

Homework Assignment #6

Approximation Algorithms (Winter Semester 2021/22)

Exercise 1 – METRIC- k -CLUSTER

Let $G = (V, E)$ be a complete graph with edge weights $c: E \rightarrow \mathbb{Q}_{\geq 0}$ that satisfy the triangle inequality. Let k be a positive integer. We want to find a partition of V into k sets of vertices V_1, \dots, V_k , called *clusters*, such that the weight of the most expensive intra-cluster edge is minimized. In other words, we have to minimize

$$\max_{1 \leq i \leq k, u, v \in V_i} c(u, v).$$

- Devise a factor-2 approximation algorithm for this problem. [7 points]
- Show that under the assumption $P \neq NP$, there exists no factor- $(2 - \varepsilon)$ approximation algorithm for this problem, where $\varepsilon > 0$.

Suggestion: Use the hardness of the graph coloring problem: Given a graph $G = (V, E)$ and a parameter k , can the vertices in V be colored with at most k colors such that no two adjacent vertices share a color? [7 points]

Exercise 2 – Greedy for METRIC- k -CENTER

Consider the following greedy algorithm for METRIC- k -CENTER.

Algorithm 1: Greedy-Metric- k -Center($G = (V, E; c), k$)

- 1 Pick an arbitrary vertex $v \in V$
- 2 $S \leftarrow \{v\}$
- 3 **while** $|S| < k$ **do**
- 4 $u \leftarrow$ Vertex with $c(u, S) = \max_{v \in V} c(v, S)$
- 5 $S \leftarrow S \cup \{u\}$

Show that this algorithm is a factor-2-approximation for METRIC- k -CENTER. [6 points]