
Joachim Spoerhase Winter 2021/22

Lecture 11:
MaxSat via Randomized Rounding

Part I:
Maximum Satisfiability (MaxSat)

Approximation Algorithms

Maximum Satisfiability (MaxSat)
Given: Boolean variables x1, . . . , xn,

clauses C1, . . . , Cm with weight w1, . . . , wm.

Maximum Satisfiability (MaxSat)
Given: Boolean variables x1, . . . , xn,

clauses C1, . . . , Cm with weight w1, . . . , wm.

Maximum Satisfiability (MaxSat)
Given: Boolean variables x1, . . . , xn,

clauses C1, . . . , Cm with weight w1, . . . , wm.

Maximum Satisfiability (MaxSat)
Given:

Task:

Boolean variables x1, . . . , xn,
clauses C1, . . . , Cm with weight w1, . . . , wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Maximum Satisfiability (MaxSat)
Given:

Task:

Boolean variables x1, . . . , xn,
clauses C1, . . . , Cm with weight w1, . . . , wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Maximum Satisfiability (MaxSat)
Given:

Task:

Literal:

Boolean variables x1, . . . , xn,
clauses C1, . . . , Cm with weight w1, . . . , wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negation of variable – e.g. x1, x1

Maximum Satisfiability (MaxSat)
Given:

Task:

Literal:

Boolean variables x1, . . . , xn,
clauses C1, . . . , Cm with weight w1, . . . , wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negation of variable – e.g. x1, x1

Clause: Disjunction of literals – e.g. x1 ∨ x2 ∨ x3

Maximum Satisfiability (MaxSat)
Given:

Task:

Literal:

Length of a clause: Number of literals

Boolean variables x1, . . . , xn,
clauses C1, . . . , Cm with weight w1, . . . , wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negation of variable – e.g. x1, x1

Clause: Disjunction of literals – e.g. x1 ∨ x2 ∨ x3

Maximum Satisfiability (MaxSat)
Given:

Task:

Literal:

Length of a clause: Number of literals

Problem is NP-hard since Satisfiability (Sat) is NP-hard: Is
a given propositional formula (in conjunctive normal form)
satisfiable? E.g. (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn,
clauses C1, . . . , Cm with weight w1, . . . , wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negation of variable – e.g. x1, x1

Clause: Disjunction of literals – e.g. x1 ∨ x2 ∨ x3

Maximum Satisfiability (MaxSat)
Given:

Task:

Literal:

Length of a clause: Number of literals

Problem is NP-hard since Satisfiability (Sat) is NP-hard: Is
a given propositional formula (in conjunctive normal form)
satisfiable? E.g. (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn,
clauses C1, . . . , Cm with weight w1, . . . , wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negation of variable – e.g. x1, x1

Clause: Disjunction of literals – e.g. x1 ∨ x2 ∨ x3

Lecture 11:
MaxSat via Randomized Rounding

Part II:
A Simple Randomized Algorithm

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

A Simple Randomized Algorithm
Theorem. Independently setting each variable to 1 (true)

with probability 1/2 provides an expected
1/2-approximation for MaxSat.

A Simple Randomized Algorithm
Theorem. Independently setting each variable to 1 (true)

with probability 1/2 provides an expected
1/2-approximation for MaxSat.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Let lj be length of Cj.⇒ Pr[Cj satisfied] = 1− (1/2)lj ≥ 1/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Let lj be length of Cj.⇒ Pr[Cj satisfied] = 1− (1/2)lj ≥ 1/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Let lj be length of Cj.⇒ Pr[Cj satisfied] = 1− (1/2)lj ≥ 1/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Let lj be length of Cj.⇒ Pr[Cj satisfied] = 1− (1/2)lj ≥ 1/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Let lj be length of Cj.⇒ Pr[Cj satisfied] = 1− (1/2)lj ≥ 1/2.

Thus, E[W] ≥ 1/2 ∑m
j=1 wj ≥ OPT/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Let lj be length of Cj.⇒ Pr[Cj satisfied] = 1− (1/2)lj ≥ 1/2.

Thus, E[W] ≥ 1/2 ∑m
j=1 wj ≥ OPT/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

Let lj be length of Cj.⇒ Pr[Cj satisfied] = 1− (1/2)lj ≥ 1/2.

Thus, E[W] ≥ 1/2 ∑m
j=1 wj ≥ OPT/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be random variable for the weight of satisfied clauses.

Lecture 11:
MaxSat via Randomized Rounding

Part III:
Derandomization by Conditional Expectation

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W|x1 = 1] ≥ E[W|x1 = 0].

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W|x1 = 1] ≥ E[W|x1 = 0].

E[W] =

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W|x1 = 1] ≥ E[W|x1 = 0].

E[W] = (E[W|x1 = 0] + E[W|x1 = 1])
/

2.

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W|x1 = 1] ≥ E[W|x1 = 0].

E[W] = (E[W|x1 = 0] + E[W|x1 = 1])
/

2. [because of original
random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W|x1 = 1] ≥ E[W|x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W|x1 = b1] ≥ E[W] ≥ OPT/2.

(E[W|x1 = 0] + E[W|x1 = 1])
/

2. [because of original
random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W|x1 = 1] ≥ E[W|x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W|x1 = b1] ≥ E[W] ≥ OPT/2.

(E[W|x1 = 0] + E[W|x1 = 1])
/

2. [because of original
random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W|x1 = 1] ≥ E[W|x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W|x1 = b1] ≥ E[W] ≥ OPT/2.

(E[W|x1 = 0] + E[W|x1 = 1])
/

2. [because of original
random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W|x1 = 1] ≥ E[W|x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W|x1 = b1] ≥ E[W] ≥ OPT/2.

(E[W|x1 = 0] + E[W|x1 = 1])
/

2. [because of original
random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to
b1, . . . , bi such that

E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to
b1, . . . , bi such that

E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to
b1, . . . , bi such that

E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similar to the base case):

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to
b1, . . . , bi such that

E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similar to the base case):(
E[W|x1 = b1, . . . , xi = bi, xi+1 = 0]

+E[W|x1 = b1, . . . , xi = bi, xi+1 = 1]
)/

2

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to
b1, . . . , bi such that

E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similar to the base case):(
E[W|x1 = b1, . . . , xi = bi, xi+1 = 0]

+E[W|x1 = b1, . . . , xi = bi, xi+1 = 1]
)/

2

= E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to
b1, . . . , bi such that

E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similar to the base case):(
E[W|x1 = b1, . . . , xi = bi, xi+1 = 0]

+E[W|x1 = b1, . . . , xi = bi, xi+1 = 1]
)/

2

= E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

So we set xi+1 = 1⇔

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to
b1, . . . , bi such that

E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similar to the base case):(
E[W|x1 = b1, . . . , xi = bi, xi+1 = 0]

+E[W|x1 = b1, . . . , xi = bi, xi+1 = 1]
)/

2

= E[W|x1 = b1, . . . , xi = bi] ≥ OPT/2

So we set xi+1 = 1⇔
E[W|x1 = b1, . . . , xi = bi, xi+1 = 1]

≥ E[W|x1 = b1, . . . , xi = bi, xi+1 = 0]

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj.

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj.

If Cj is already satisfied, then it contributes exactly wj to
E[W|x1 = b1, . . . , xi = bi].

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj.

If Cj is already satisfied, then it contributes exactly wj to
E[W|x1 = b1, . . . , xi = bi].

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj.

If Cj is already satisfied, then it contributes exactly wj to
E[W|x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned
variables, then it contributes exactly wj(1− (1/2)k) to
E[W|x1 = b1, . . . , xi = bi].

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj.

If Cj is already satisfied, then it contributes exactly wj to
E[W|x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned
variables, then it contributes exactly wj(1− (1/2)k) to
E[W|x1 = b1, . . . , xi = bi].

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj.

If Cj is already satisfied, then it contributes exactly wj to
E[W|x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned
variables, then it contributes exactly wj(1− (1/2)k) to
E[W|x1 = b1, . . . , xi = bi].

The conditional expectation is simply the sum of the
contributions from each clause.

Summary
Standard procedure with which many randomized
algorithms can be derandomized.

Summary
Standard procedure with which many randomized
algorithms can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

Summary
Standard procedure with which many randomized
algorithms can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Summary
Standard procedure with which many randomized
algorithms can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as
the expected value.

Summary
Standard procedure with which many randomized
algorithms can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as
the expected value.

The algorithm iteratively sets the variables and greedily
decides for the locally best assignment.

Summary
Standard procedure with which many randomized
algorithms can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as
the expected value.

The algorithm iteratively sets the variables and greedily
decides for the locally best assignment.

Global optimization?

Lecture 11:
MaxSat via Randomized Rounding

Part IV:
Randomized Rounding

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

... and its Relaxation

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . , m

0 ≤ yi ≤ 1, for i = 1, . . . , n
0 ≤ zj ≤ 1, for j = 1, . . . , m

Randomized Rounding
Theorem. Let (y∗, z∗) be an optimal solution to the

LP-relaxation. Independently setting each
variable xi to 1 with probability y∗i provides a
(1− 1/e)-approximation for MaxSat.

Randomized Rounding
Theorem. Let (y∗, z∗) be an optimal solution to the

LP-relaxation. Independently setting each
variable xi to 1 with probability y∗i provides a
(1− 1/e)-approximation for MaxSat.

Randomized Rounding
Theorem. Let (y∗, z∗) be an optimal solution to the

LP-relaxation. Independently setting each
variable xi to 1 with probability y∗i provides a
(1− 1/e)-approximation for MaxSat.

Randomized Rounding
Theorem. Let (y∗, z∗) be an optimal solution to the

LP-relaxation. Independently setting each
variable xi to 1 with probability y∗i provides a
(1− 1/e)-approximation for MaxSat.

Randomized Rounding

︸ ︷︷ ︸
≈ 0.63

Theorem. Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each
variable xi to 1 with probability y∗i provides a
(1− 1/e)-approximation for MaxSat.

Lecture 11:
MaxSat via Randomized Rounding

Part V:
Randomized Rounding – Proof

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

0 1

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

0 1

f

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

0 1

f

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

0 1

f

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

0 1

f

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

a + b

0 1

f

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

a + b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

a + b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

a + b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic-Geometric Mean Inequality (AGMI):

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

a + b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a1, . . . , ak:(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

a + b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a1, . . . , ak:(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Mathematical Toolkit

Let f be function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

a + b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a1, . . . , ak:(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

AGMI

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

AGMI

by LP constraints

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

AGMI

by LP constraints

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1− y∗i) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1− y∗i) + ∑
i∈Nj

y∗i

lj

=

1− 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1− y∗i)

lj

≤
(

1−
z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

AGMI

by LP constraints

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

1−
(

1− 1
lj

)lj
 z∗j

≥
(

1− 1
e

)
z∗j

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

1−
(

1− 1
lj

)lj
 z∗j

≥
(

1− 1
e

)
z∗j

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

1−
(

1− 1
lj

)lj
 z∗j

≥
(

1− 1
e

)
z∗j

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

1−
(

1− 1
lj

)lj
 z∗j

≥
(

1− 1
e

)
z∗j

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

1−
(

1− 1
lj

)lj
 z∗j

≥
(

1− 1
e

)
z∗j

1 + x ≤ ex

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

1−
(

1− 1
lj

)lj
 z∗j

≥
(

1− 1
e

)
z∗j

1 + x ≤ ex

x = − 1
lj

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

1−
(

1− 1
lj

)lj
 z∗j

≥
(

1− 1
e

)
z∗j

1 + x ≤ ex

x = − 1
lj
⇒ 1− 1

lj
≤ e−1/lj

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(

1−
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

1−
(

1− 1
lj

)lj
 z∗j

≥
(

1− 1
e

)
z∗j

1 + x ≤ ex

x = − 1
lj
⇒ 1− 1

lj
≤ e−1/lj

Randomized Rounding (Proof)
Therefore

E[W] =
m

∑
j=1

Pr[Cj satisfied] · wj

≥
(

1− 1
e

) m

∑
j=1

wjz∗j

=

(
1− 1

e

)
OPTLP

≥
(

1− 1
e

)
OPT

Randomized Rounding (Proof)
Therefore

E[W] =
m

∑
j=1

Pr[Cj satisfied] · wj

≥
(

1− 1
e

) m

∑
j=1

wjz∗j

=

(
1− 1

e

)
OPTLP

≥
(

1− 1
e

)
OPT

Randomized Rounding (Proof)
Therefore

E[W] =
m

∑
j=1

Pr[Cj satisfied] · wj

≥
(

1− 1
e

) m

∑
j=1

wjz∗j

=

(
1− 1

e

)
OPTLP

≥
(

1− 1
e

)
OPT

(LP target function)

Randomized Rounding (Proof)
Therefore

E[W] =
m

∑
j=1

Pr[Cj satisfied] · wj

≥
(

1− 1
e

) m

∑
j=1

wjz∗j

=

(
1− 1

e

)
OPTLP

≥
(

1− 1
e

)
OPT

(LP target function)

Randomized Rounding (Proof)
Therefore

E[W] =
m

∑
j=1

Pr[Cj satisfied] · wj

≥
(

1− 1
e

) m

∑
j=1

wjz∗j

=

(
1− 1

e

)
OPTLP

≥
(

1− 1
e

)
OPT

(LP target function)

Randomized Rounding (Proof)
Therefore

E[W] =
m

∑
j=1

Pr[Cj satisfied] · wj

≥
(

1− 1
e

) m

∑
j=1

wjz∗j

=

(
1− 1

e

)
OPTLP

≥
(

1− 1
e

)
OPT

(LP target function)

Theorem. The previous algorithm can be derandomized
by the method of conditional expectation.

Lecture 11:
MaxSat via Randomized Rounding

Part VI:
Combining the Algorithms

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

Take the better of the two solutions!
Theorem. The better solution among the randomized

algorithm and the randomized LP-rounding
algorithm provides a 3/4-approximation for
MaxSat.

Take the better of the two solutions!
Theorem. The better solution among the randomized

algorithm and the randomized LP-rounding
algorithm provides a 3/4-approximation for
MaxSat.

Take the better of the two solutions!
Theorem. The better solution among the randomized

algorithm and the randomized LP-rounding
algorithm provides a 3/4-approximation for
MaxSat.

We use another probabilistic argument. With probability
1/2 choose the solution of the first algorithm, otherwise
the solution of the second algorithm.

Proof.

Take the better of the two solutions!
Theorem. The better solution among the randomized

algorithm and the randomized LP-rounding
algorithm provides a 3/4-approximation for
MaxSat.

We use another probabilistic argument. With probability
1/2 choose the solution of the first algorithm, otherwise
the solution of the second algorithm.

The better solution is at least as good as the expectation of
the above algorithm.

Proof.

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
 z∗j +

(
1− 2−lj

) .

︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
 z∗j +

(
1− 2−lj

) .

︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
 z∗j +

(
1− 2−lj

) .

︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
 z∗j +

(
1− 2−lj

) .

︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!
The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
+

(
1− 2−lj

) z∗j .

︸ ︷︷ ︸ ︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

We claim that this is at least 3/4 · z∗j .

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
+

(
1− 2−lj

) z∗j .

︸ ︷︷ ︸ ︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

We claim that this is at least 3/4 · z∗j .

(The rest follows similarly to the previous two Theorems
by the linearity of expectation).

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
+

(
1− 2−lj

) z∗j .

︸ ︷︷ ︸ ︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

We claim that this is at least 3/4 · z∗j .

For lj = 1, 2, a simple calculation gives exactly 3/4 · z∗j .

(The rest follows similarly to the previous two Theorems
by the linearity of expectation).

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
+

(
1− 2−lj

) z∗j .

︸ ︷︷ ︸ ︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

We claim that this is at least 3/4 · z∗j .

For lj = 1, 2, a simple calculation gives exactly 3/4 · z∗j .

For lj ≥ 3, 1− (1− 1/lj)
lj ≥ (1− 1/e) and 1− 2−lj ≥ 7

8 .

(The rest follows similarly to the previous two Theorems
by the linearity of expectation).

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
+

(
1− 2−lj

) z∗j .

︸ ︷︷ ︸ ︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

We claim that this is at least 3/4 · z∗j .

For lj = 1, 2, a simple calculation gives exactly 3/4 · z∗j .

For lj ≥ 3, 1− (1− 1/lj)
lj ≥ (1− 1/e) and 1− 2−lj ≥ 7

8 .

(The rest follows similarly to the previous two Theorems
by the linearity of expectation).

Thus, we have at least:
1
2

[(
1− 1

e

)
+

7
8

]
z∗j ≈ 0.753z∗j ≥

3
4

z∗j

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
+

(
1− 2−lj

) z∗j .

︸ ︷︷ ︸ ︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

We claim that this is at least 3/4 · z∗j .

For lj = 1, 2, a simple calculation gives exactly 3/4 · z∗j .

For lj ≥ 3, 1− (1− 1/lj)
lj ≥ (1− 1/e) and 1− 2−lj ≥ 7

8 .

(The rest follows similarly to the previous two Theorems
by the linearity of expectation).

Thus, we have at least:
1
2

[(
1− 1

e

)
+

7
8

]
z∗j ≈ 0.753z∗j ≥

3
4

z∗j

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
+

(
1− 2−lj

) z∗j .

︸ ︷︷ ︸ ︸ ︷︷ ︸
rand. Alg.LP-Rounding

Take the better of the two solutions!

We claim that this is at least 3/4 · z∗j .

For lj = 1, 2, a simple calculation gives exactly 3/4 · z∗j .

For lj ≥ 3, 1− (1− 1/lj)
lj ≥ (1− 1/e) and 1− 2−lj ≥ 7

8 .

(The rest follows similarly to the previous two Theorems
by the linearity of expectation).

Thus, we have at least:
1
2

[(
1− 1

e

)
+

7
8

]
z∗j ≈ 0.753z∗j ≥

3
4

z∗j

The probability that clause Cj is satisfied is at least:

1
2

1−
(

1− 1
lj

)lj
+

(
1− 2−lj

) z∗j .

︸ ︷︷ ︸ ︸ ︷︷ ︸
rand. Alg.LP-Rounding

Visualization and Derandomization

Visualization and Derandomization

0.5

0.75

1

Pr[Cj sat.]/z∗j

lj

Visualization and Derandomization

1−
(

1
2

)lj

0.5

0.75

1

Pr[Cj sat.]/z∗j

lj

Visualization and Derandomization

1−
(

1− 1
lj

)lj

1−
(

1
2

)lj

0.5

0.75

1

Pr[Cj sat.]/z∗j

lj

Visualization and Derandomization
– Randomized alg. is better for large values of lj.
– Randomized LP-rounding is better for small values of lj
⇒ higher probability of satisfying clause Cj.

1−
(

1− 1
lj

)lj

1−
(

1
2

)lj

0.5

0.75

1

Pr[Cj sat.]/z∗j

lj

Visualization and Derandomization
– Randomized alg. is better for large values of lj.
– Randomized LP-rounding is better for small values of lj
⇒ higher probability of satisfying clause Cj.

1−
(

1− 1
lj

)lj

1−
(

1
2

)lj

0.5

0.75

1

Pr[Cj sat.]/z∗j

lj

Visualization and Derandomization
– Randomized alg. is better for large values of lj.
– Randomized LP-rounding is better for small values of lj
⇒ higher probability of satisfying clause Cj.

1−
(

1− 1
lj

)lj

1−
(

1
2

)lj

0.5

0.75

1

Pr[Cj sat.]/z∗j

lj

Visualization and Derandomization
– Randomized alg. is better for large values of lj.
– Randomized LP-rounding is better for small values of lj
⇒ higher probability of satisfying clause Cj.

1−
(

1− 1
lj

)lj

1−
(

1
2

)lj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z∗j

Mean

lj

Visualization and Derandomization
– Randomized alg. is better for large values of lj.
– Randomized LP-rounding is better for small values of lj
⇒ higher probability of satisfying clause Cj.

Mean of the two solution is
at least 3/4 for integer lj.

1−
(

1− 1
lj

)lj

1−
(

1
2

)lj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z∗j

Mean

lj

Visualization and Derandomization
– Randomized alg. is better for large values of lj.
– Randomized LP-rounding is better for small values of lj
⇒ higher probability of satisfying clause Cj.

Mean of the two solution is
at least 3/4 for integer lj.

Maximum is at least as
large as the mean.

1−
(

1− 1
lj

)lj

1−
(

1
2

)lj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z∗j

Mean

lj

Visualization and Derandomization
– Randomized alg. is better for large values of lj.
– Randomized LP-rounding is better for small values of lj
⇒ higher probability of satisfying clause Cj.

Mean of the two solution is
at least 3/4 for integer lj.

Maximum is at least as
large as the mean.

This algorithm can also
be derandomized by
conditional expectation.

1−
(

1− 1
lj

)lj

1−
(

1
2

)lj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z∗j

Mean

lj

	Maximum Satisfiability (MaxSat)
	A Simple Randomized Algorithm
	Derandomization by Conditional Expectation
	Derandomization by Conditional Expectation (I)
	Derandomization by Conditional Expectation (II)
	Derandomization by Conditional Expectation (III)
	Summary

	Randomized Rounding
	An ILP
	... and its Relaxation
	Randomized Rounding

	Randomized Rounding - Proof
	Mathematical Toolkit
	Randomized Rounding (Proof) (I)
	Randomized Rounding (Proof) (II)
	Randomized Rounding (Proof) (III)

	Combining the Algorithms
	Take the better of the two solutions!
	Visualization and Derandomization

