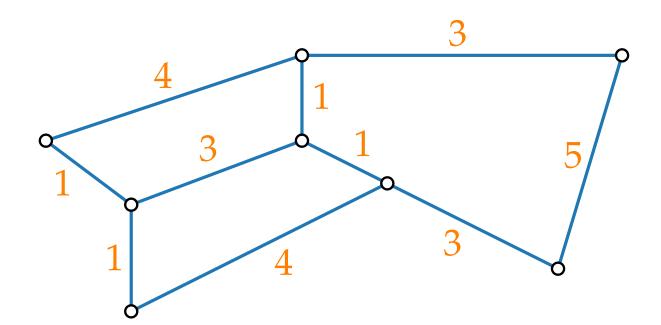
Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

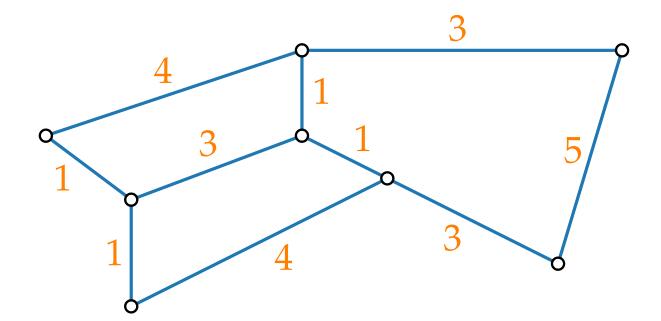
Part I:
SteinerForest

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$



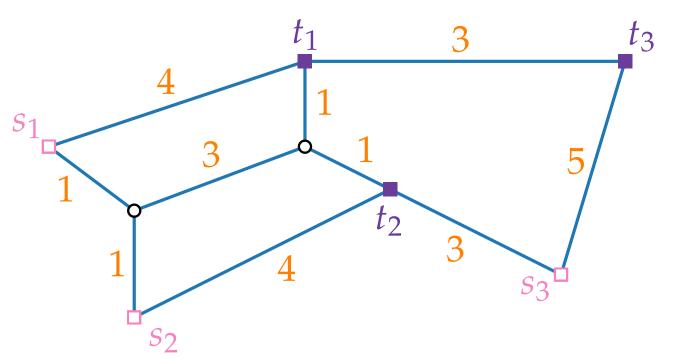
Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices



Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices

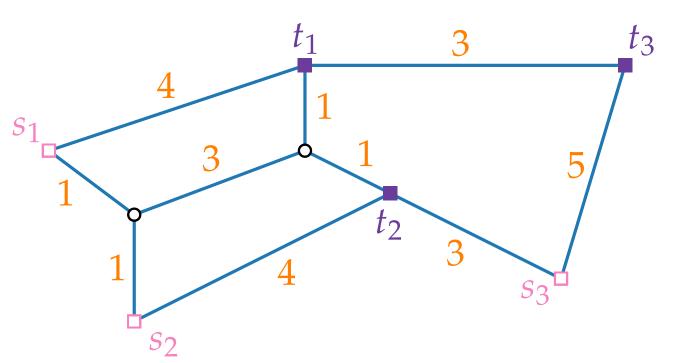


Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices

Task:

Find an edge set $F \subseteq E$ with min. total cost c(F)



Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices

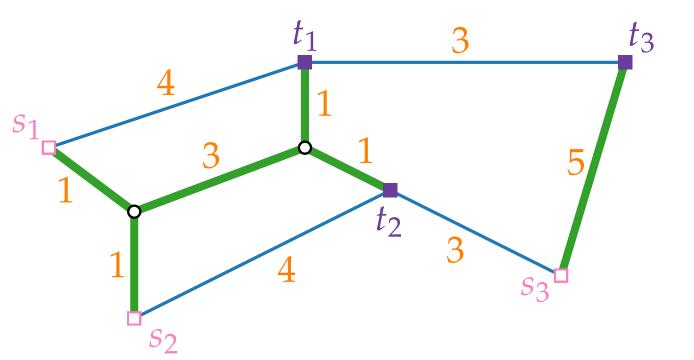
Task:



Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices

Task:

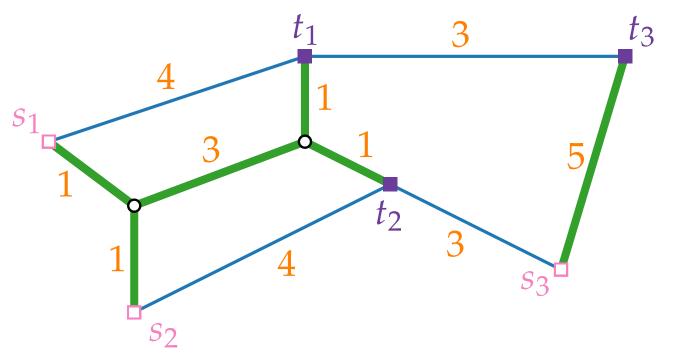


Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices

Task:

Find an edge set $F \subseteq E$ with min. total cost c(F) such that in the subgraph (V, F) each pair (s_i, t_i) , i = 1, ..., k is connected.

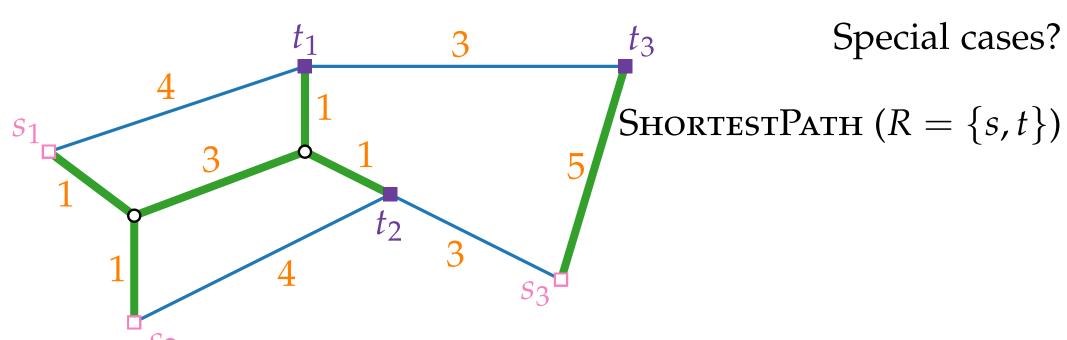


Special cases?

Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices

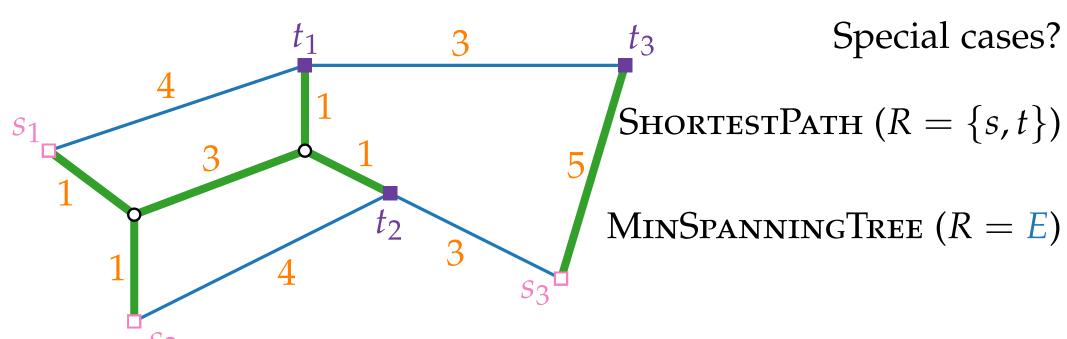
Task:



Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices

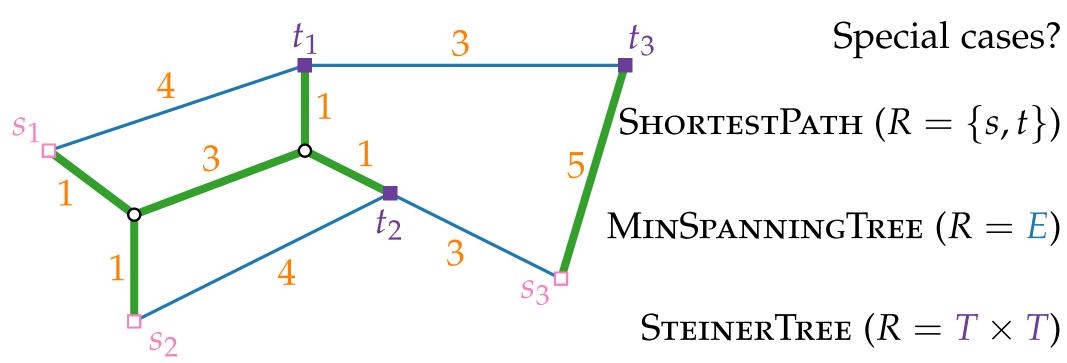
Task:



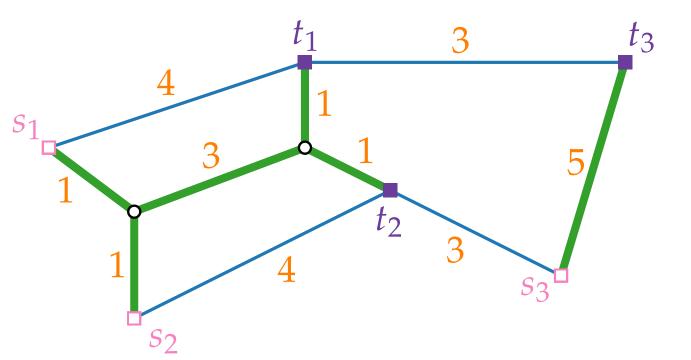
Given:

A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k pairs of vertices

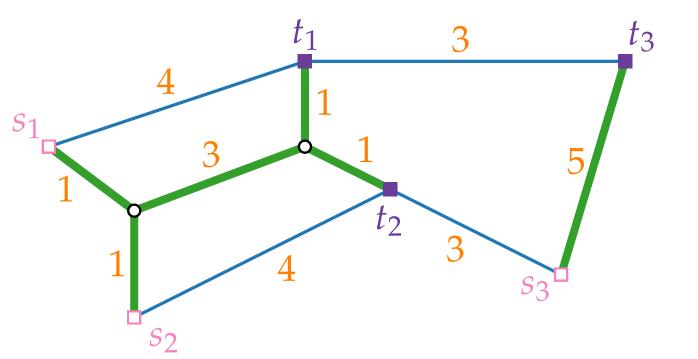
Task:



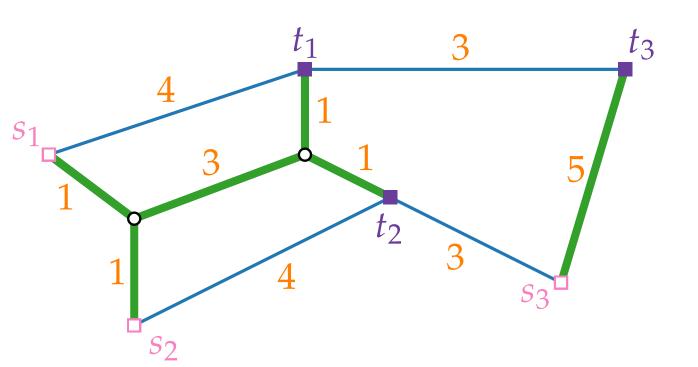
■ Merge k shortest s_i - t_i -paths



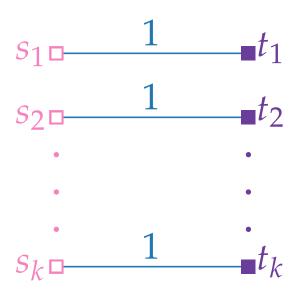
- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals



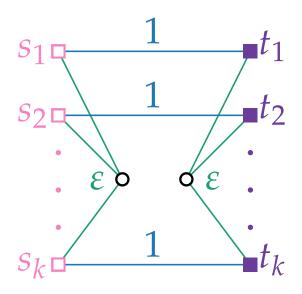
- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals



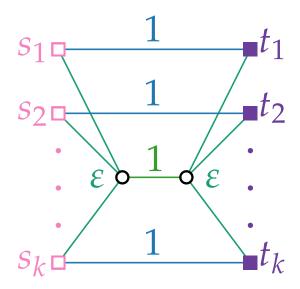
- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals



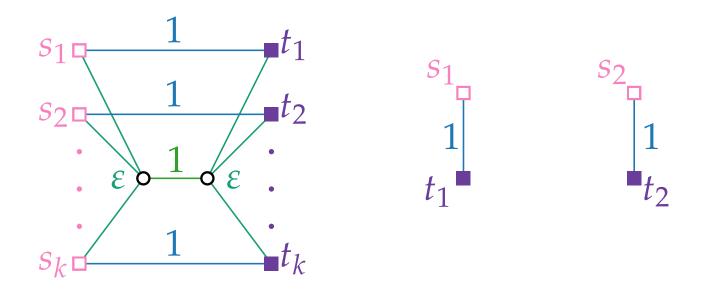
- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals



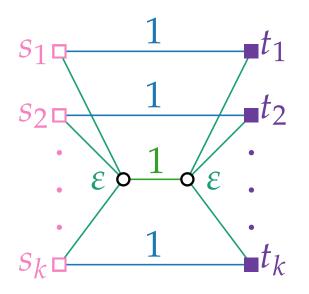
- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals

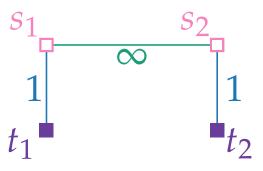


- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals



- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals

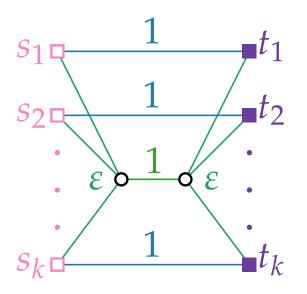


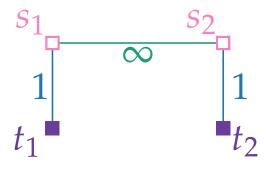


- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals

Above approaches perform poorly :-(

Difficulty: which terminals belong to the same tree of the forest?





Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

Part II:
Primal and Dual LP

minimize

subject to

minimize

subject to

$$x_e \in \{0,1\}$$

$$e \in E$$

minimize
$$\sum_{e \in E} c_e x_e$$

subject to

$$x_e \in \{0,1\}$$
 $e \in E$

$$e \in E$$

minimize
$$\sum_{e \in E} c_e x_e$$

subject to

$$x_e \in \{0,1\}$$

$$e \in E$$

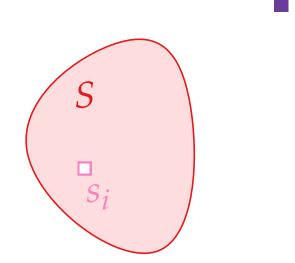
 $^{\bullet}$ t_i

minimize
$$\sum_{e \in E} c_e x_e$$

subject to

$$x_e \in \{0,1\}$$
 $e \in E$

$$e \in E$$

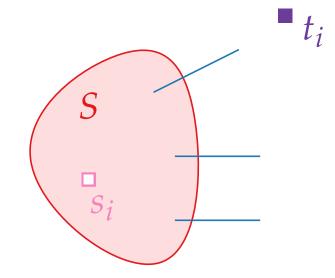


minimize
$$\sum_{e \in E} c_e x_e$$

subject to

$$x_e \in \{0,1\}$$
 $e \in E$

$$e \in E$$

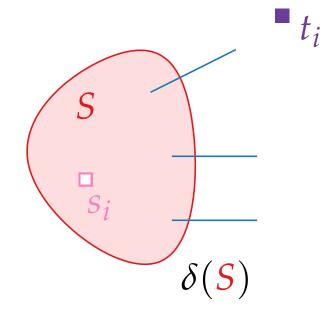


minimize
$$\sum_{e \in E} c_e x_e$$

subject to

$$x_e \in \{0,1\}$$

$$e \in E$$



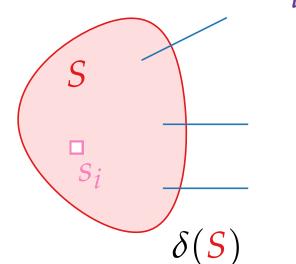
minimize
$$\sum_{e \in E} c_e x_e$$

subject to

$$x_e \in \{0,1\}$$

$$e \in E$$

$$\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$$



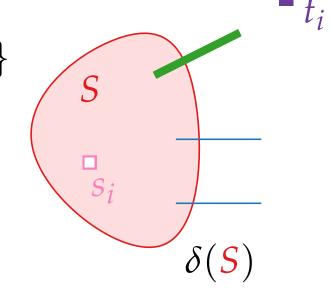
 \blacksquare t

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to

$$x_e \in \{0,1\}$$

$$e \in E$$

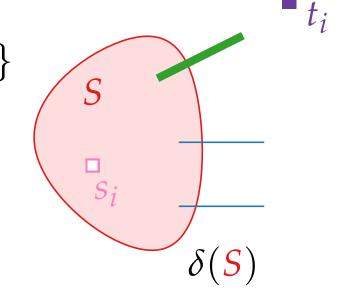
$$\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$$



minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$
 $x_e \in \{0, 1\}$ $e \in E$

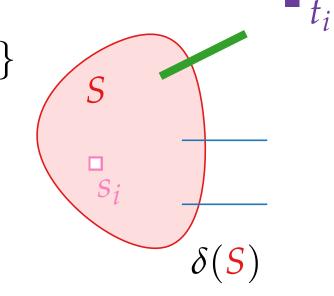
$$\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$$



minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in S_i, i = 1, ..., k$
 $x_e \in \{0, 1\}$ $e \in E$

$$\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$$

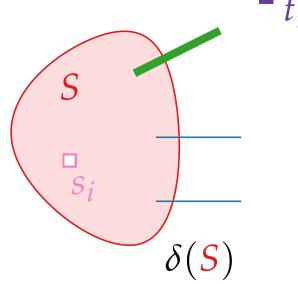


minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in S_i, i = 1, ..., k$
 $x_e \in \{0, 1\}$ $e \in E$

where
$$S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}$$

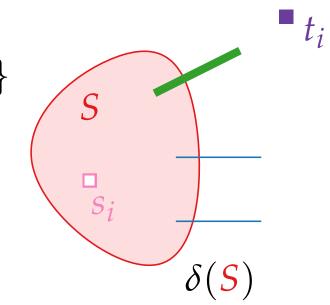
and $\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$



minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in \mathcal{S}_i, i = 1, \dots, k$
 $x_e \in \{0, 1\}$ $e \in E$

where $S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}$ and $\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$ \leadsto exponentially many constraints!



LP-Relaxation and Dual LP

minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in S_i, i = 1, ..., k$
 $x_e \ge 0$ $e \in E$

LP-Relaxation and Dual LP

minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in S_i, i = 1, ..., k$ (y_S)
 $x_e \ge 0$ $e \in E$

LP-Relaxation and Dual LP

minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in S_i, i = 1, ..., k$ (y_S)
 $x_e \ge 0$ $e \in E$

maximize

subject to

$$y_S \geq 0$$

$$S \in \mathcal{S}_i, i = 1, \ldots, k$$

LP-Relaxation and Dual LP

minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in S_i, i = 1, ..., k$ (y_S)
 $x_e > 0$ $e \in E$

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i=1,...,k}} y_S$$

subject to

$$y_S \geq 0$$

$$S \in \mathcal{S}_i, i = 1, \ldots, k$$

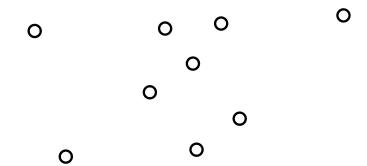
LP-Relaxation and Dual LP

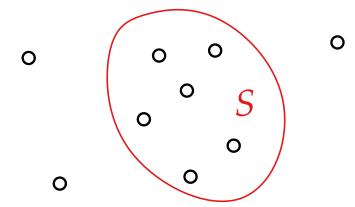
minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in S_i, i = 1, ..., k$ (y_S)
 $x_e \ge 0$ $e \in E$

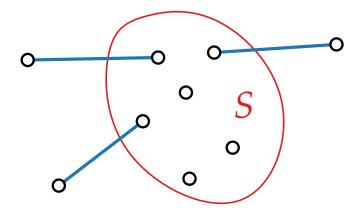
maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i=1,...,k}} y_S$$
subject to $\sum_{S: e \in \delta(S)} y_S \leq c_e$ $e \in E$
 $y_S \geq 0$ $S \in \mathcal{S}_i, i = 1,...,k$

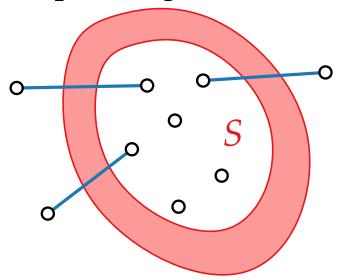
```
maximize \sum_{\substack{S \in \mathcal{S}_i \\ i=1,...,k}} y_S subject to \sum_{S:\ e \in \delta(S)} y_S \leq c_e e \in E y_S \geq 0 S \in \mathcal{S}_i, i=1,...,k
```





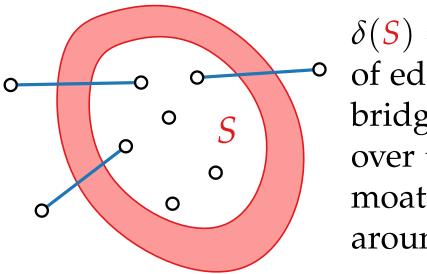
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ s:\ e \in \mathcal{S}(S) \\ \end{array} \quad e \in E \\ S:\ e \in \mathcal{S}_i, i=1,\ldots,k \\ \end{array}$$





$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ & s:\ e \in \mathcal{S}(s) \\$$

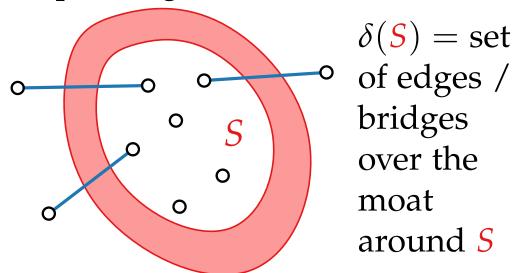
The graph is a network of **bridges**, spanning the **moats**.



 $\delta(S) = \text{set}$ of edges / bridges over the moat around S

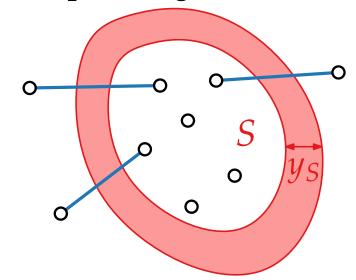
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ y_S \geq 0 & S \in \mathcal{S}_i, i=1,\ldots,k \end{array}$$

The graph is a network of **bridges**, spanning the **moats**.



$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ & \mathbf{y}_S \geq 0 \\ & S \in \mathcal{S}_i, i=1,\ldots,k \end{array}$$

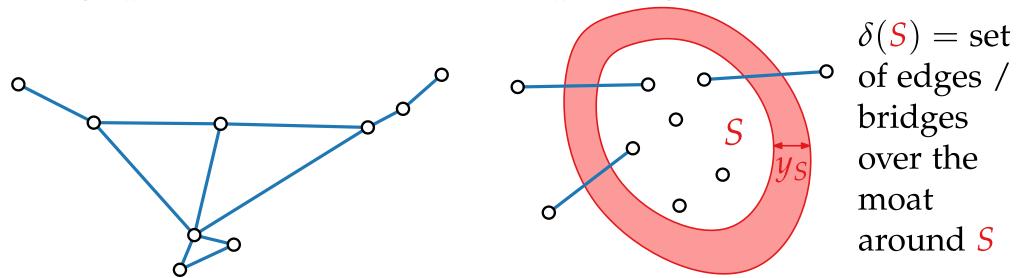
The graph is a network of **bridges**, spanning the **moats**.



 $\delta(S) = \text{set}$ of edges /
bridges
over the
moat
around S

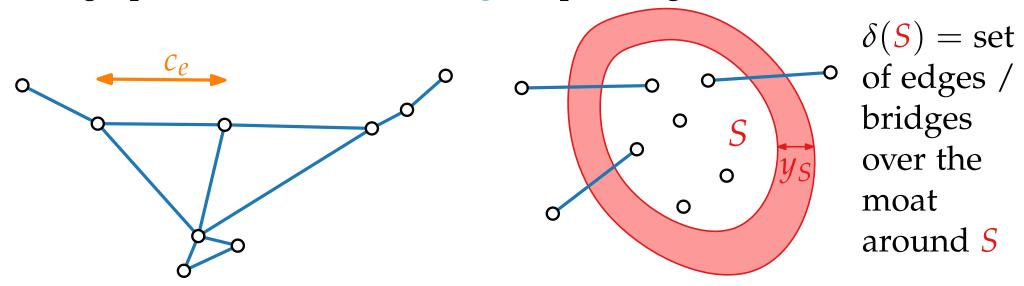
maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i=1,...,k}} y_S$$
subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e$$
 $e \in E$ $y_S \geq 0$ $S \in \mathcal{S}_i, i = 1,...,k$

The graph is a network of **bridges**, spanning the **moats**.



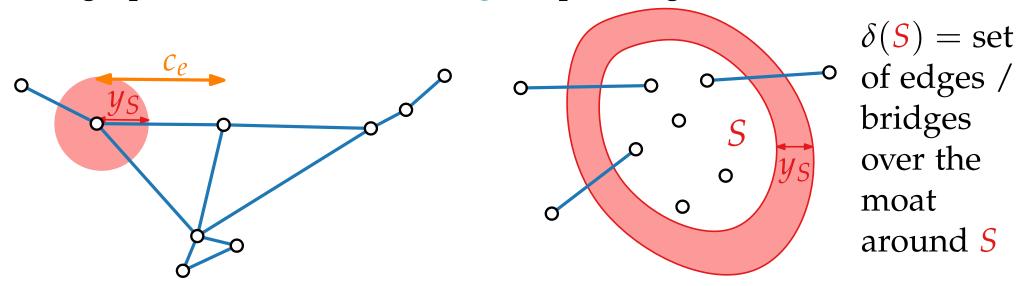
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ & \mathbf{y}_S \geq 0 \\ & \mathbf{S} \in \mathcal{S}_i, i=1,\ldots,k \\ \end{array}$$

The graph is a network of **bridges**, spanning the **moats**.



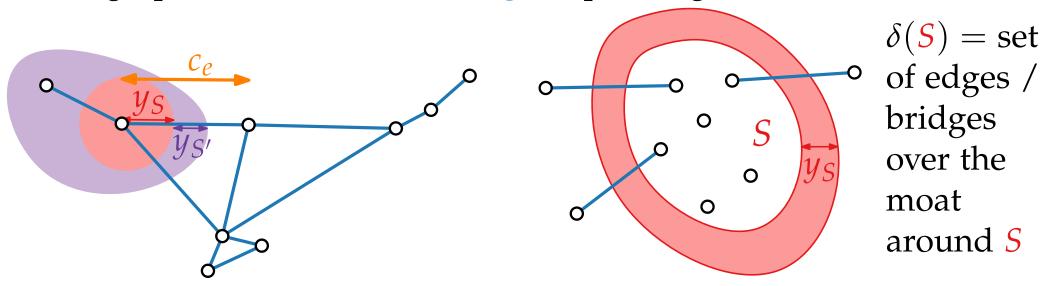
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ y_S \geq 0 & S \in \mathcal{S}_i, i=1,\ldots,k \end{array}$$

The graph is a network of **bridges**, spanning the **moats**.



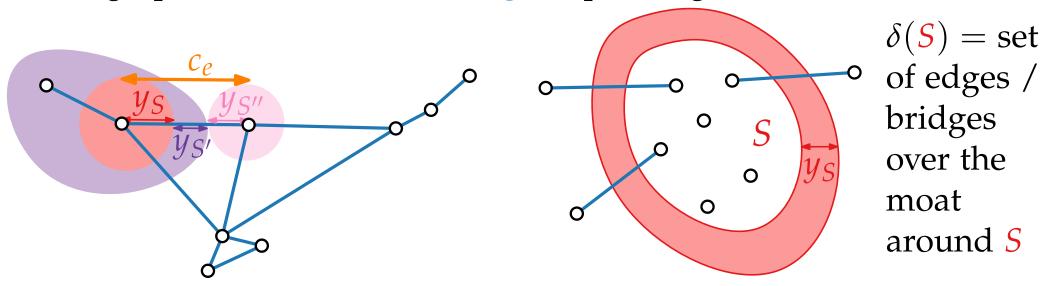
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ y_S \geq 0 & S \in \mathcal{S}_i, i=1,\ldots,k \end{array}$$

The graph is a network of **bridges**, spanning the **moats**.



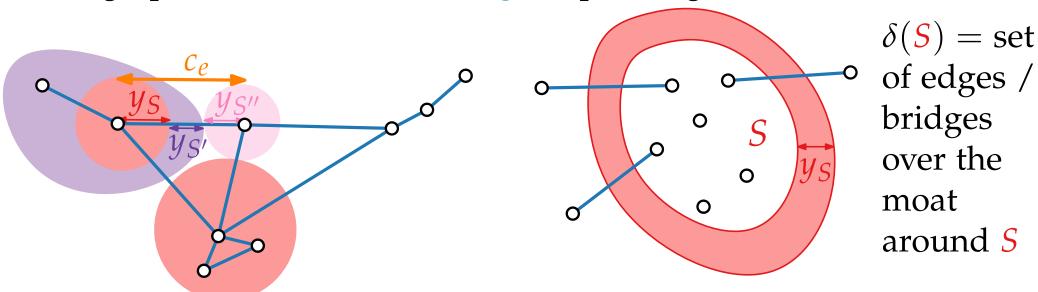
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ s:\ e \in \mathcal{S}(S) \\ \end{array} \qquad \begin{array}{ll} e \in E \\ S \in \mathcal{S}_i, i=1,\ldots,k \end{array}$$

The graph is a network of **bridges**, spanning the **moats**.



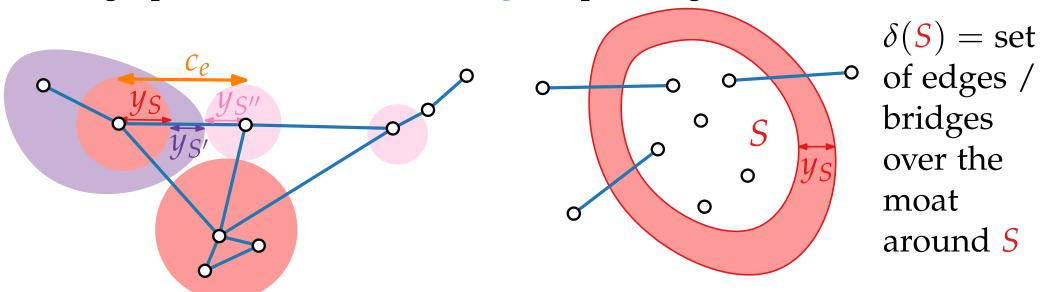
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ & \\ y_S \geq 0 \end{array} \qquad e \in E \\ & \\ S \in \mathcal{S}_i, i=1,\ldots,k \end{array}$$

The graph is a network of **bridges**, spanning the **moats**.



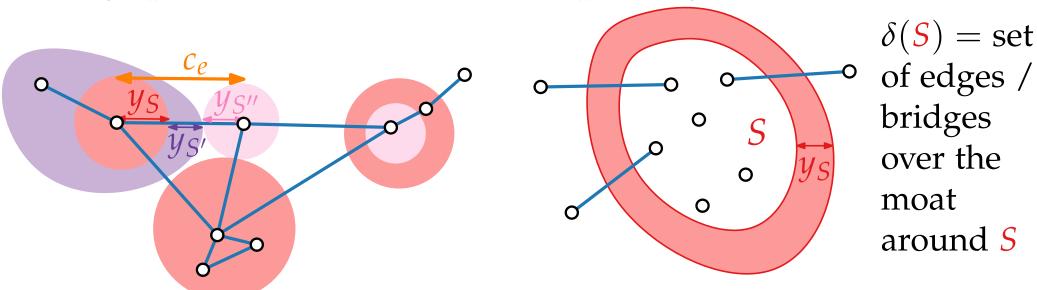
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ & s:\ e \in \mathcal{S}(S) \\ & s:\ e \in \mathcal{S}(S)$$

The graph is a network of **bridges**, spanning the **moats**.



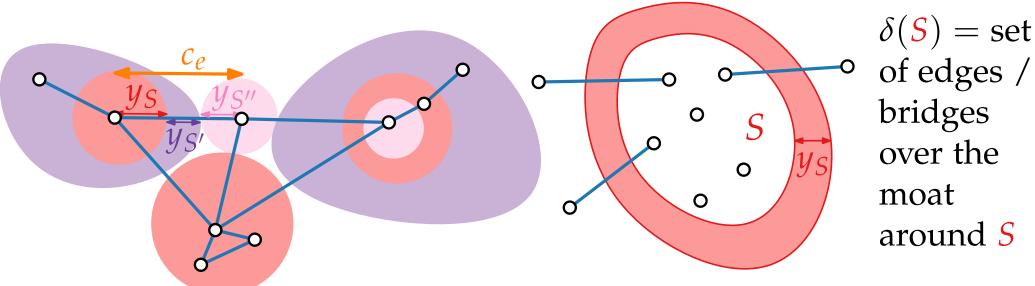
$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ y_S \geq 0 & S \in \mathcal{S}_i, i=1,\ldots,k \end{array}$$

The graph is a network of **bridges**, spanning the **moats**.



$$\begin{array}{ll} \mathbf{maximize} & \sum\limits_{\substack{S \in \mathcal{S}_i \\ i=1,\ldots,k}} y_S \\ \mathbf{subject\ to} & \sum\limits_{\substack{S:\ e \in \delta(S)}} y_S \leq c_e \\ & \\ y_S \geq 0 \end{array} \qquad e \in E \\ & \\ S \in \mathcal{S}_i, i=1,\ldots,k \end{array}$$

The graph is a network of **bridges**, spanning the **moats**.



 y_S = width of the **moat** around S

of edges / bridges over the

Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

> Part III: A First Primal-Dual Approach

Complementary Slackness (Rep.)

minimize
$$c^{\mathsf{T}}x$$

subject to $Ax \geq b$
 $x \geq 0$

maximize
$$b^{\mathsf{T}}y$$

subject to $A^{\mathsf{T}}y \leq c$
 $y \geq 0$

Theorem. Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ be valid solutions for the primal and dual program (resp.). Then x and y are optimal if and only if the following conditions are met:

Primal CS:

For each j = 1, ..., n: either $x_j = 0$ or $\sum_{i=1}^m a_{ij} y_i = c_j$

Dual CS:

For each i = 1, ..., m: either $y_i = 0$ or $\sum_{j=1}^n a_{ij} x_j = b_i$

Complementary slackness: $x_e > 0 \Rightarrow$

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

→ Consider related connected component C!

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

→ Consider related connected component C!

How do we iteratively improve the Dual-Solution?

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

→ Consider related connected component C!

How do we iteratively improve the Dual-Solution?

 \rightsquigarrow increase $y_{\mathbb{C}}!$ (until some edge in $\delta(\mathbb{C})$ becomes critical)

PrimalDualSteinerForestNaive(G, c, R)

PrimalDualSteinerForestNaive(G, c, R)

$$y \leftarrow 0, F \leftarrow \emptyset$$

return F

PrimalDualSteinerForestNaive(G, c, R) $y \leftarrow 0, F \leftarrow \emptyset$ **while** some $(s_i, t_i) \in R$ not connected in (V, F) **do** return F

return F

```
PrimalDualSteinerForestNaive(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset
while some (s_i, t_i) \in R not connected in (V, F) do
C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
```

```
PrimalDualSteinerForestNaive(G, c, R)
  y \leftarrow 0, F \leftarrow \emptyset
  while some (s_i, t_i) \in R not connected in (V, F) do
       C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
       Increase y_C
  return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
  y \leftarrow 0, F \leftarrow \emptyset
  while some (s_i, t_i) \in R not connected in (V, F) do
       C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
       Increase y_C
             until y_S = c_{e'} for some e' \in \delta(C).
                     S: e' \in \delta(S)
  return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
  y \leftarrow 0, F \leftarrow \emptyset
  while some (s_i, t_i) \in R not connected in (V, F) do
       C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
       Increase y_C
             until y_S = c_{e'} for some e' \in \delta(C).
                     S: e' \in \delta(S)
      F \leftarrow F \cup \{e'\}
  return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
  y \leftarrow 0, F \leftarrow \emptyset
  while some (s_i, t_i) \in R not connected in (V, F) do
       C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
       Increase y_C
             until y_S = c_{e'} for some e' \in \delta(C).
                     S: e' \in \delta(S)
      F \leftarrow F \cup \{e'\}
  return F
```

Running Time?

```
PrimalDualSteinerForestNaive(G, c, R)
  y \leftarrow 0, F \leftarrow \emptyset
  while some (s_i, t_i) \in R not connected in (V, F) do
       C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
       Increase y_C
             until y_S = c_{e'} for some e' \in \delta(C).
                     S: e' \in \delta(S)
     F \leftarrow F \cup \{e'\}
  return F
```

Running Time?

Trick: Handle all y_S with $y_S = 0$ implicitly

$$\sum_{e \in F} c_e =$$

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F}$$

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S =$$

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution *F* can be written as

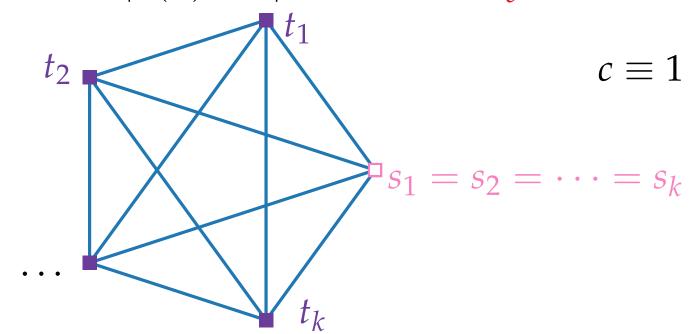
$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

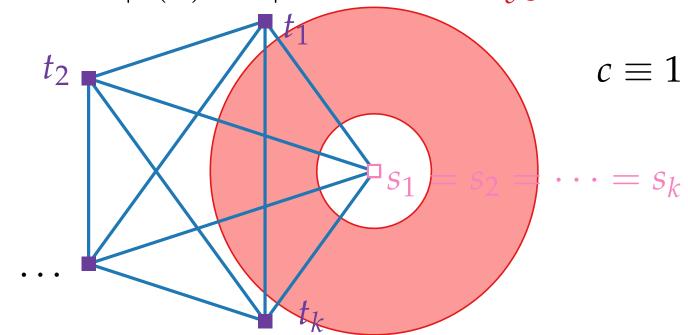
Compare to the value of the dual objective function $\sum_{S} y_{S}$



The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

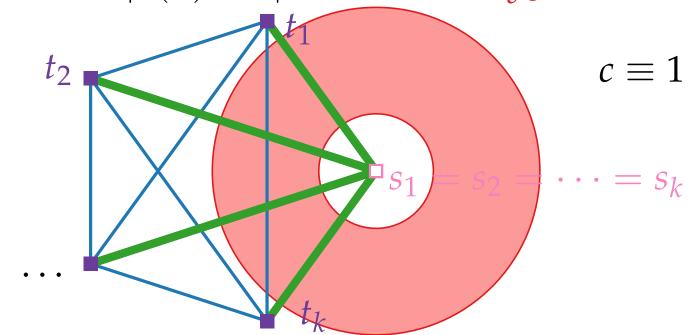
Compare to the value of the dual objective function $\sum_{S} y_{S}$



The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

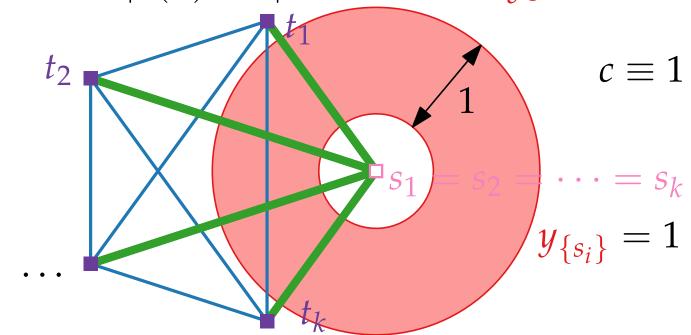
Compare to the value of the dual objective function $\sum_{S} y_{S}$



The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$



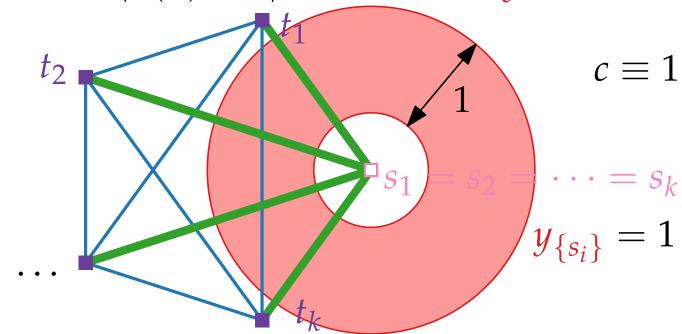
The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

But: Average degree of component is 2!



The cost of the solution *F* can be written as

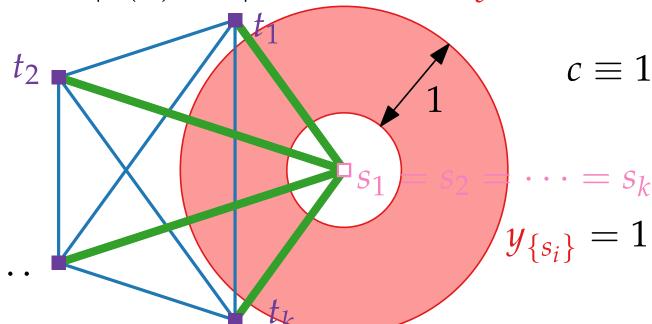
$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

But: Average degree of component is 2!

 \Rightarrow Increase y_C for all components C simultaneously!



Approximation Algorithms

Lecture 12:

SteinerForest via Primal-Dual

Part IV:

PrimalDualSteinerForest(G, c, R)

$$y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$$

while some $(s_i, t_i) \in R$ not connected in (V, F) do

$$\ell \leftarrow \ell + 1$$

$$F \leftarrow F \cup \{e_{\ell}\}$$

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
       \ell \leftarrow \ell + 1
       \mathcal{C} \leftarrow \{\text{comp. } \mathcal{C} \text{ in } (V, F) \text{ with } |\mathcal{C} \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
       F \leftarrow F \cup \{e_{\ell}\}
```

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
       \ell \leftarrow \ell + 1
       \mathcal{C} \leftarrow \{\text{comp. } \mathbf{C} \text{ in } (V, F) \text{ with } |\mathbf{C} \cap \{\mathbf{s}_i, t_i\}| = 1 \text{ for some } i\}
       Increase y_C for all C \in C simultaneously
      F \leftarrow F \cup \{e_{\ell}\}
```

```
PrimalDualSteinerForest(G, C, R)

y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0

while some (s_i, t_i) \in R not connected in (V, F) do

\ell \leftarrow \ell + 1

C \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}

Increase y_C for all C \in C simultaneously

until \sum_{S: e_\ell \in \delta(S)} y_S = c_{e_\ell} for some e_\ell \in \delta(C), C \in C.

S: e_\ell \in \delta(S)

F \leftarrow F \cup \{e_\ell\}
```

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
       \ell \leftarrow \ell + 1
      \mathcal{C} \leftarrow \{\text{comp. } \mathbf{C} \text{ in } (V, F) \text{ with } |\mathbf{C} \cap \{\mathbf{s}_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in C simultaneously
          until y_S = c_{e_\ell} for some e_\ell \in \delta(C), C \in C.
                   S: e_{\ell} \in \delta(S)
    F \leftarrow F \cup \{e_{\ell}\}
 F' \leftarrow F
```

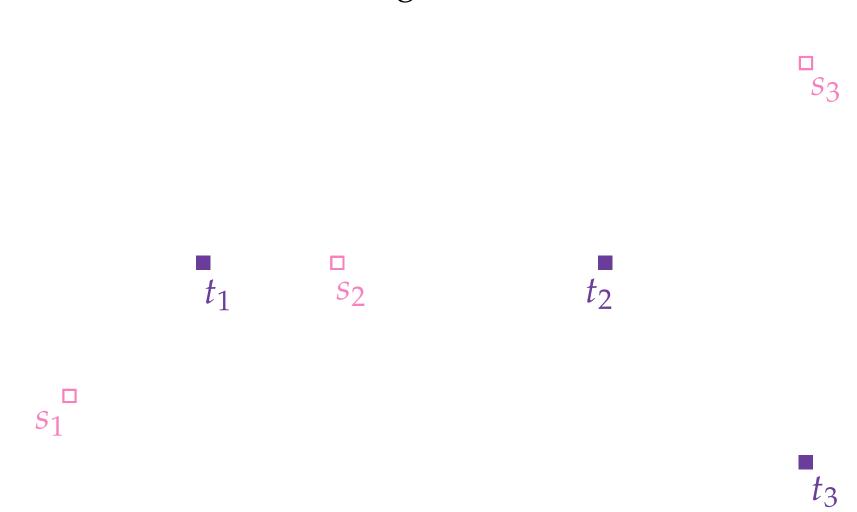
```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{C} \leftarrow \{\text{comp. } \mathbf{C} \text{ in } (V, F) \text{ with } |\mathbf{C} \cap \{\mathbf{s}_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in C simultaneously
          until y_S = c_{e_\ell} for some e_\ell \in \delta(C), C \in C.
                   S: e_{\ell} \in \delta(S)
    F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
// Pruning
```

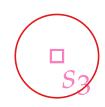
return F

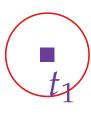
```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{C} \leftarrow \{\text{comp. } \mathbf{C} \text{ in } (V, F) \text{ with } |\mathbf{C} \cap \{\mathbf{s}_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in C simultaneously
          until y_S = c_{e_\ell} for some e_\ell \in \delta(C), C \in C.
                   S: e_{\ell} \in \delta(S)
   F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
// Pruning
for j \leftarrow \ell down to 1 do
return F
```

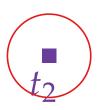
```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{C} \leftarrow \{\text{comp. } \mathbf{C} \text{ in } (V, F) \text{ with } |\mathbf{C} \cap \{\mathbf{s}_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in C simultaneously
          until y_S = c_{e_\ell} for some e_\ell \in \delta(C), C \in C.
                   S: e_{\ell} \in \delta(S)
   F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
// Pruning
for j \leftarrow \ell down to 1 do
     if F' \setminus \{e_i\} is feasible solution then
return F
```

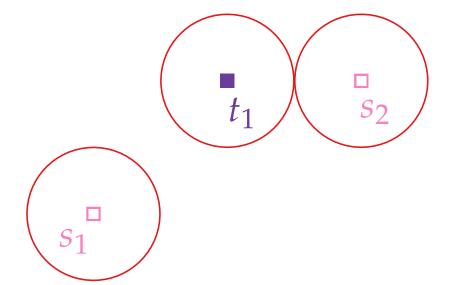
```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{C} \leftarrow \{\text{comp. } \mathbf{C} \text{ in } (V, F) \text{ with } |\mathbf{C} \cap \{\mathbf{s}_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in C simultaneously
          until y_S = c_{e_\ell} for some e_\ell \in \delta(C), C \in C.
                   S: e_{\ell} \in \delta(S)
   F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
// Pruning
for j \leftarrow \ell down to 1 do
      if F' \setminus \{e_i\} is feasible solution then
       F' \leftarrow F' \setminus \{e_i\}
return F'
```

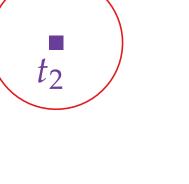


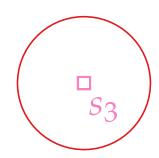


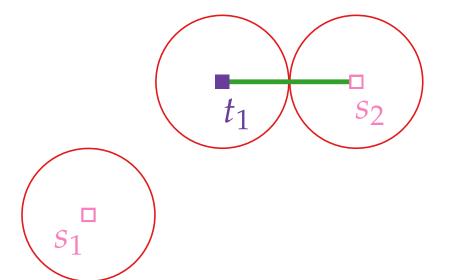




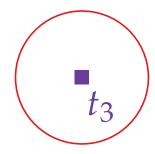


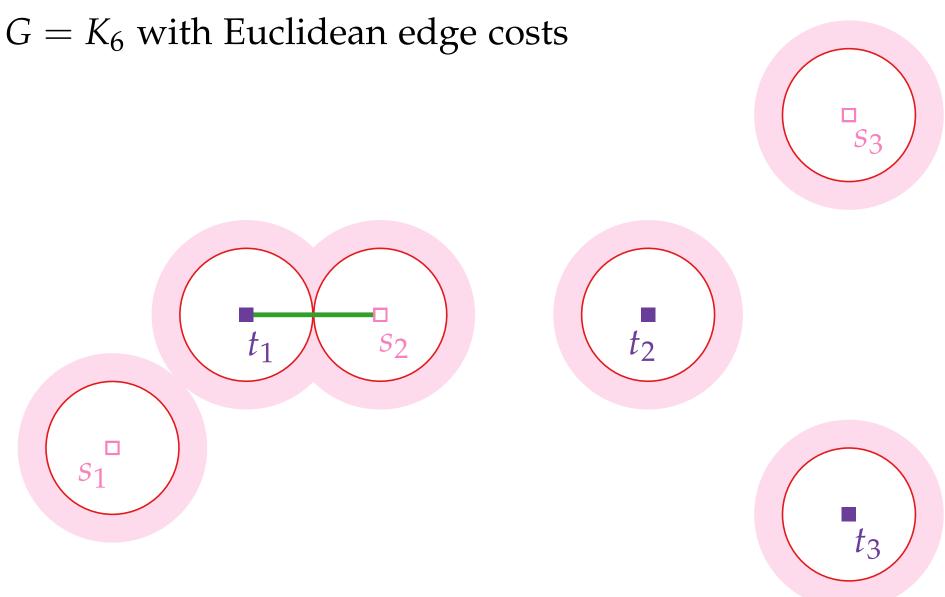


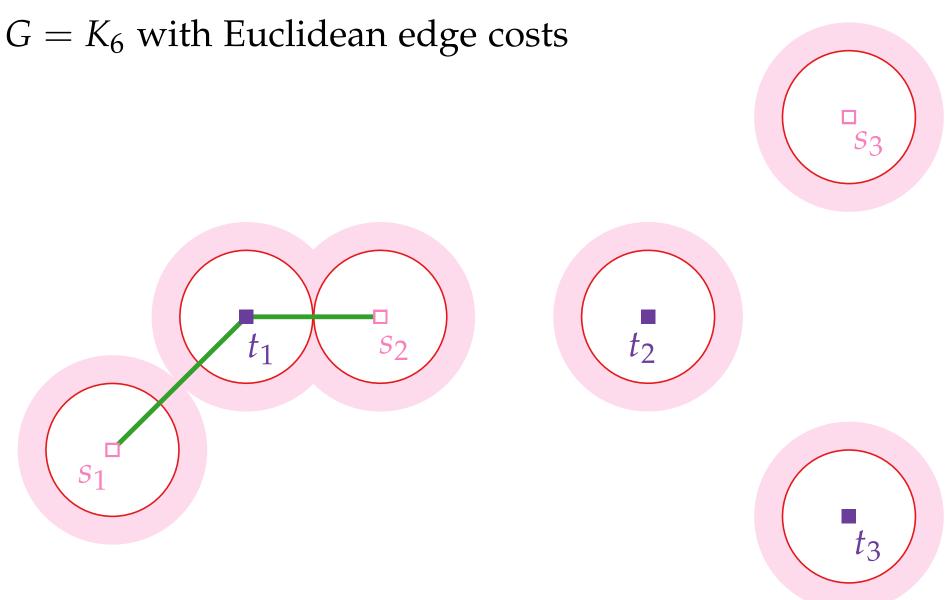


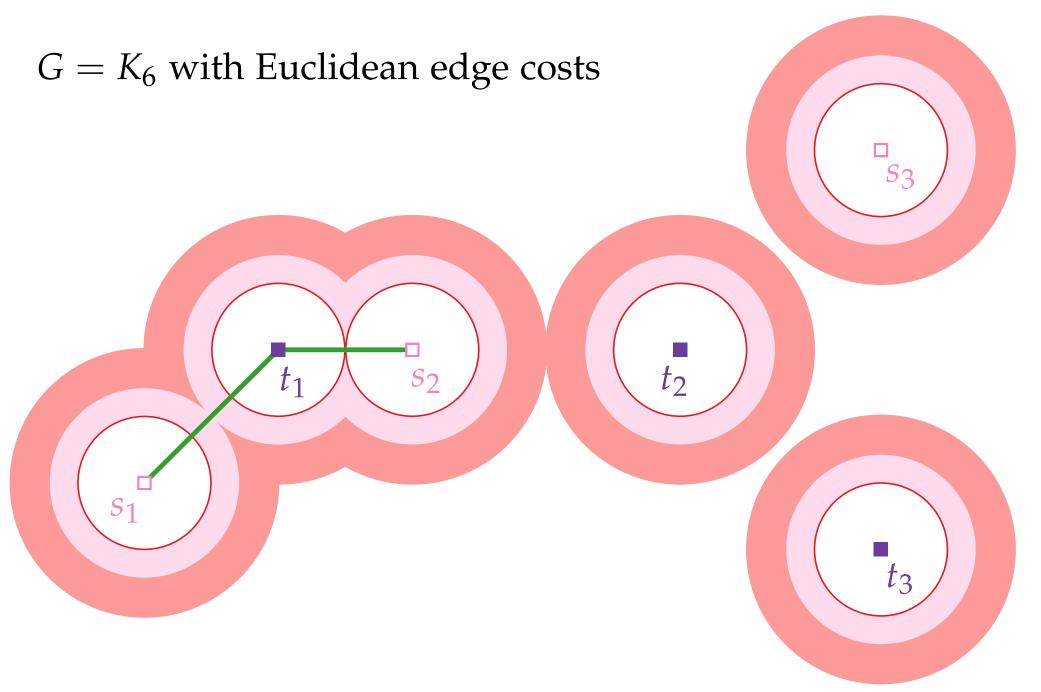


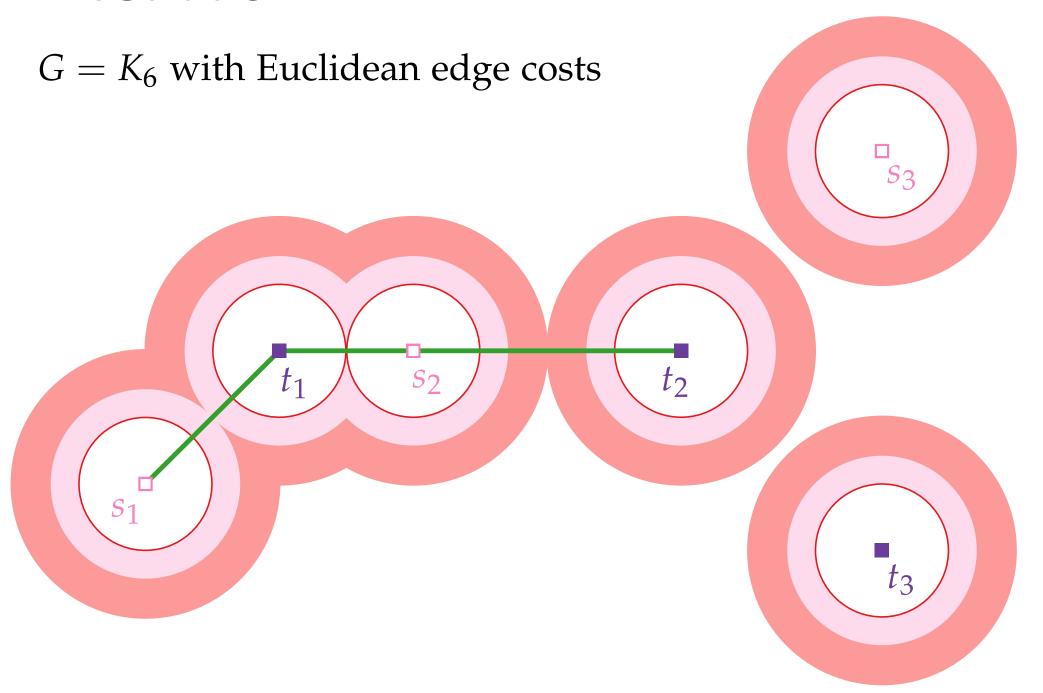


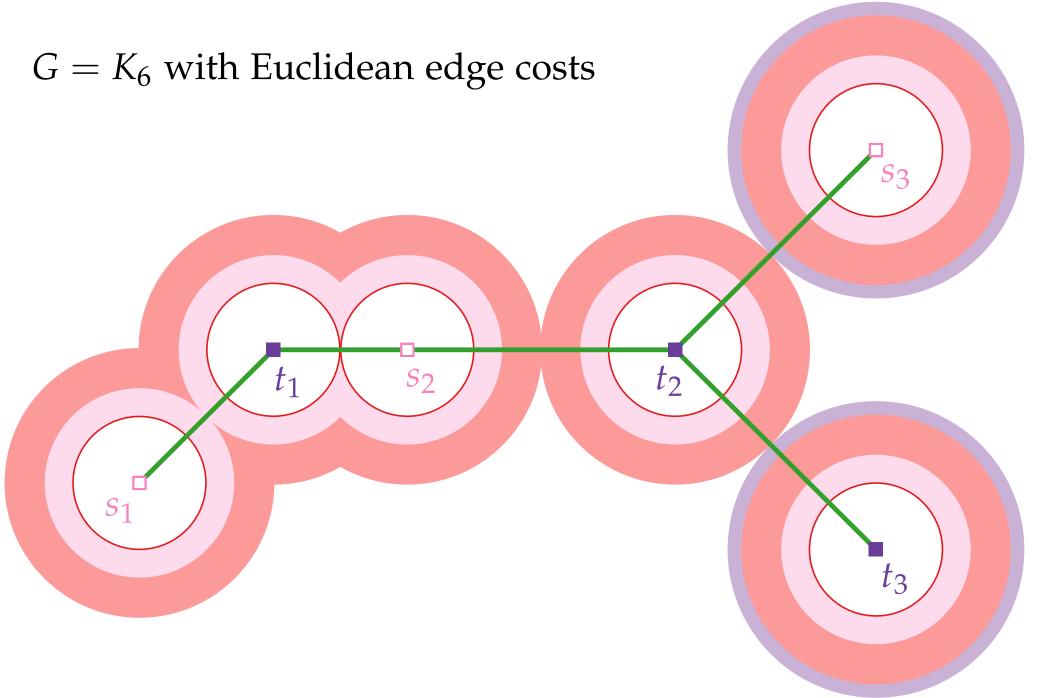




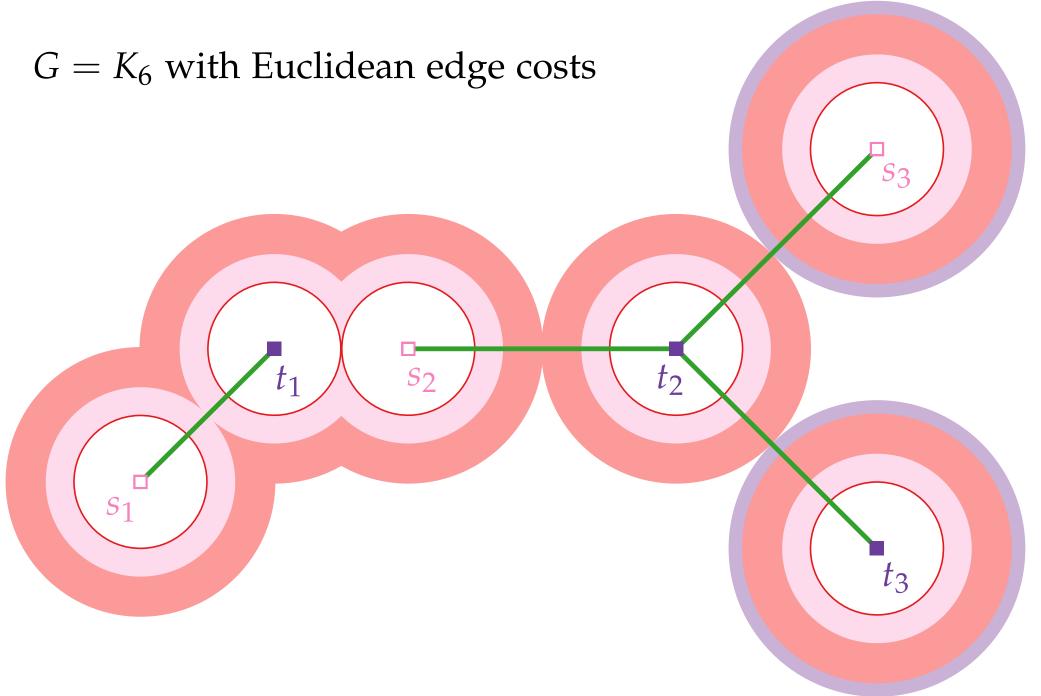








Illustration



Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

> Part V: Structure Lemma

Lemma. For each \mathcal{C} of an iteration of the algorithm:

Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq$$

Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$

Lemma.

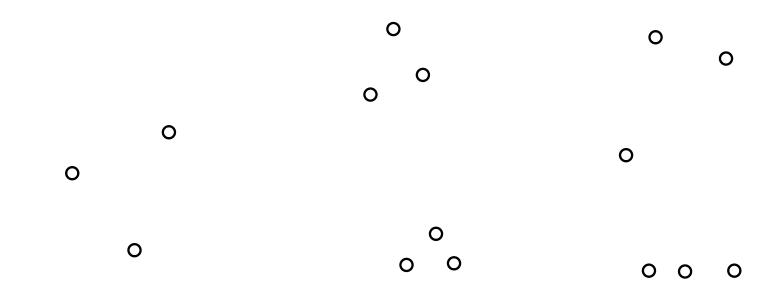
For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Lemma.

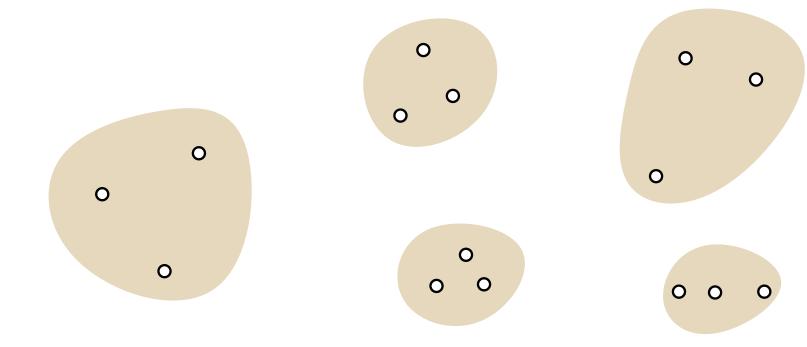
For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$



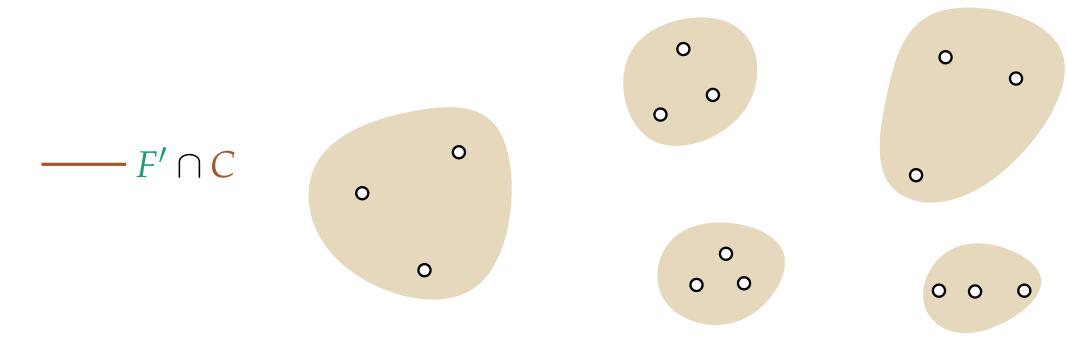
Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

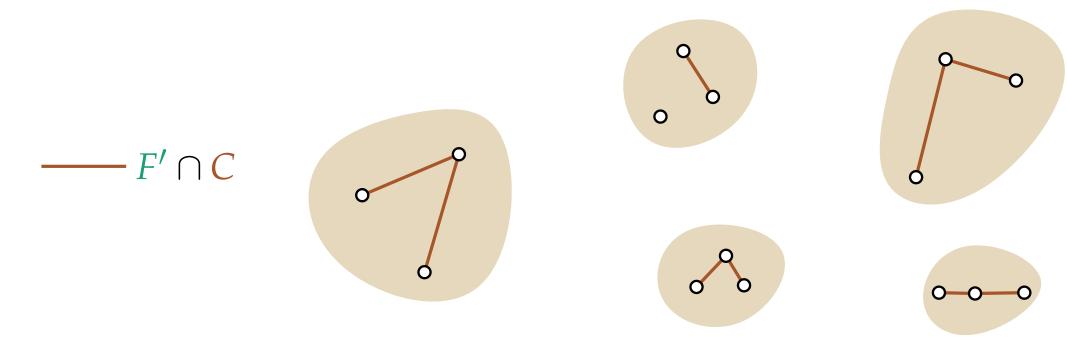
$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$



Lemma.

For each \mathcal{C} of an iteration of the algorithm:

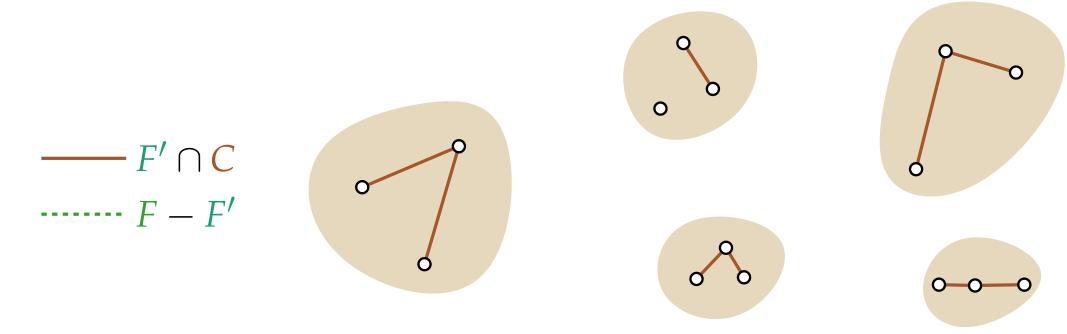
$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$



Lemma. For each \mathcal{C} of an i

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$



Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

$$\frac{-F' \cap C}{F - F'}$$

Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$

$$\frac{\delta(C) \cap F'}{F' \cap C} \\
\dots F - F'$$

Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$

$$\frac{\delta(C) \cap F'}{F' \cap C}$$

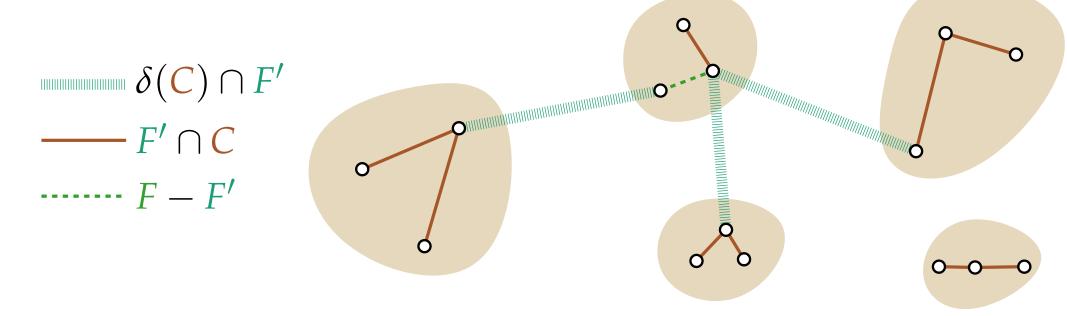
$$F - F'$$

Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$

Proof. First the intuition... each conn. component C of F is a forest in F' \rightsquigarrow avg. degree

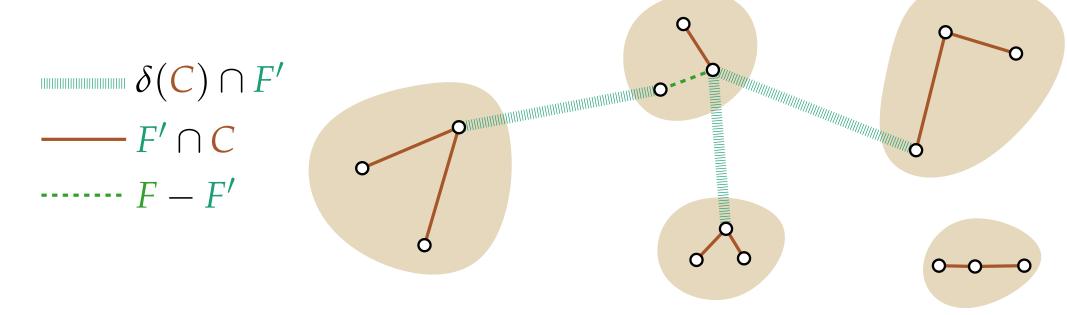


Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof. First the intuition... each conn. component C of F is a forest in F' \rightsquigarrow avg. degree ≤ 2



Lemma.

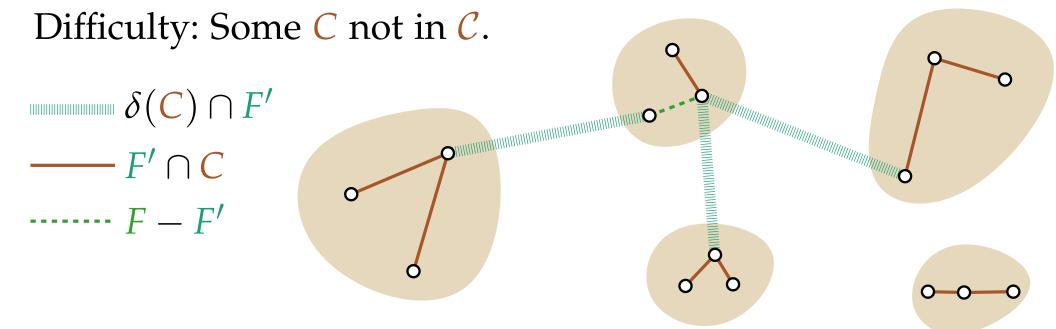
For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|C|.$$

Proof. First the intuition...

each conn. component C of F is a forest in F'

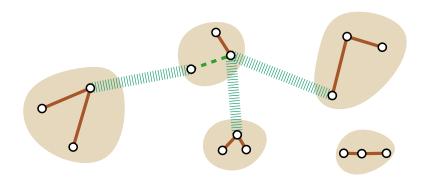
 \rightsquigarrow avg. degree ≤ 2



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$

Proof.



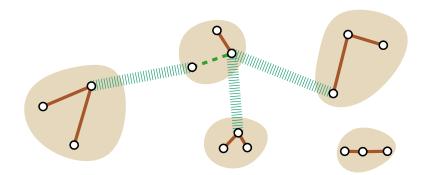
Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$



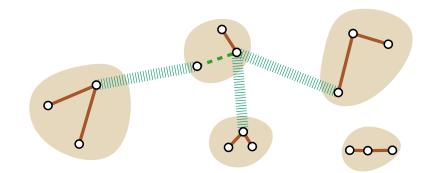
Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, ..., \ell$ Let $F_i = \{e_1, ..., e_i\}$



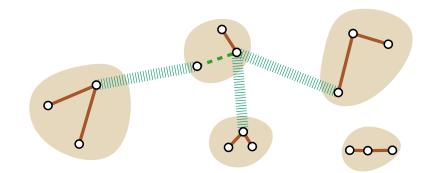
Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, ..., \ell$ Let $F_i = \{e_1, ..., e_i\}$, $G_i = (V, F_i)$



Lemma.

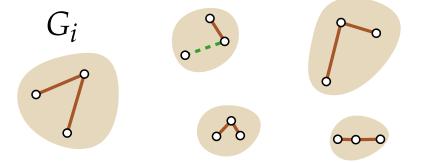
For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, ..., \ell$

Let
$$F_i = \{e_1, \dots, e_i\}, G_i = (V, F_i)$$



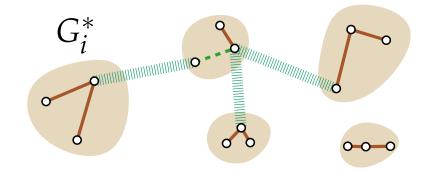
Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, ..., \ell$ Let $F_i = \{e_1, ..., e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.



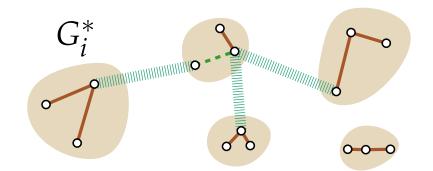
Lemma.

For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|C|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, ..., \ell$ Let $F_i = \{e_1, ..., e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.



Lemma. For each \mathcal{C} of an iteration of the algorithm:

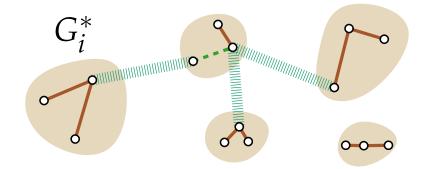
$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|C|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.



Lemma. For each \mathcal{C} of an iteration of the algorithm:

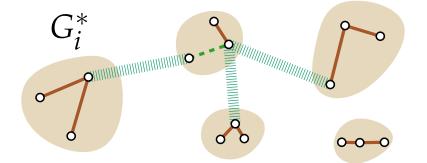
$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.



Lemma. For each C of an iteration of the algorithm:

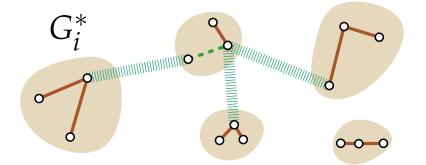
$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$. Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)



Lemma.

For each \mathcal{C} of an iteration of the algorithm:

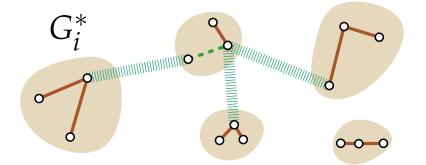
$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$. Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$

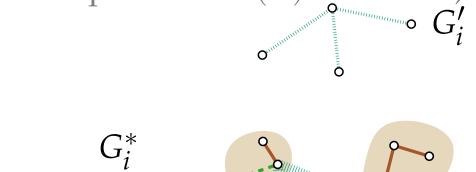
Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$

Proof.

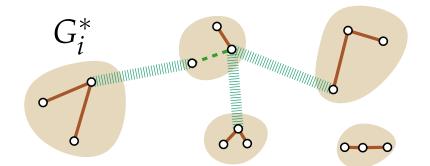
Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

Note:
$$\sum_{C \text{ comp.}}^{t} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

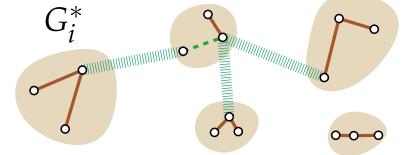
Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

Claim. G'_i is a forest.

Note: $\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$ $= 2|E(G'_i)|$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

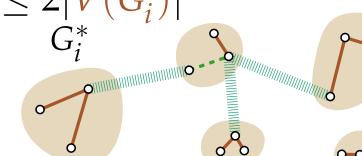
Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

Note:
$$\sum_{C \text{ comp.}}^{t} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$$

= $2|E(G'_i)| \le 2|V(G'_i)|$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

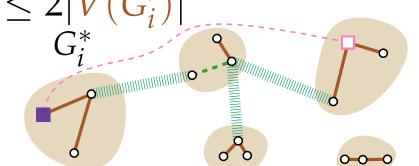
Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

Note:
$$\sum_{C \text{ comp.}}^{l} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$$

$$= 2|E(G'_i)| \le 2|V(G'_i)|$$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

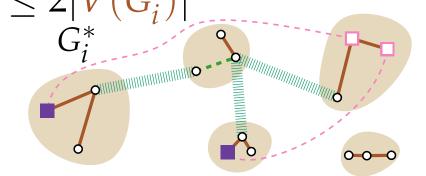
Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

Note:
$$\sum_{C \text{ comp.}}^{t} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$$

$$= 2|E(G'_i)| \le 2|V(G'_i)|$$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

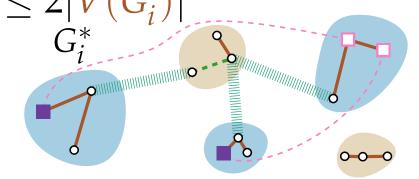
Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

Claim. G'_i is a forest.

Note: $\sum_{C \text{ comp.}}^{l} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$ $= 2|E(G'_i)| \le 2|V(G'_i)|$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}}|\delta(C)\cap F'|\leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

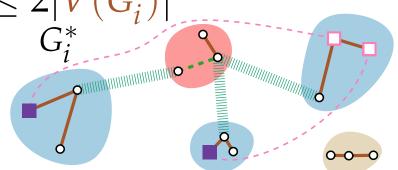
Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

Claim. G'_i is a forest.

Note: $\sum_{C \text{ comp.}}^{l} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$ = $2|E(G'_i)| \le 2|V(G'_i)|$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

Claim. G'_i is a forest.

Note:
$$\sum_{C \text{ comp.}}^{t} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$$

= $2|E(G'_i)| \le 2|V(G'_i)|$

Claim. Inactive vertices have degree ≥ 2 .

Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

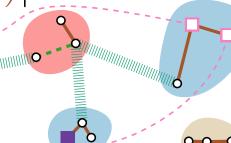
Claim. G'_i is a forest.

Note:
$$\sum_{C \text{ comp.}}^{t} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$$

= $2|E(G'_i)| \leq 2|V(G'_i)|$

Claim. Inactive vertices have degree ≥ 2 .

Then
$$\sum_{v \text{ active}} |\deg_{G'}(v)| \leq$$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C\in\mathcal{C}} |\delta(C)\cap F'| \leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$. Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

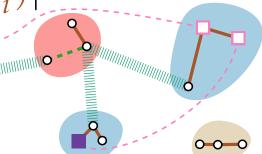
Claim. G'_i is a forest.

Note:
$$\sum_{C \text{ comp.}}^{t} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$$

= $2|E(G'_i)| \le 2|V(G'_i)|$

Claim. Inactive vertices have degree ≥ 2 .

Then
$$\sum_{v \text{ active}} |\deg_{G'}(v)| \le 2 \cdot |V(G')| - 2 \cdot \#(\text{inactive})$$



Lemma. For each \mathcal{C} of an iteration of the algorithm:

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$

Proof.

Consider *i*-th iteration after e_i was added to F, $i = 0, \ldots, \ell$

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract each comp. C of G_i in G_i^* to a single vertex $\leadsto G_i'$.

Ignore all comp. C with $\delta(C) \cap F' = \emptyset$.)

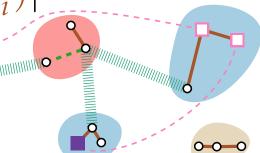
Claim. G'_i is a forest.

Note:
$$\sum_{C \text{ comp.}}^{t} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'}(v)$$

= $2|E(G'_i)| \leq 2|V(G'_i)|$

Claim. Inactive vertices have degree ≥ 2 ,

Then
$$\sum_{v \text{ active}} |\deg_{G'}(v)| \le 2 \cdot |V(G')| - 2 \cdot \#(\text{inactive}) = 2|\mathcal{C}|.$$



Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

> Part VI: Analysis

Theorem. The Primal-Dual algorithm with

synchronized increases gives a

2-approximation for SteinerForest.

Proof.

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

Theorema

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le$$

Theorema

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Theorema

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

From that, the claim of the theorem follows.

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Theorem. The Primal-Dual algorithm with

synchronized increases gives a

2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for each s.

Theorem. The

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for each s.

Assume that (*) holds at the start of each iteration.

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for each s.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for each s.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by

Theorem. The Primal-Dual algorithm with

synchronized increases gives a

2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for each s.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by $\varepsilon \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$

Theorem. The Primal-Dual algorithm with synchronized increases gives a

2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for each s.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by $\varepsilon \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by

Theorem. The Primal-Dual algorithm with synchronized increases gives a

2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for each s.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by $\varepsilon \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by $2\varepsilon |\mathcal{C}|$.

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for each s.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by $\varepsilon \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by $2\varepsilon |\mathcal{C}|$.

Thus, by the Structure Lemma, (*) also holds after the active iteration.

Theorem. The Primal-Dual algorithm with

synchronized increases gives a

2-approximation for SteinerForest.

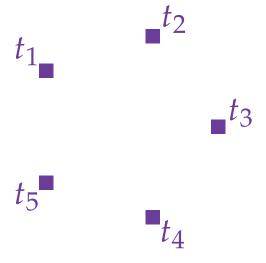
Theorem. The Primal-Dual algorithm with

synchronized increases gives a

2-approximation for SteinerForest.

Theorem. The Primal-Dual algorithm with synchronized increases gives a

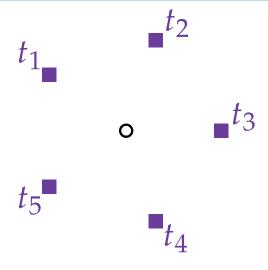
2-approximation for SteinerForest.



Theorem. The Primal-Dual algorithm with

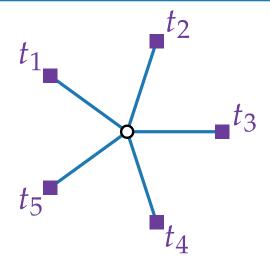
synchronized increases gives a

2-approximation for SteinerForest.



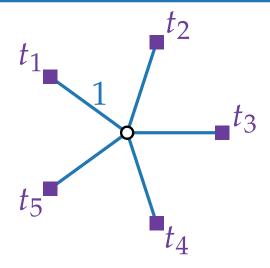
Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.



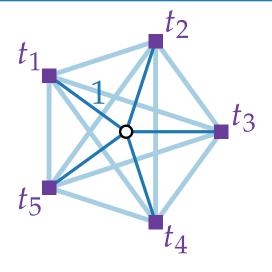
Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.



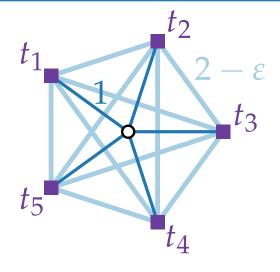
Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.



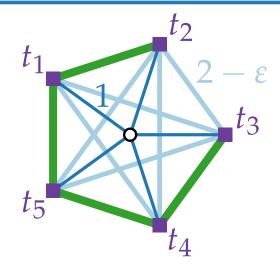
Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.



Theorem.

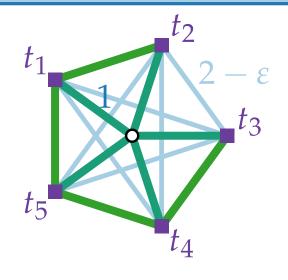
The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.



$$ALG = (2 - \varepsilon)(n - 1)$$

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.



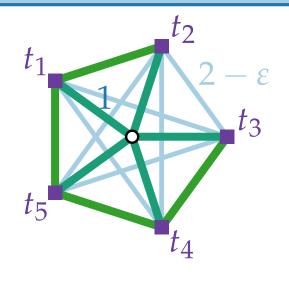
$$ALG = (2 - \varepsilon)(n - 1)$$

$$OPT = n$$

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Analysis tight?



$$ALG = (2 - \varepsilon)(n - 1)$$

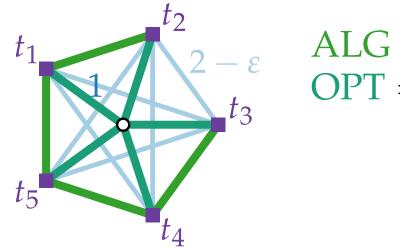
$$OPT = n$$

better?

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Analysis tight?



 $ALG = (2 - \varepsilon)(n - 1)$ OPT = n

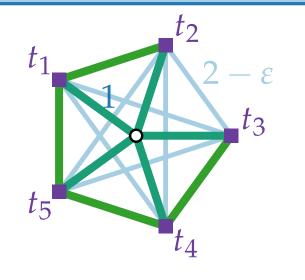
better?

No better approximation factor is known.

Theorem.

The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Analysis tight?



$$ALG = (2 - \varepsilon)(n - 1)$$

$$OPT = n$$

better?

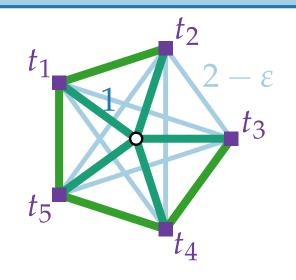
No better approximation factor is known.

The integrality gap is 2 - 1/n.

Theorem. The Primal-Dual algorithm with synchronized increases gives a

2-approximation for SteinerForest.

Analysis tight?



$$ALG = (2 - \varepsilon)(n - 1)$$

$$OPT = n$$

better?

No better approximation factor is known.

The integrality gap is 2 - 1/n.

SteinerForest (as SteinerTree) cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless P=NP) [Chlebik & Chlebikova '08]