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Das DP von Bellman & Held-Karp

BeIImanHeIdKarp(Knotenmenge V, Abstande c: V XV — ]Rizo)

for : =2 to n do
| OPT[{wi},vi] = c(vi,vi) =

for j=2ton—1do
foreach W C {wvo,...,v,} mit |W| =7 do
foreach v, € W do
- OPT[W,v;] = miny. cw\ {0,} OPT[W \{w; },v5]+c(vy,0;)

re_turn ming-1 OPT[V \ {vi}, vp] + (v, v1) @
U1
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Bad News

Satz. Das Rucksack-Problem ist NP-schwer.

Bewelis. Durch Reduktion vom Problem ...

COMPUTERS AND INTRACTABILITY
A Guide 1o the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

[siehe Buch von Garey & Johnson]
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Dynamisches Programm

Probieren Sie selbst, die Eintrage der DP-Tabelle f[:,w] in der
richtigen Reihenfolge zu befiillen!



Ausblick

Master-Vorlesung ,,Advanced Algorithms”

Spannendes Video (30') von Thomas van Dijk zu praktischen

Aspekten der Implementierung eines Algorithmus fiir das
Rucksack-Problem:

https://go.uniwue.de/algoprac4
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