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Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj.

If Cj is already satisfied, then it contributes exactly wj to
E[W|x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned
variables, then it contributes exactly wj(1− (1/2)k) to
E[W|x1 = b1, . . . , xi = bi].

The conditional expectation is simply the sum of the
contributions from each clause.
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Summary
Standard procedure with which many randomized
algorithms can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as
the expected value.

The algorithm iteratively sets the variables and greedily
decides for the locally best assignment.

Global optimization?
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Theorem. Let (y∗, z∗) be an optimal solution to the
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Theorem. The previous algorithm can be derandomized
by the method of conditional expectation.
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the above algorithm.
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This algorithm can also
be derandomized by
conditional expectation.
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