
Lehrstuhl für Informatik I
Algorithmen und Komplexität

Universität Würzburg

Würzburg, den 23. Dezember 2021

Prof. Dr. Alexander Wolff
Felix Klesen, M. Sc.

8. Übungsblatt zur Vorlesung
Algorithmen und Datenstrukturen (Winter 2021/22)

Aufgabe 1 – Spezialsuche

Gegeben sei ein Feld A[1..k] mit ganzen Zahlen, für die A[1] < A[2] < · · · < A[k] gilt.
Geben Sie in Worten und im Pseudocode einen Algorithmus an, der ermittelt, ob es
eine Zahl j ∈ {1, . . . , k} mitA[j] = j gibt. Die Worst-Case Laufzeit Ihres Algorithmus soll
Θ(logk) sein. 5 Punkte

Hinweis: Finden Sie ein geeignetes, leicht zu berechnendes Kriterium, um damit den
gesuchten Index zu suchen. Bedenken Sie auch die besondere Struktur von A.

Aufgabe 2 – Schlange aus zwei Stapeln analysieren

Zwei Stapel S1, S2 können wie folgt eine Schlange Q simulieren:

• Enqueue(x): führe S1.Push(x) aus – lege also x auf den ersten Stapel.

• Dequeue(): Ist S2 leer, führe solange S2.Push(S1.Pop()) aus, bis S1 leer ist – ver-
schiebe die Elemente der Reihe nach von S1 auf S2. Danach führe S2.Pop() aus.

• Empty(): gibt true zurück, falls S1 und S2 leer sind, sonst false.

Betrachten Sie nun eine zufällige Folge der Länge n bestehend aus Enqueue-, Dequeue-
und Empty-Operationen auf Q.

a) Argumentieren Sie, warum die Worst-Case-Laufzeit einer einzelnen Dequeue-
Operation auf Q in Θ(n) liegt. 3 Punkte

b) Zeigen Sie mit amortisierter Analyse: die Gesamtlaufzeit für jede Folge liegt eben-
falls in Θ(n). Eine einzelne Dequeue-Operation benötigt amortisiert also nur kon-
stante Laufzeit. Wieso ist dies kein Widerspruch zu Teilaufgabe a)? 3 Punkte

1



Aufgabe 3 – MultiPop

Gegeben sei die folgende Funktion, welche auf einem Stapel S arbeitet:

MultiPoP(k)
while S nicht leer and k > 0 do
S.Pop()
k = k− 1

Wir betrachten nun eine Sequenz von n Stapel-Operationen (Push, Pop und MultiPop).

a) Zeigen Sie, dass die Worst-Case-Laufzeit einer einzelnen MultiPop-Operation auf S in
Θ(n) liegt. 2 Punkte

b) Zeigen Sie nun mit Hilfe von amortisierter Analyse, dass die Gesamtlaufzeit einer
solchen Sequenz ebenfalls in Θ(n) liegt. Wieso ist dies kein Widerspruch zu Teilauf-
gabe a)? 2 Punkte

Aufgabe 4 – Listen-Augmentierung

Die Datenstruktur doppelt verkettete Liste soll um eine Methode Invert erweitert werden,
nach deren Ausführung sich die Methoden der Liste so verhalten, als ob die Listenele-
mente in umgekehrter Reihenfolge in der Liste stehen würden, beispielsweise durch-
sucht Search die Liste nun von hinten nach vorne. Nach erneutem Aufruf von Invert
soll die Reihenfolge wieder umgekehrt werden.

Beispiel: Gegeben sei die Liste A = 〈1, 2, 3〉. Führt man die Operation A.Insert(4) aus, so
ergibt sich die Liste 〈4, 1, 2, 3〉. Nachdem man nun nacheinander die Operationen

A.Invert, A.Insert(5), A.Invert
ausgeführt hat, ergibt sich die Liste 〈4, 1, 2, 3, 5〉.

Skizzieren Sie in Worten, wie man die aus der Vorlesung bekannte Liste augmentieren
kann, so dass Invert nur O(1) Zeit benötigt und sich die asymptotische Worst-Case-
Laufzeiten von Search, Insert und Delete nicht ändern. Erklären Sie, wie Sie Invert
implementieren und wie Sie die genannten Operationen der Liste anpassen um die
Anforderungen zu erfüllen. 5 Punkte

Bitte geben Sie Ihre Lösungen bis Donnerstag, 13. Januar 2022, 14:00 Uhr einmal pro
Gruppe über Wuecampus als pdf-Datei ab. Vermerken Sie dabei stets die Namen und
Übungsgruppen aller BearbeiterInnen auf der Abgabe.

Grundsätzlich sind stets alle Ihrer Aussagen zu begründen und Ihr Pseudocode ist stets
zu kommentieren.

Die Lösungen zu den mit PABS gekennzeichneten Aufgaben, geben Sie bitte nur über
das PABS-System ab. Vermerken Sie auf Ihrem Übungsblatt, in welchem Repository
(sXXXXXX-Nummer) die Abgabe zu finden ist. Geben Sie Ihre Namen hier als Kom-
mentare in den Quelltextdateien an.

2


