
1

Algorithmische Graphentheorie
Sommersemester 2022

10. Vorlesung

Festparameter-Berechenbarkeit

Alexander Wolff Lehrstuhl für Informatik I

2

Herangehensweisen an NP-schwere Probleme

• Exponentialalgorithmen, z.B. Backtracking

• Approximationsalgorithmen:
Tausche Qualität gegen Laufzeit

• Heuristiken: empirische Untersuchung auf Benchmarks

• Randomisierung: Suche nach der Nadel im Heuhaufen

• Entwurf von parametrisierten Algorithmen
NEU

3

Ein Beispiel: Vertex Cover

Def. (Zur Erinnerung)

Sei G ein ungerichteter Graph mit Knotenmenge V (G).
C ⊆ V (G) heißt Knotenüberdeckung (eng. vertex cover)
von G , falls für alle uv ∈ E (G) gilt, dass {u, v} ∩ C 6= ∅.

Prob. Kleinste Knotenüberdeckung

Gegeben:

Gesucht:

Graph G

eine kleinste Knotenüberdeckung von G

Prob. k-Knotenüberdeckung (k-VC)

Gegeben:

Gesucht:

Graph G , natürliche Zahl k

Knotenüberdeckung der Größe ≤ k von G –
falls eine solche existiert
(sonst gib

”
nein“ zurück)

– Optimierungsproblem

– Entscheidungsproblem

4

Previous Work

• eines der ersten Probleme, dessen NP-Schwere gezeigt
wurde (SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• eines der sechs grundlegenden NP-vollständigen Probleme
in dem Klassiker: [Garey & Johnson, 1979]

• approximierbar:

Nicht-erweiterbares Matching
”
liefert“

Faktor-2-Approximation für VC.

• . . . , aber nicht beliebig gut:

Es gibt keine Faktor-1,3606-
Approximation für VC, falls P 6= NP.

[Dinur & Safra, 2004]

5

Ein exakter Algorithmus für k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(

V (G)
k

)
do

// teste, ob C VC
vc = true
foreach uv ∈ E (G) do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“yes”, C)

return (“no”, ∅)

Laufzeit.

∣∣∣(V
k

)∣∣∣ =
(|V |

k

)
=
(

n
k

)
= O(nk) O(E (G)) = O(m)

O(nk m) Dies ist nicht polynomiell in der Größe
der Eingabe (= n + m), da k keine
Konstante, sondern Teil der Eingabe.

–

Warum?

6

Ein neues Ziel

Finde einen Algorithmus für k-VC mit Laufzeit

O(f (k) + |I |c)
wobei f : N→ N berechenbare Funktion (unabh. von I),

I gegebene Instanz, c Konstante (unabh. von I)

D.h. die Laufzeit soll abhängen
– beliebig vom Parameter k,
– polynomiell von der Größe |I | der Instanz I .

Schwierigkeit der Instanz

Ein Problem, das in dieser Zeit gelöst werden kann, heißt
festparameterberechenbar (fixed-parameter tractable) bzgl. k.

FPT = Klasse der festparameterberechenbaren Probleme.

Bemerkung.
Die Klasse FPT ändert sich
nicht, wenn statt + hier · steht.

=:O?(f (k))
ignoriert polynomielle Faktoren!

Bem. BruteForceVC hat nicht die gewünschte Laufzeit.

7

Ein paar einfache Beobachtungen. . .

Sei G Graph, C ein VC für G , v Knoten, der nicht in C liegt.
Welche Knoten liegen dann sicher in C ?

Beob. 1. Sei G ein Graph, C ein VC für G , v ein Knoten.
Dann gilt: v ∈ C oder NG (v) ⊆ C .

Betrachte Entscheidungsproblem k-VC.
Was gilt für Knoten mit Grad > k?

Beob. 2. Jeder Knoten mit Grad > k ist in jedem k-VC
von G enthalten.

Was gilt, falls |E (G)| > k2 und alle Knoten Grad ≤ k haben?

Beob. 3. Falls |E (G)| > k2 und ∆(G) := maxv∈V deg v ≤ k ,
so hat G kein k-VC.

8

Algorithmus von Buss

I) Reduktion der Instanz auf ihren harten Kern

BussVC(Graph G , Integer k)

II) Lösung der Restinstanz mit roher Gewalt

(yesorno, C ′) = BruteForceVC(G ′, k ′)

return (yesorno, C ∪ C ′)

Laufzeit.

wobei m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)
Zeit

}

Also: k-VC ∈ FPT !

O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k′) Zeit

= O
(
n + m + k22k k2k

)
f (k)
︸ ︷︷ ︸

|I |1
︸ ︷︷ ︸

C = {v ∈ V (G) | degG (v) > k}
if |C | > k then return (“no”, ∅)
G ′ := G [V \ C] (entferne auch isolierte Knoten)

k ′ = k − |C |

if |E (G ′)| > k2 then return (“no”, ∅)

9

Vorlesungsumfrage AGT

Sehr geehrter Herr Wolff,

die Rücklaufquote der Umfrage Algorithmische Graphentheorie
liegt aktuell bei 19% (Teilnehmerzahl insgesamt: 154).

Dieser Wert liegt unter einer definierten Schwelle von 50%.
Wir möchten Sie daher bitten, Ihre Teilnehmer nochmals zu
ermuntern, sich an der Umfrage zu beteiligen.

Bitte beachten Sie, dass die Umfrage am 10.07.2022 23:59:00
geschlossen wird.

Ihr EvaSys Administrator

10

Suchbaum-Algorithmus

#Knoten: T (k) ≤

Idee. Verbessere Phase II durch Aufbau eines Suchbaums.

(G − v , k − 1, {v}) (G − N(v), k − deg(v), N(v))

v N(v)

w N(w) w N(w)

k
(G`, 0, C`)

...

Gibt es ein Blatt ` mit E` = ∅, so ist C` ein k-VC von G .

Blatt `

Gibt es kein solches Blatt, so hat G kein k-VC.

⇒ T (k) ≤ 2k+1 − 1 ∈ O(2k)

(G , k, ∅)

⇒ Laufzeit: O?(2k)

Baum-
höhe

Blätter sind alle Knoten mit k = 0;
sie befinden sich auf verschiedenen Ebenen.

JA:

NEIN: (Warum?)

2 T (k − 1) + 1, T (0) = 1

11

Der Grad-3-Algorithmus

Idee. Verbessere Abschätzung von |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg(v), N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
Blatt `

(G , k, ∅) ︷ ︸︸ ︷Annahme: ≥ 3

⇒ T (k) = T (k − 3) + T (k − 1) + 1, T (≤ 3) = const.

Verzweigungsvektor (3, 1)

⇒ Charakteristisches Polynom: z3 = 1 + z2

⇒ Größte positive Lösung: z ≈ 1,47 (Verzweigungszahl)

⇒ T (k) ∈ O(1,47k). Aber wie stellen wir deg(v) ≥ 3 sicher?

Teste T (k) = zk − 1

Baum-
höhe

⇒ zk = · 1
zk−3

zk−3 + zk−1

12

Kernbildung II

Bisherige Kernbildung:

Regel K:
Regel 0: Eliminiere Knoten mit Grad 0

Verbesserte Kernbildung:

Regel 1: Eliminiere Knoten mit Grad 1

v w

Regel 2: Eliminiere Knoten mit Grad 2

v
w

u

Eliminiere Knoten mit Grad > k

C = C ′ ∪ {w}

uw
Falls uw ∈ C ′,
nimm u und w in C ,
sonst v

Setze k ′ = k − 1.

Setze k ′ = k − 1.

Berechne C ′.

Berechne C ′.
G G ′

(⇒ k = k ′+1)

13

Der Grad-3-Algorithmus

Idee: Wende die verbesserte Kernbildung in jedem Knoten
des Suchbaums erschöpfend an!

⇒ Laufzeit: O(nk + k2 · 1,47k) ⊆ O?(1,47k)

Vorverarbeitung Kernbildung in jedem Knoten

Der Grad-3-Algorithmus ist also ein Fest-Parameter-Algorithmus.

14

Fazit

• k-VC kann in O(nk + 1,47k k2) Zeit gelöst werden.
Der momentan beste FPT-Algo läuft in O?(1,27k) Zeit.

[Chen, Kanj, Jia, 2001]

• Parametrisierte Komplexität =
neuer Werkzeugkasten für schwere Probleme:
Kernbildung, Suchbäume, dynamische Programmierung, . . .

• Es ist immer sinnvoll, beschränkte Parameter zu
identifizieren – FPT nutzt sie!

• Hoffnung:

”
natürliches“ Problem P ∈ FPT ⇒ f (k) erträglich.

15

Bücher zum Thema

20061999 2006

	Titel
	Herangehensweisen an NP-schwere Probleme
	Ein Beispiel: Vertex Cover
	Previous Work
	Ein exakter Algorithmus für k-VC
	Ein neues Ziel
	Ein paar einfache Beobachtungen\dots
	Algorithmus von Buss
	Vorlesungsumfrage AGT
	Suchbaum-Algorithmus
	Der Grad-3-Algorithmus
	Kernbildung II
	Der Grad-3-Algorithmus
	Fazit
	Bücher zum Thema

