Julius-Maximilians-
UNIVERSITAT Lohvetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen & Komplexitat Institut fiir Informatik

Algorithmische Graphentheorie

Sommersemester 2022

3. Vorlesung, Tell B

Dynamische Programmierung —
Das Rucksackproblem

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Das DP von Bellman & Held-Karp

BeIImanHeIdKarp(Knotenmenge V, Abstande c: V XV —]Rizo)

for : =2 to n do
| OPT[{wi},vi] = c(vi,vi) =

for j=2ton—1do
foreach W C {wvo,...,v,} mit |W| =7 do
foreach v, € W do
- OPT[W,v;] = miny. cw\ {0,} OPT[W \{w; },v5]+c(vy,0;)

re_turn ming-1 OPT[V \ {vi}, vp] + (v, v1) @
U1

‘N]
S .
Ul -------

Das DP von Bellman & Held-Karp

BeIImanHeIdKarp(Knotenmenge V, Abstande c: V XV —]Rizo)

fori.=2ton do

L OPT[{W},U@] = C(Ulavz’) q@

for j=2ton—1do

foreach W C {vy,..
foreach v; € W do U1
| OPT[W,v;] = min,; ewn 10,3 OPT[W\{vs },0;5]4¢(v;,v:)

L, Up} mit W] =j do

Soo

re_turn ming-1 OPT[V \ {vi}, vp] + (v, v1) @
U1

Wie viele Paare

(W, ’07;)

mit v; € W gibt's?

Speicher: (= GroBe der DP-Tabelle)

Das DP von Bellman & Held-Karp

BeIImanHeIdKarp(Knotenmenge V, Abstande c: V XV —]Rizo)

fori.=2ton do

L OPT[{W},U@] = C(Ulavz’) q@

for j=2ton—1do

foreach W C {vy,..
foreach v; € W do U1
| OPT[W,v;] = min,; ewn 10,3 OPT[W\{vs },0;5]4¢(v;,v:)

L, Up} mit W] =j do

Soo

re_turn ming-1 OPT[V \ {vi}, vp] + (v, v1) @
U1

Wie viele Paare

(W, ’07;)

mit v; € W gibt's? < n.2n"1

Speicher: (= GroBe der DP-Tabelle) O(n : 2”)

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; € QT,
—ein Wert v, € QT,

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; € QT,
—ein Wert v, € QT,
auBerdem eine Gewichtsschranke W > 0.

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; € QT,
—ein Wert v, € QT,
auBerdem eine Gewichtsschranke W > 0.

Gesucht: Teilmenge R von U, so dass

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; € QT,
—ein Wert v, € QT,
auBerdem eine Gewichtsschranke W > 0.
Gesucht: Teilmenge R von U, so dass

— das Gewicht der Objekte in R hochstens W ist:

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:

— ein Gewicht w; € QT,

—ein Wert v, € QT,

auBerdem eine Gewichtsschranke W > 0.
Gesucht: Teilmenge R von U, so dass

— das Gewicht der Objekte in R hochstens W ist:

Zz’GR w; < W

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; € QT,
—ein Wert v, € QT,
auBerdem eine Gewichtsschranke W > 0.

Gesucht: Teilmenge R von U, so dass
— das Gewicht der Objekte in R hochstens W ist:
> icrWi < W
— der Gesamtwert der Ob-
jekte iIn R maximal ist:

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; € QT,
—ein Wert v, € QT,
auBerdem eine Gewichtsschranke W > 0.

Gesucht: Teilmenge R von U, so dass
— das Gewicht der Objekte in R hochstens W ist:
> icrWi < W
— der Gesamtwert der Ob-
jekte iIn R maximal ist:

: |
D icp Vi max!

Das Rucksack-Problem

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; € QT,
—ein Wert v, € QT,
auBerdem eine Gewichtsschranke W > 0.

Gesucht: Teilmenge R von U, so dass
— das Gewicht der Objekte in R hochstens W ist:

Zz’GR Wi < ‘ ?
— der Gesamtwert der Ob-
jekte in R maximal ist: %
Z,L-GR v; max!
1)
< >

Bad News

Satz. Das Rucksack-Problem ist NP-schwer.

Bad News

Satz. Das Rucksack-Problem ist NP-schwer.

Bewels.

Bad News

Satz. Das Rucksack-Problem ist NP-schwer.

Bewelis. Durch Reduktion vom Problem ...

COMPUTERS AND INTRACTABILITY
A Guide 1o the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

[siehe Buch von Garey & Johnson]

Was tun?

Was tun? — Mach das Problem leichter!

Was tun? — Mach das Problem leichter!

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; € QT,
—ein Wert v, € QT,
auBerdem eine Gewichtsschranke W > 0.

Gesucht: Teilmenge R von U, so dass
— das Gewicht der Objekte in R hochstens W ist:

Zz’GR Wi < ‘ ?
— der Gesamtwert der Ob-
jekte in R maximal ist: %
Z,L-GR v; max!
1)
< >

Was tun? — Mach das Problem leichter!

Gegeben: Menge U von Objekten und fiir jedes ¢ € U:
— ein Gewicht w; EQ"{, N
—ein Wert v, € QT,
auBerdem eine Gewichtsschranke W > 0.

Gesucht: Teilmenge R von U, so dass
— das Gewicht der Objekte in R hochstens W ist:

Zz’GR Wi < ‘ ?
— der Gesamtwert der Ob-
jekte in R maximal ist: %
Z,L-GR v; max!
1)
< >

Rekursive Detfinition

Sei n die Anzahl der Objekte.

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,..., Whund1<i<n.

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,..., Whund1<i<n.
Idee: Def. f(i,w) :=

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,..., Whund1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,..., Whund1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f().

Rekursive Definition
Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,....,Wlund1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

Berechnung.

f(17w) —

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.

Seiwe{l,....Whund1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

f,Ul Berechnung.

f(1,w) = «

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

)
v falls wy < w, Berechnung.

f(Lw) = <

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

)
v falls wy < w, Berechnung.

sonst.

f(Lw) = <

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

)
v falls wy < w, Berechnung.

0 sonst.

f(Lw) = <

\

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

)
v falls wy < w, Berechnung.

0 sonst.

f(Lw) = <

\

und fir 2 <1 < n:

f(i,w) =

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

)
v falls wy < w. Berechnung.

0 sonst.

f(1,w) = «

\

und fir 2 <1 < n:

/

1, W) = < -
fi,w) else.

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

)
v falls wy < w. Berechnung.

0 sonst.

f(1,w) = «

\

und fir 2 <1 < n:

/

fli w) =< f(i—1,w) else.

\

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

)
v falls wy < w. Berechnung.

0 sonst.

f(1,w) = «

\

und fir 2 <1 < n:

£(i w):<(v, + fli — 1, w — w;) if w; < w,
’ f(i—1,w) else.

\

Rekursive Detfinition

Sei n die Anzahl der Objekte. O.B.d.A.sei U ={1,2,...,n}.
Seiwe {1,...,Whlund 1<i<n.

Idee: Def. f(i,w) := maximaler Wert von » _._, v;, wobei
RC{1,2,...,i}und) . pw; < w.

Dann suchen wir f(n, W).

)
v falls wy < w. Berechnung.

0 sonst.

f(1,w) = «

\

und fir 2 <1 < n:

£(i w):<(v, + fli — 1, w — w;) if w; < w,
’ f(i—1,w) else.

\

Dynamisches Programm

Probieren Sie selbst, die Eintrage der DP-Tabelle f[:,w] in der
richtigen Reihenfolge zu befiillen!

Ausblick

Master-Vorlesung ,,Advanced Algorithms”

Spannendes Video (30') von Thomas van Dijk zu praktischen

Aspekten der Implementierung eines Algorithmus fiir das
Rucksack-Problem:

https://go.uniwue.de/algoprac4

	Titel
	Das DP von Bellman \& Held-Karp
	Das Rucksack-Problem
	Bad News
	Was tun?
	Rekursive Definition
	Dynamisches Programm
	Ausblick

