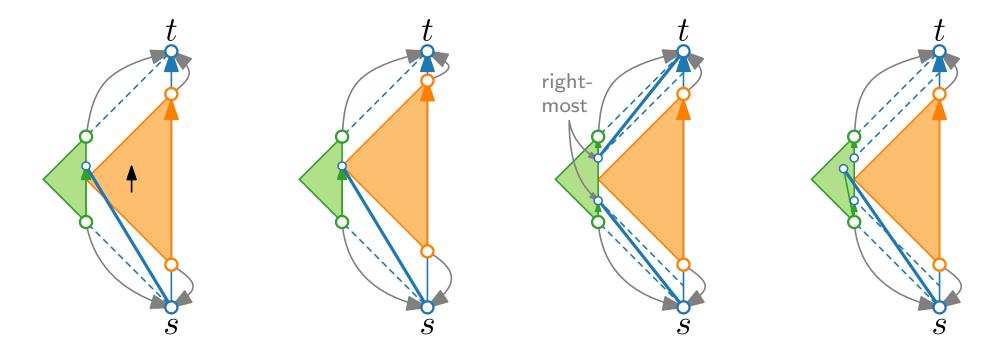




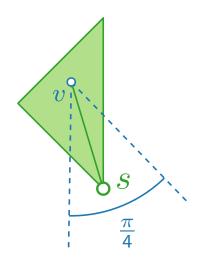


Assume the following holds: the only vertex in angle(v) is s

What makes parallel composition possible without creating crossings?

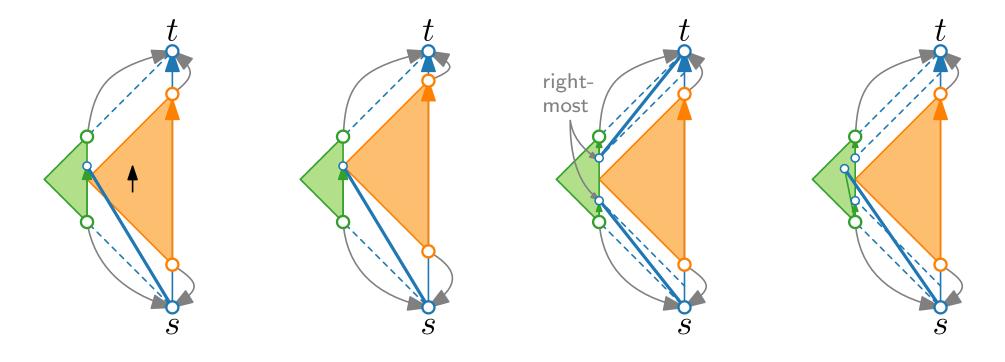


■ This condition **is** preserved during the induction step.



Assume the following holds: the only vertex in angle(v) is s

What makes parallel composition possible without creating crossings?



Assume the following holds:

the only vertex in angle(v) is s

■ This condition **is** preserved during the induction step.

Lemma.

The drawing produced by the algorithm is planar.

Theorem.

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

is upward planar and

Theorem.

- is upward planar and
- a straight-line drawing

Theorem.

- is upward planar and
- a straight-line drawing
- with area in $\mathcal{O}(n^2)$.

Theorem.

- is upward planar and
- a straight-line drawing
- with area in $\mathcal{O}(n^2)$.
- Isomorphic components of G have congruent drawings up to translation.

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

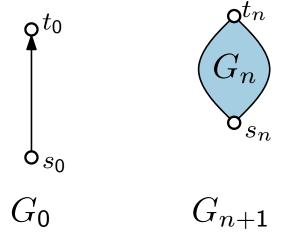
- is upward planar and
- a straight-line drawing
- with area in $\mathcal{O}(n^2)$.
- Isomorphic components of G have congruent drawings up to translation.

 Γ can be computed in $\mathcal{O}(n)$ time.

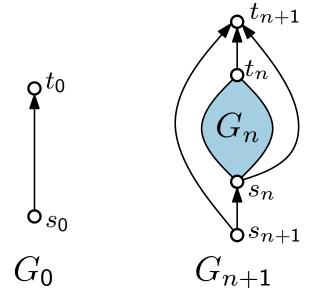
Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

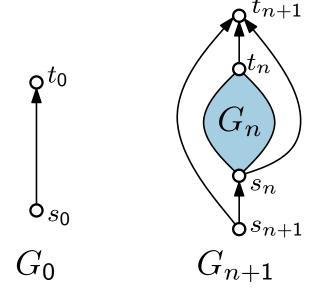
Theorem. [Bertolazzi et al. 94]

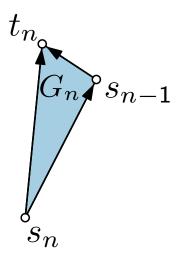


Theorem. [Bertolazzi et al. 94]

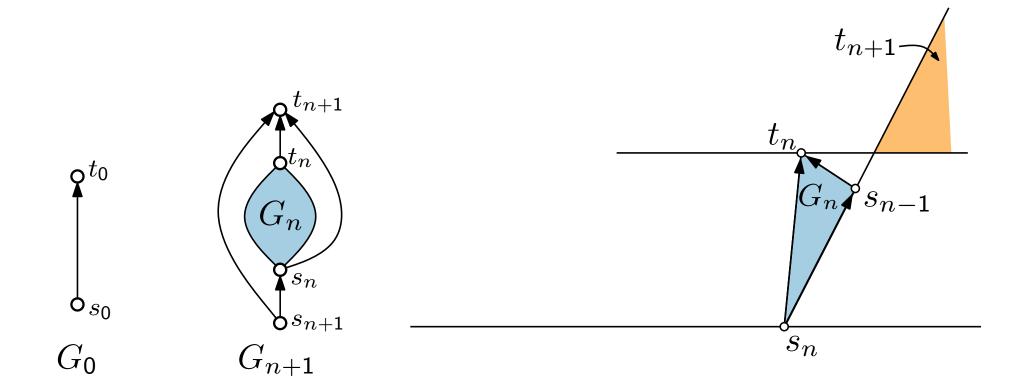


Theorem. [Bertolazzi et al. 94]

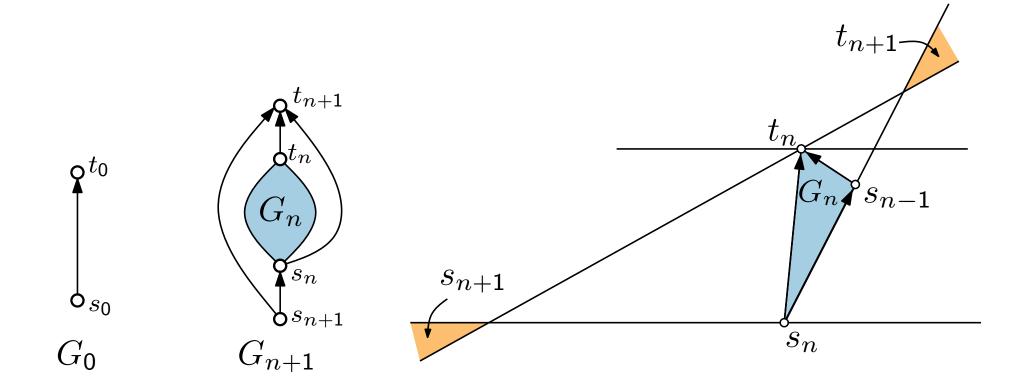




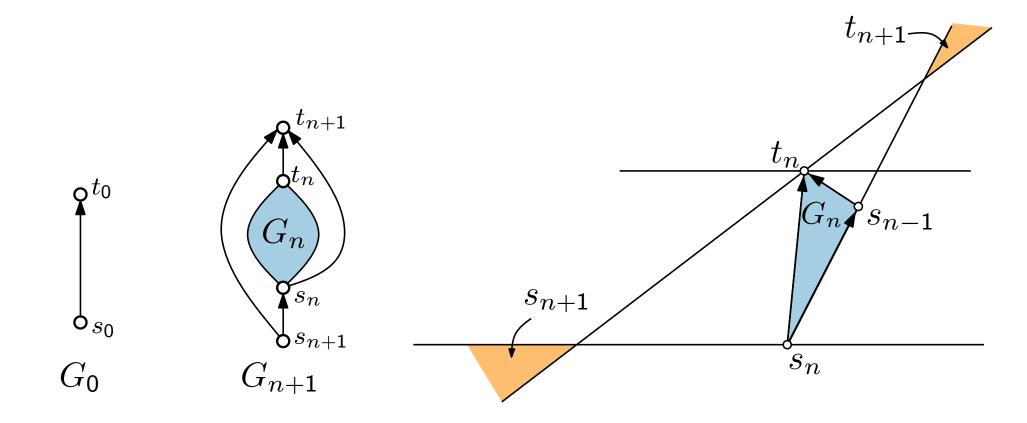
Theorem. [Bertolazzi et al. 94]



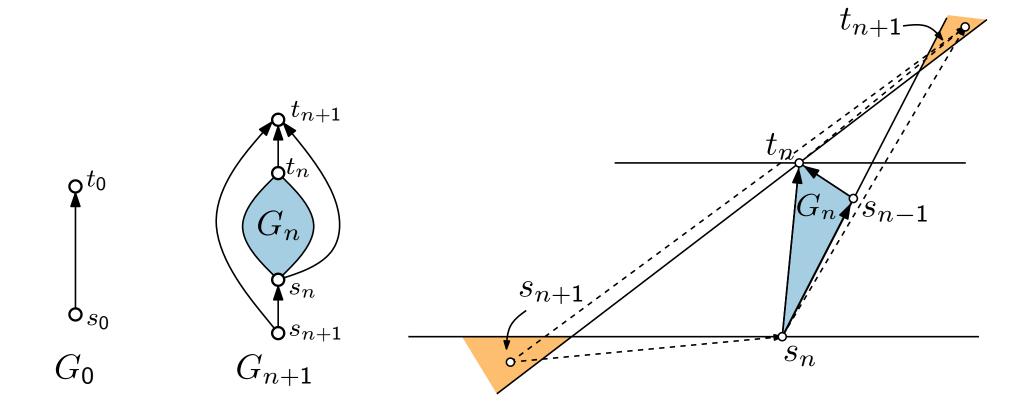
Theorem. [Bertolazzi et al. 94]



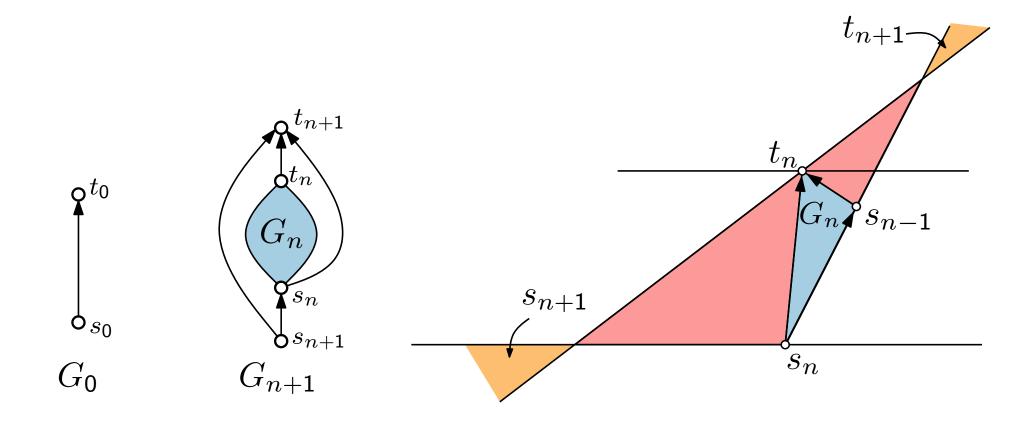
Theorem. [Bertolazzi et al. 94]



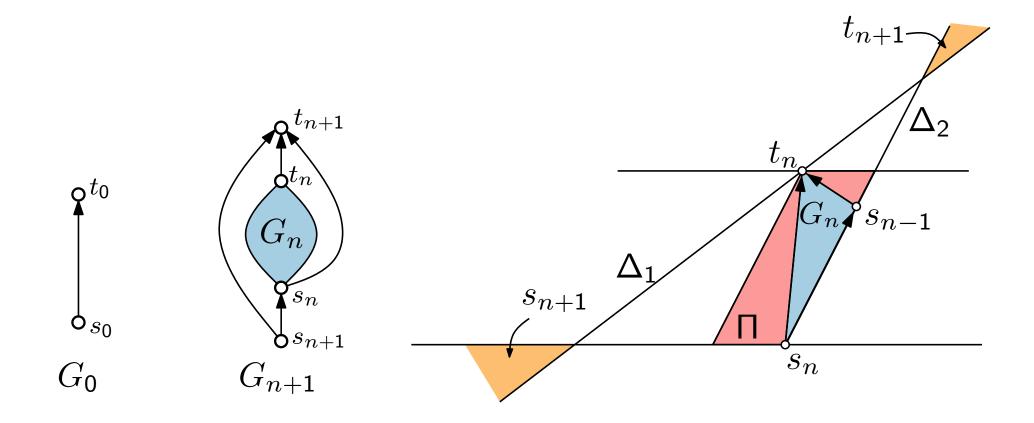
Theorem. [Bertolazzi et al. 94]



Theorem. [Bertolazzi et al. 94]



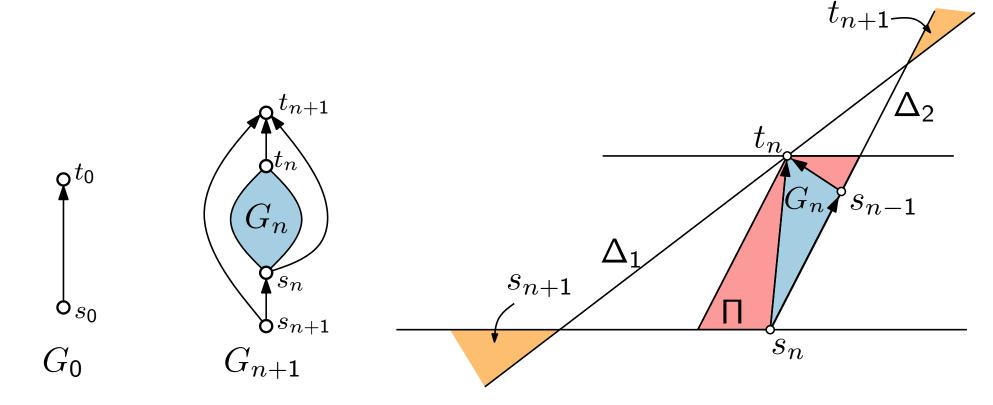
Theorem. [Bertolazzi et al. 94]



Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

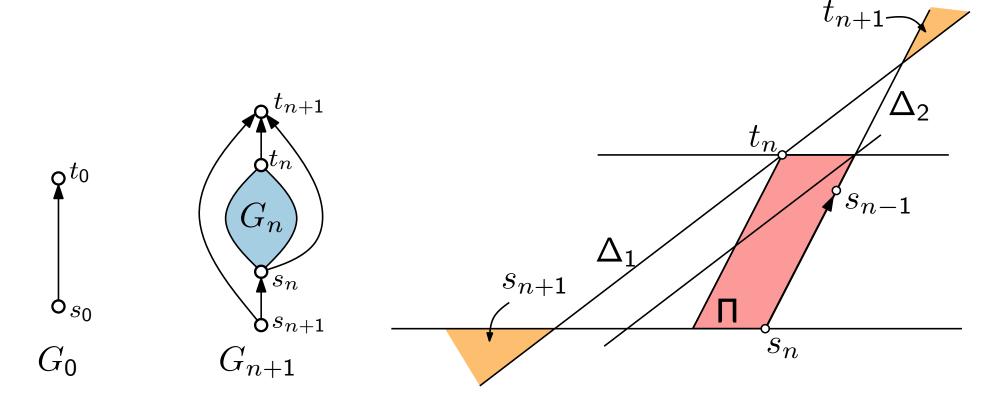
lacksquare 2 · Area (G_n) < Area (Π)



Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

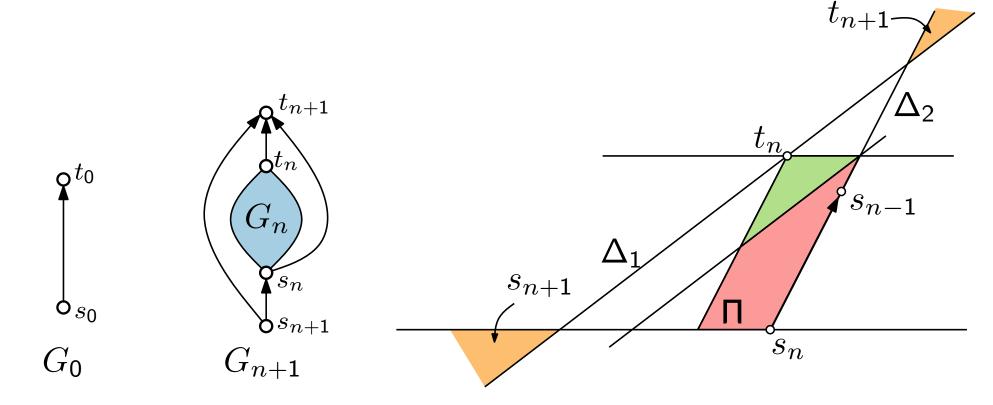
lacksquare 2 · Area (G_n) < Area (Π)



Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

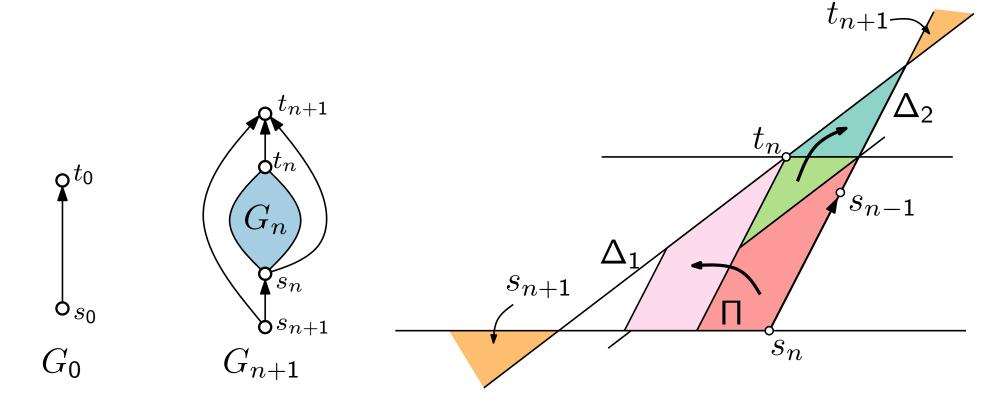
lacksquare 2 · Area (G_n) < Area (Π)



Theorem. [Bertolazzi et al. 94]

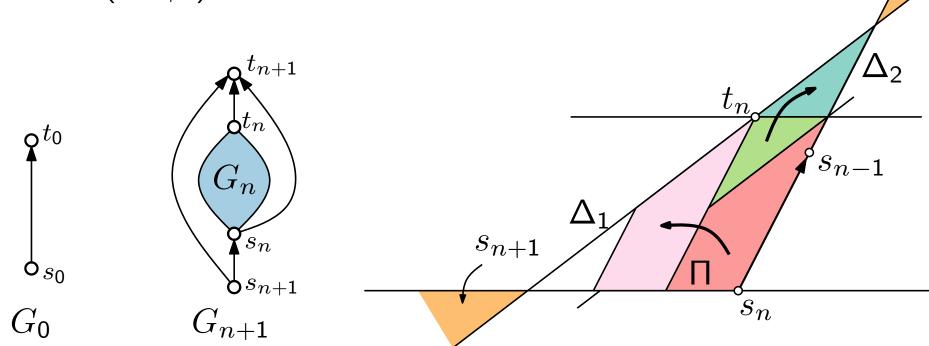
There exists a 2n-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

 $lacksquare 2 \cdot \operatorname{Area}(G_n) < \operatorname{Area}(\Pi)$



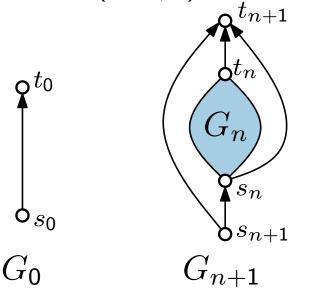
Theorem. [Bertolazzi et al. 94]

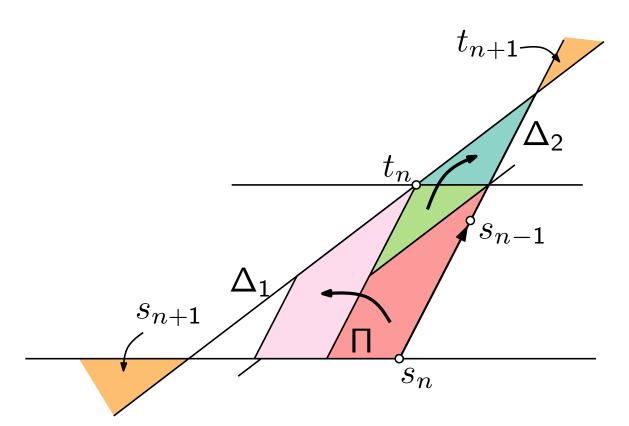
- $lacksquare 2 \cdot \operatorname{Area}(G_n) < \operatorname{Area}(\Pi)$
- lacksquare 2 · Area (Π) \leq Area (G_{n+1})



Theorem. [Bertolazzi et al. 94]

- $lacksquare 2 \cdot \operatorname{Area}(G_n) < \operatorname{Area}(\Pi)$
- lacksquare 2 · Area (Π) \leq Area (G_{n+1})
- \Rightarrow 4 · Area $(G_n) \leq$ Area (G_{n+1})





Literature

- [GD, Chapter 3] for divide and conquer methods for rooted trees and series-parallel graphs
- [Reingold, Tilford '81] "Tidier Drawings of Trees" original paper for level-based layout algo
- [Reingold, Supowit '83] "The complexity of drawing trees nicely" linear program and NP-hardness proof for area minimization
- treevis.net compendium of drawing methods for trees