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Das DP von Bellman & Held-Karp

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V × V → R≥0

)

mink 6=1 OPT[V \ {v1}, vk] + c(vk, v1)

for i = 2 to n do
OPT[{vi}, vi] = c(v1, vi)

for j = 2 to n− 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
OPT[W,vi] = minvj∈W\{vi}OPT[W \{vi},vj ]+c(vj ,vi)

return
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BellmanHeldKarp
(
Knotenmenge V , Abstände c : V × V → R≥0

)

mink 6=1 OPT[V \ {v1}, vk] + c(vk, v1)

Wie viele Paare (W, vi) mit vi ∈W gibt’s? ≤ n · 2n−1

Speicher: O
(
n · 2n

)
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foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
OPT[W,vi] = minvj∈W\{vi}OPT[W \{vi},vj ]+c(vj ,vi)

return

v1

vi

v1

vi
vj

v1
vk
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Bad News

Satz. Das Rucksack-Problem ist NP-schwer.
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Bad News

Satz. Das Rucksack-Problem ist NP-schwer.

Beweis. Durch Reduktion vom Problem ...

[siehe Buch von Garey & Johnson]



5

Was tun?



5

Was tun? – Mach das Problem leichter!



5

Was tun? – Mach das Problem leichter!

Gegeben: Menge U von Objekten und für jedes i ∈ U :

– ein Gewicht wi ∈ Q+,

– ein Wert vi ∈ Q+,

außerdem eine Gewichtsschranke W > 0.

Gesucht: Teilmenge R von U , so dass

– das Gewicht der Objekte in R höchstens W ist:∑
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Gegeben: Menge U von Objekten und für jedes i ∈ U :

– ein Gewicht wi ∈ Q+,

– ein Wert vi ∈ Q+,

außerdem eine Gewichtsschranke W > 0.

Gesucht: Teilmenge R von U , so dass

– das Gewicht der Objekte in R höchstens W ist:∑
i∈R wi ≤W

– der Gesamtwert der Ob-∑
i∈R vi max!

jekte in R maximal ist:

N
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Dynamisches Programm

Probieren Sie selbst, die Einträge der DP-Tabelle f [i, w] in der
richtigen Reihenfolge zu befüllen!
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Ausblick

Master-Vorlesung
”
Advanced Algorithms“

Spannendes Video (30’) von Thomas van Dijk zu praktischen
Aspekten der Implementierung eines Algorithmus für das
Rucksack-Problem:

https://go.uniwue.de/algoprac4
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