Approximation Algorithms

Lecture 9:

An Approximation Scheme for EuclideanTSP

Part I:

TravelingSalesmanProblem

Question: What's the fastest way to deliver all parcels to their destination?

Question: What's the fastest way to deliver all parcels to

their destination?

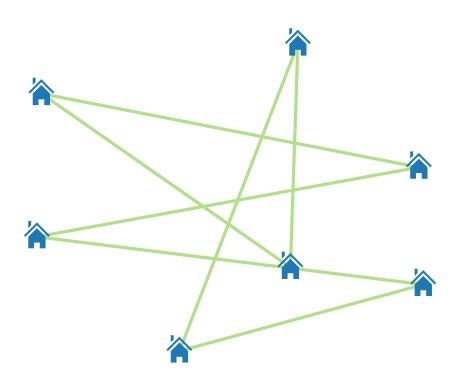
Given: A set of *n* houses (points) in \mathbb{R}^2 .

Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle)

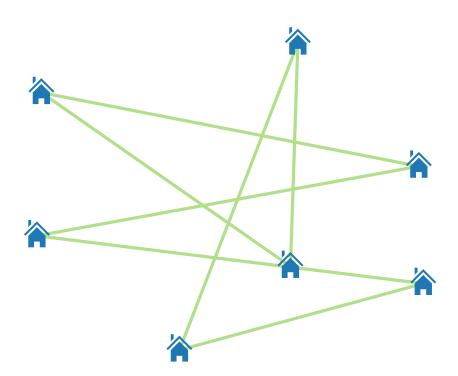


Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle)

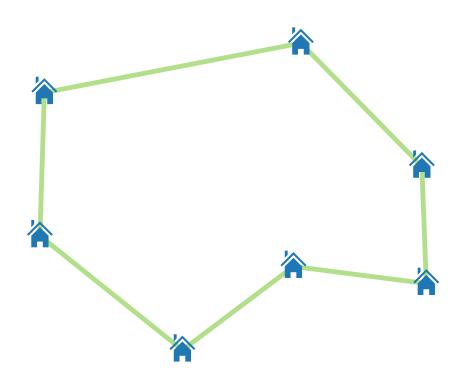


Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

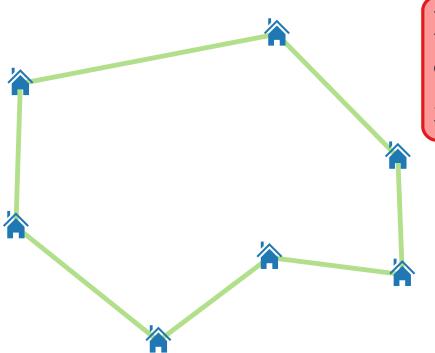


Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.



For every polynomial p(n), TSP cannot be approximated within factor (unless P=NP).

Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.



For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

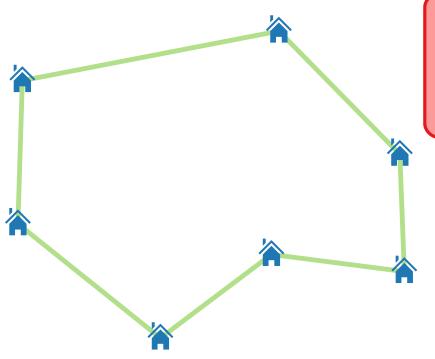
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

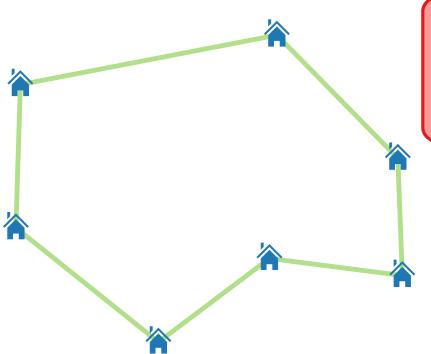
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

There is a 3/2-approximation algorithm for MetricTSP.

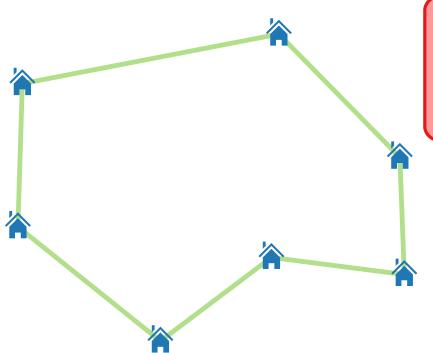
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

There is a 3/2-approximation algorithm for MetricTSP.

METRICTSP cannot be approximated within factor 123/122 (unless P=NP).

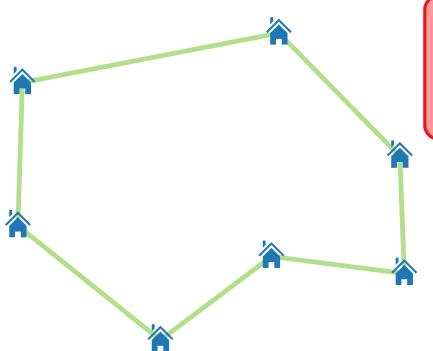
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

There is a 3/2-approximation algorithm for MetricTSP.

METRICTSP cannot be approximated within factor 123/122 (unless P=NP).

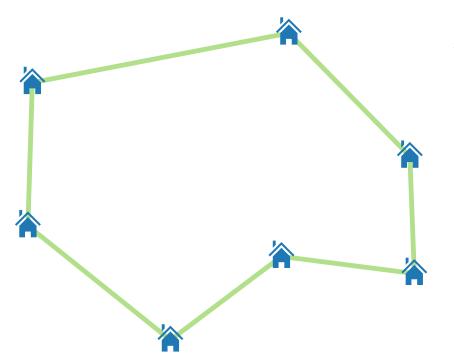
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



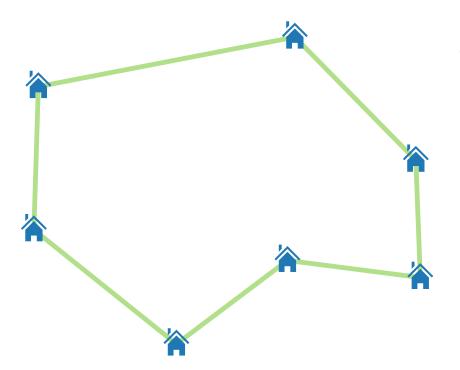
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

Houses inside $(L \times L)$ -square

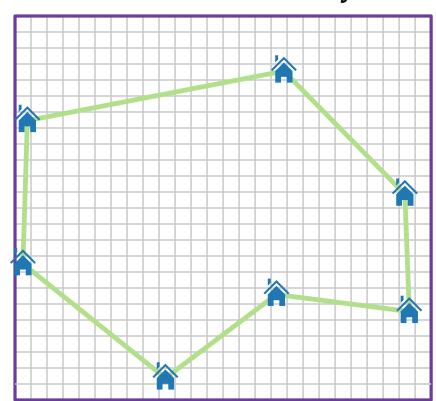
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

Houses inside $(L \times L)$ -square

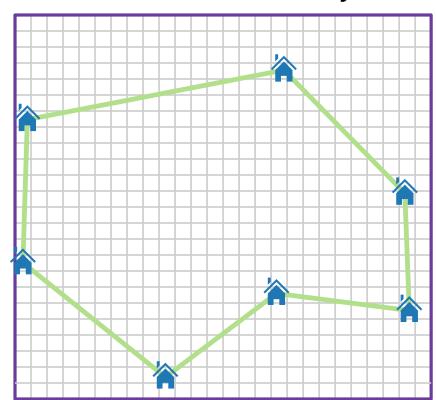
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



- Houses inside $(L \times L)$ -square
- $L := 4n^2$

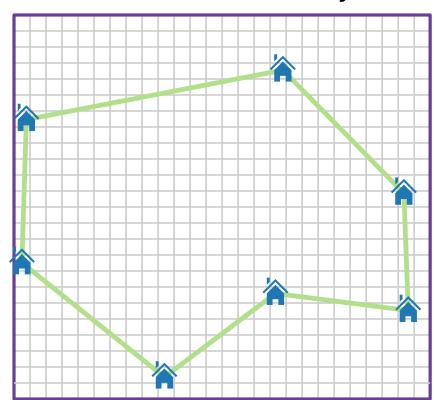
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k$;

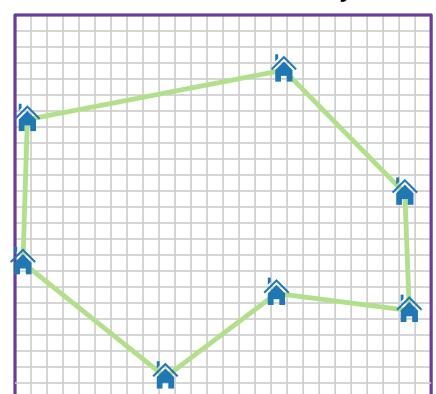
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k;$ $k = 2 + 2\log_2 n$

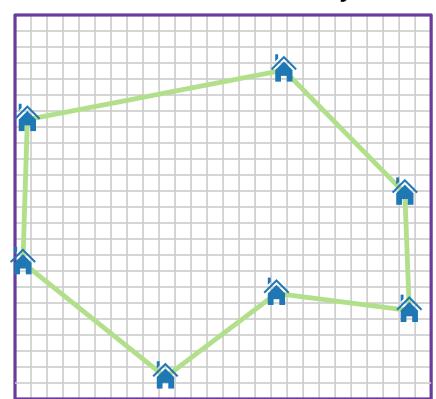
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k;$ $k = 2 + 2\log_2 n$
- integer coordinates

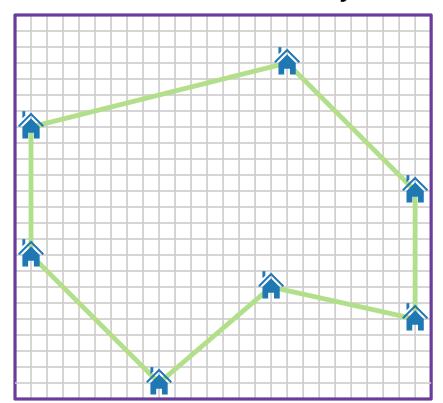
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



- Houses inside $(L \times L)$ -square
- L := $4n^2 = 2^k$; $k = 2 + 2\log_2 n$
- integer coordinates

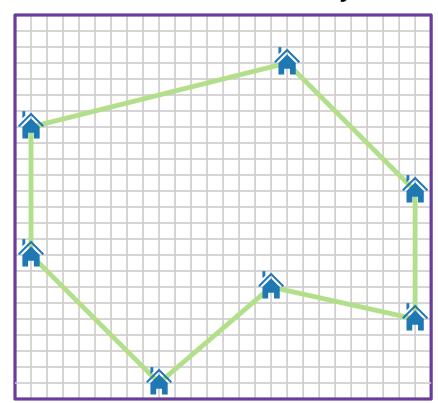
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



- Houses inside $(L \times L)$ -square
- L := $4n^2 = 2^k$; $k = 2 + 2\log_2 n$
- integer coordinates
 ("justification": homework)

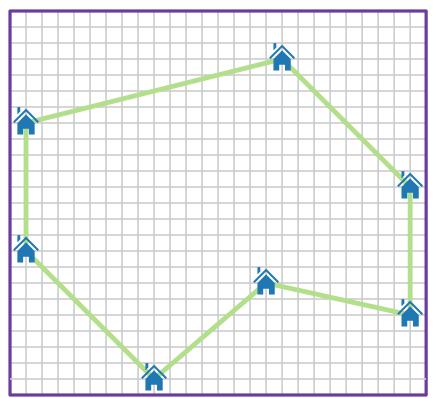
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

Houses inside $(L \times L)$ -square

L :=
$$4n^2 = 2^k$$
;
 $k = 2 + 2\log_2 n$

integer coordinates

 $(1+\varepsilon)$ -approximation!

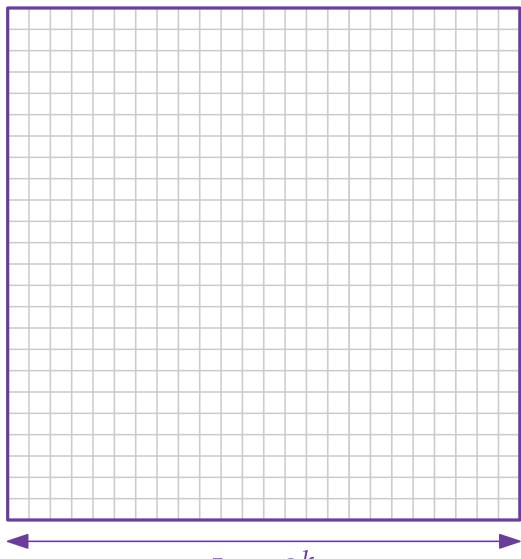
Goal:

("justification": homework)

Approximation Algorithms

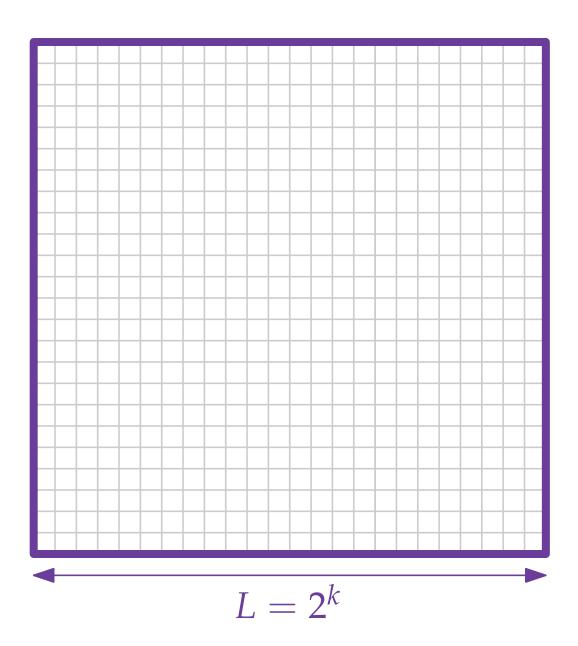
Lecture 9: PTAS for EuclideanTSP

Part II:
Dissection

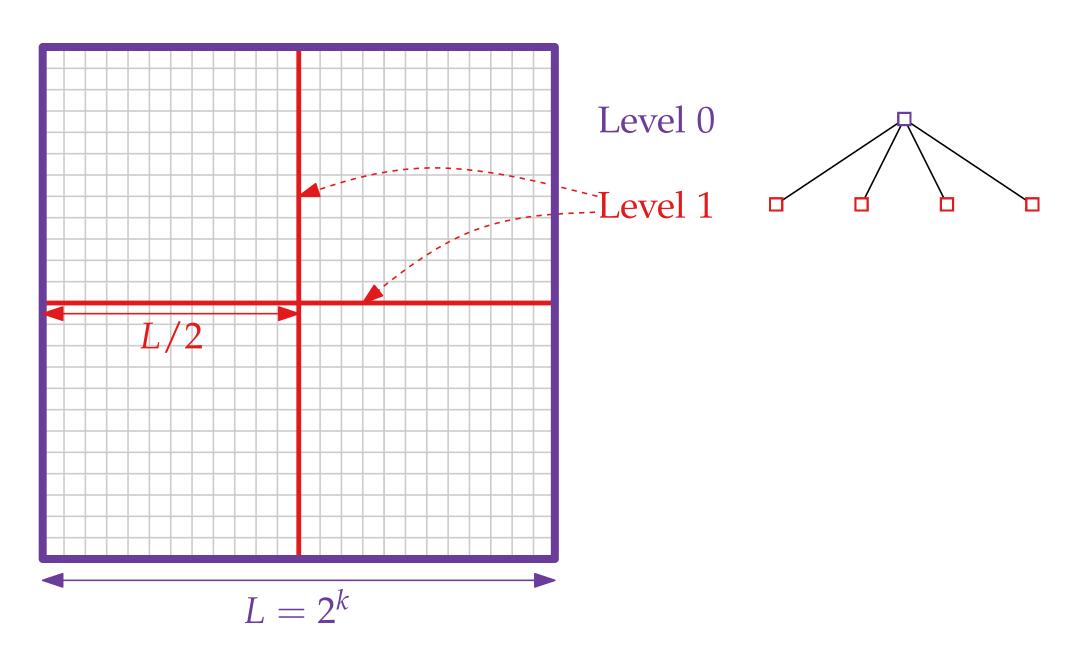


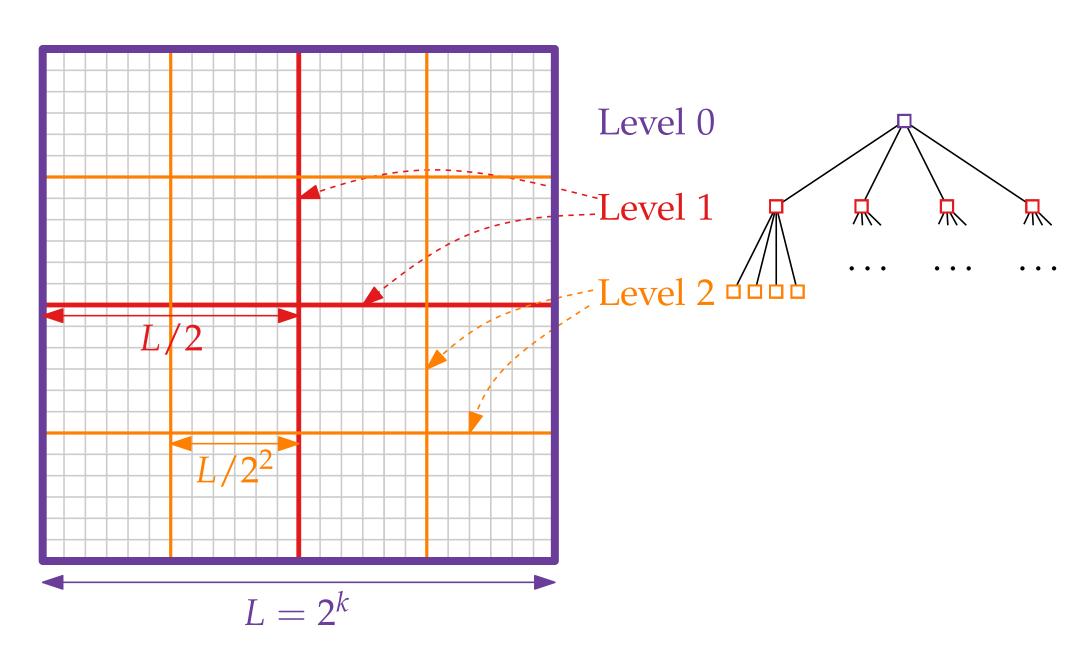
$$L=2^k$$

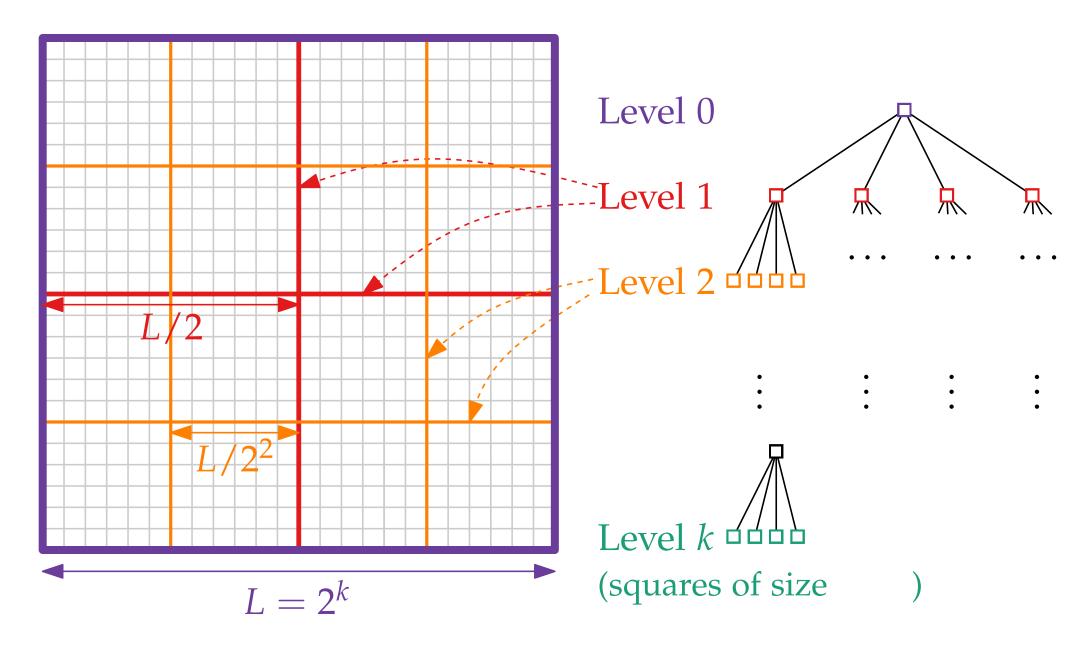
Basic Dissection

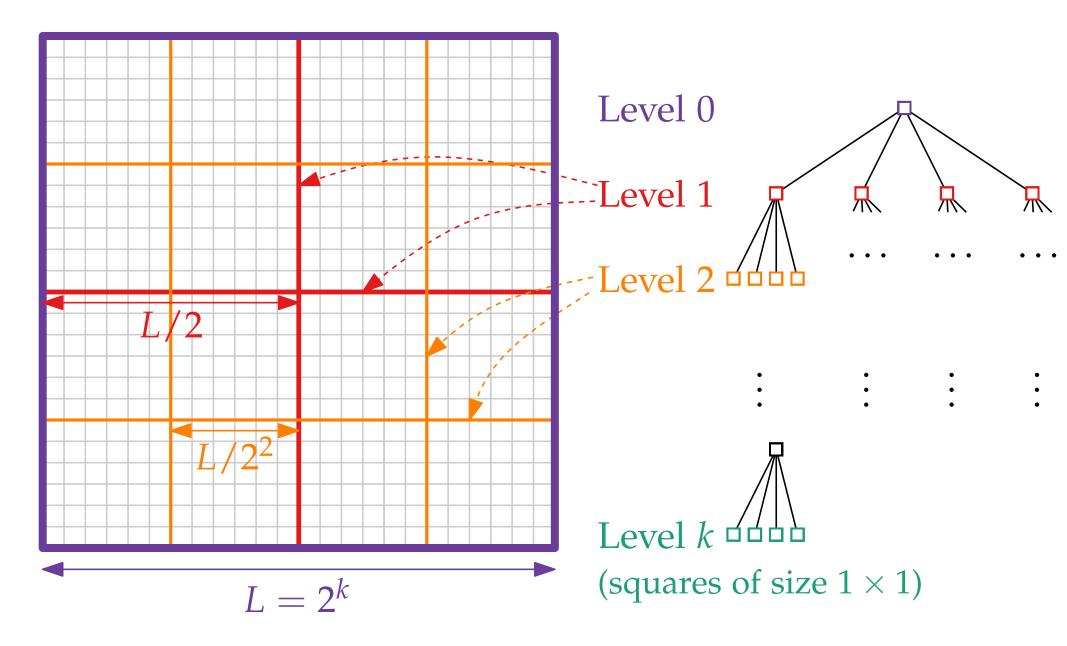


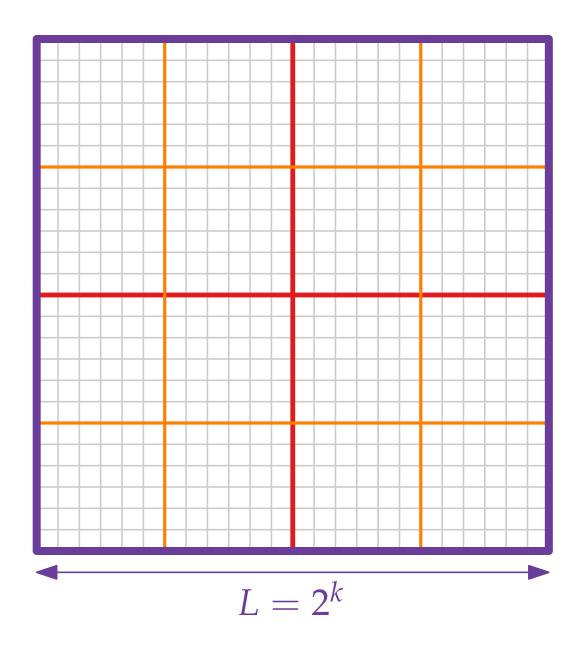
Level 0

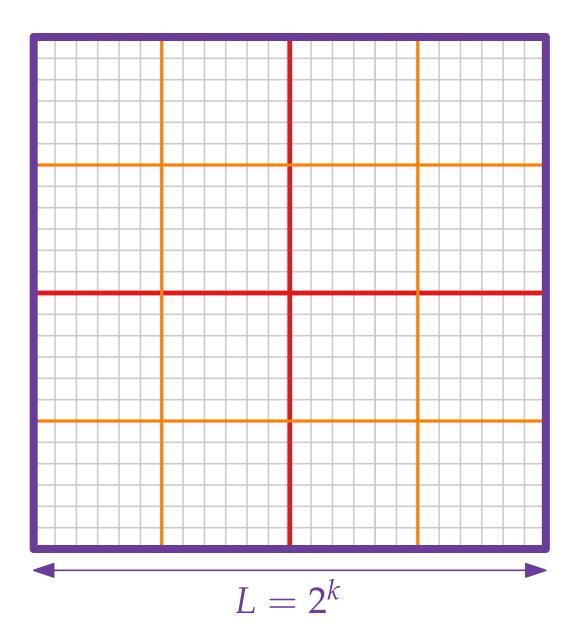




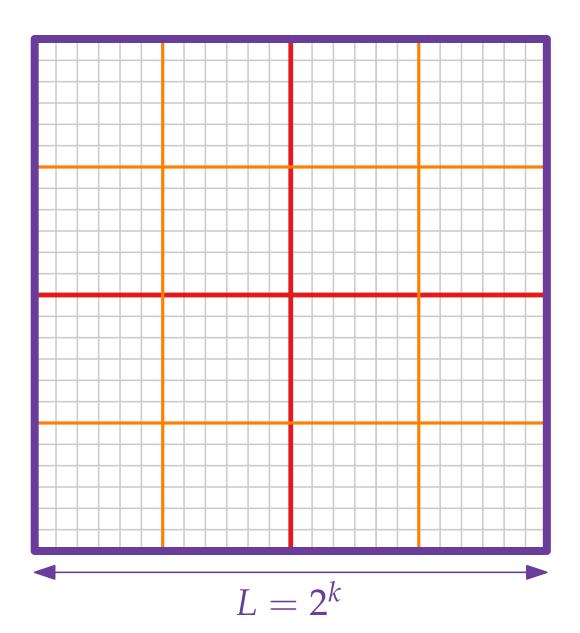






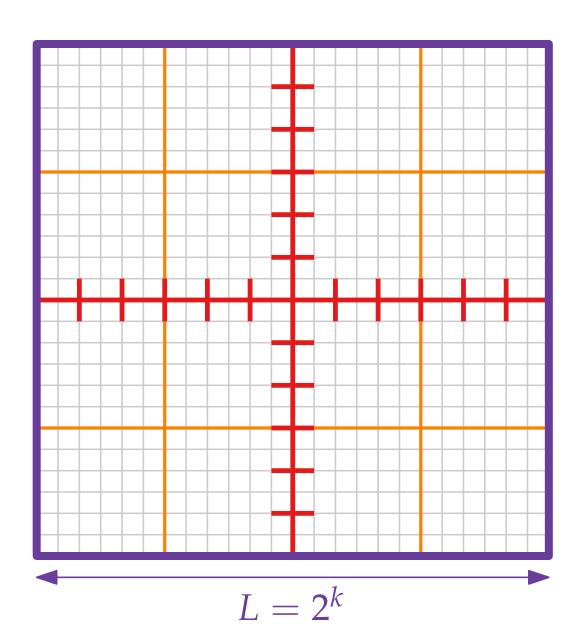


$$k = 2 + 2\log_2 n$$



$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

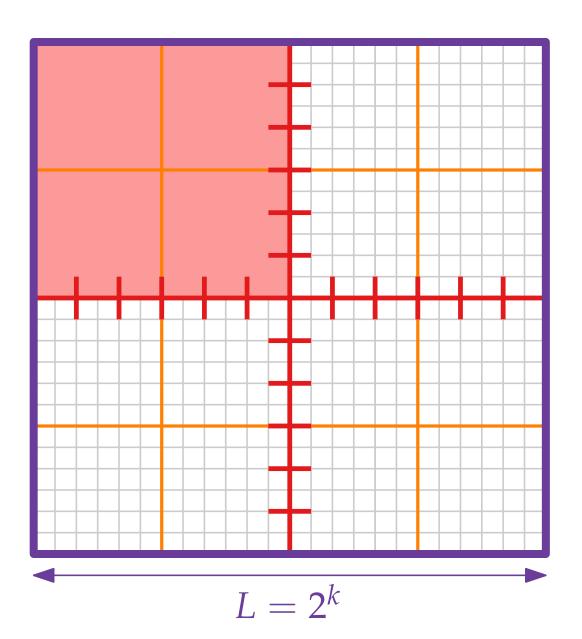


m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$

$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

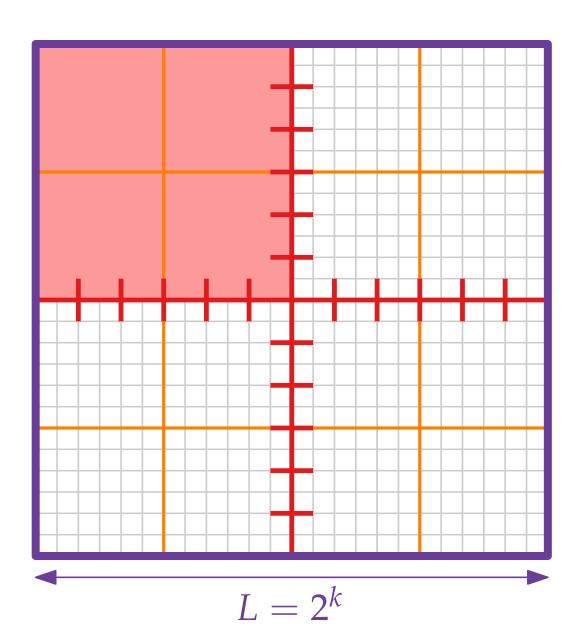
Portals on level-*i*-line with distance $L/(2^i m)$



$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

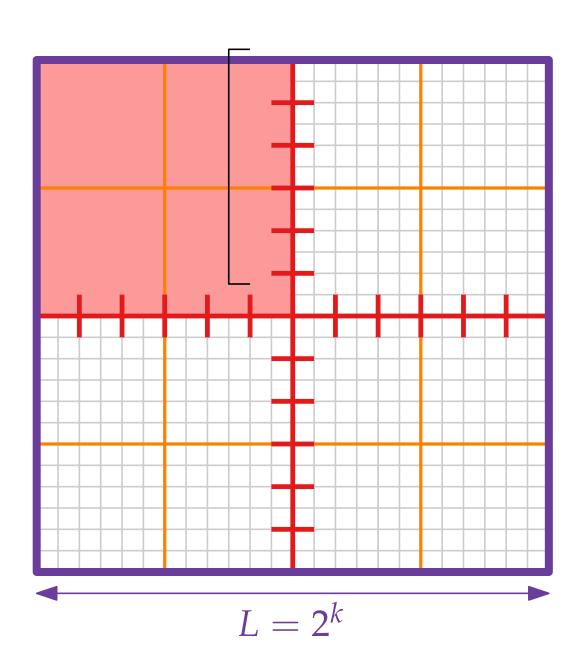
- Portals on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size



$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

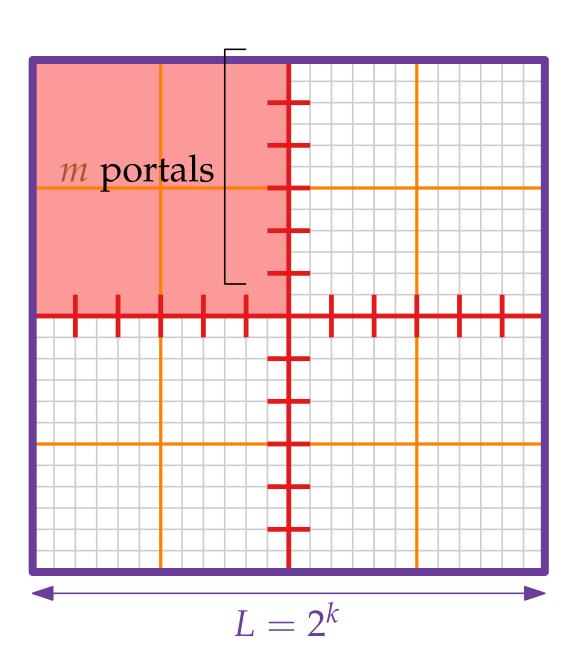
- Portals on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

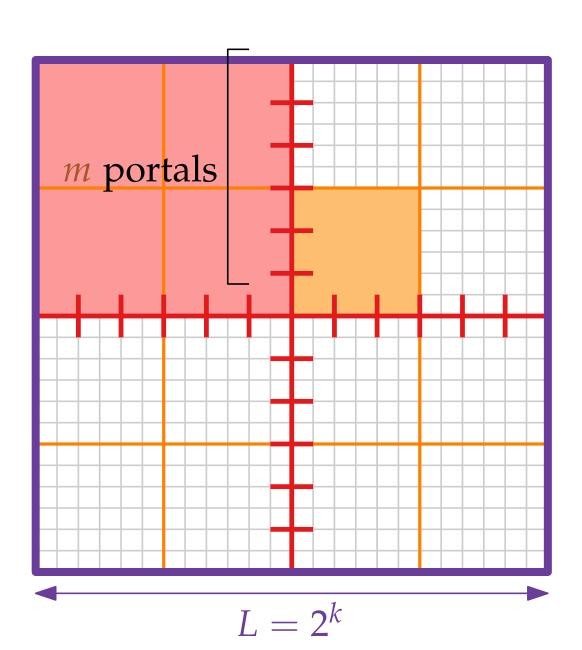
- Portals on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

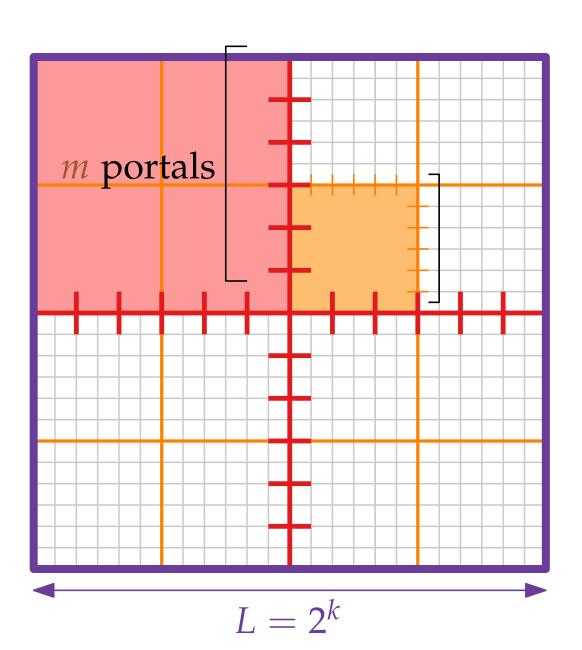
- **Portals** on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

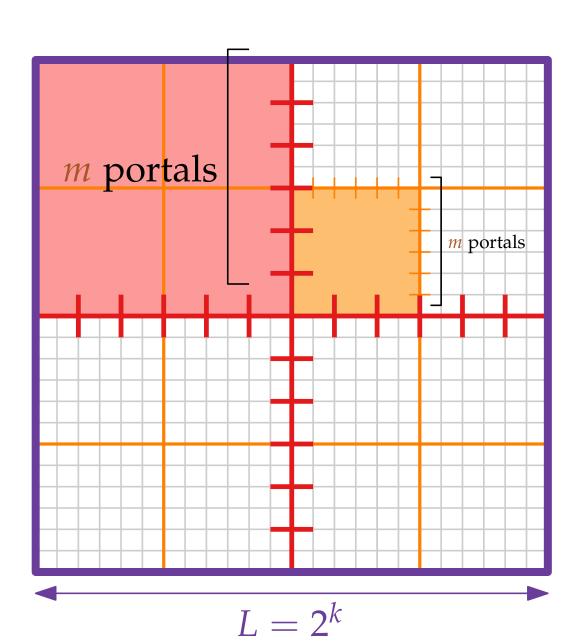
- **Portals** on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

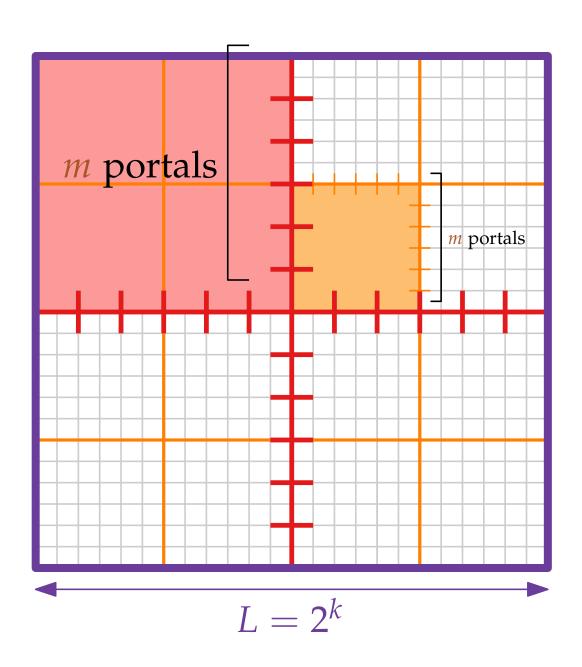
- **Portals** on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



$$k = 2 + 2\log_2 n$$

$$\Rightarrow m = O((\log n)/\varepsilon)$$

- **Portals** on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



$$k = 2 + 2\log_2 n$$

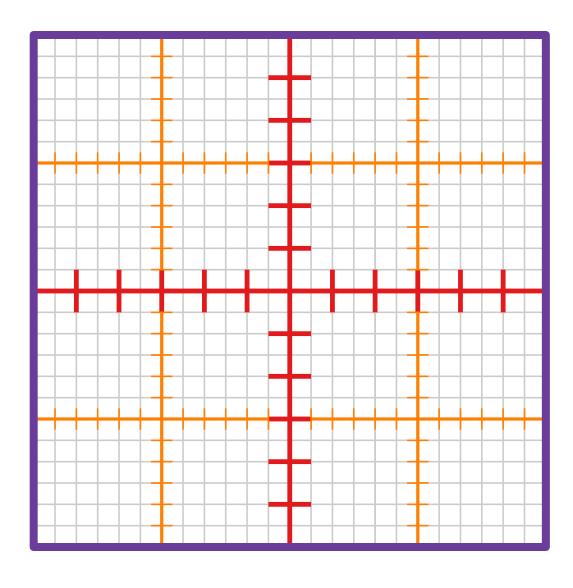
$$\Rightarrow m = O((\log n)/\varepsilon)$$

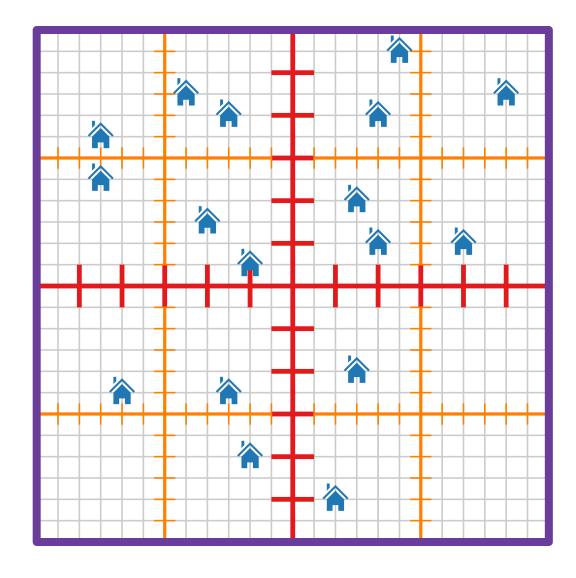
- **Portals** on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size $L/2^i \times L/2^i$
- Level-*i*-square has at most4*m* portals on its boundary.

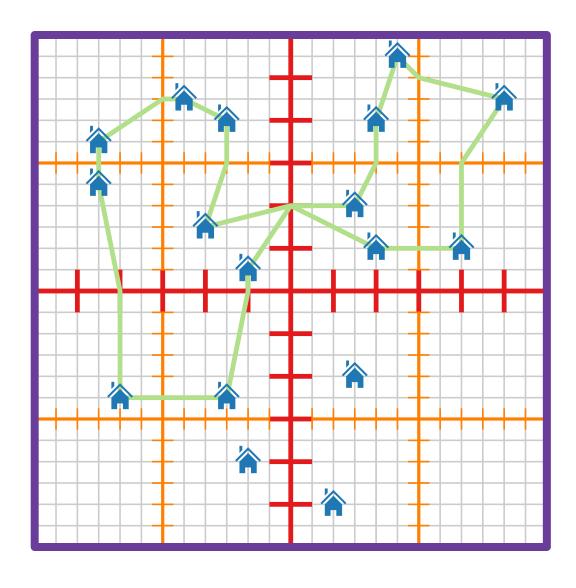
Approximation Algorithms

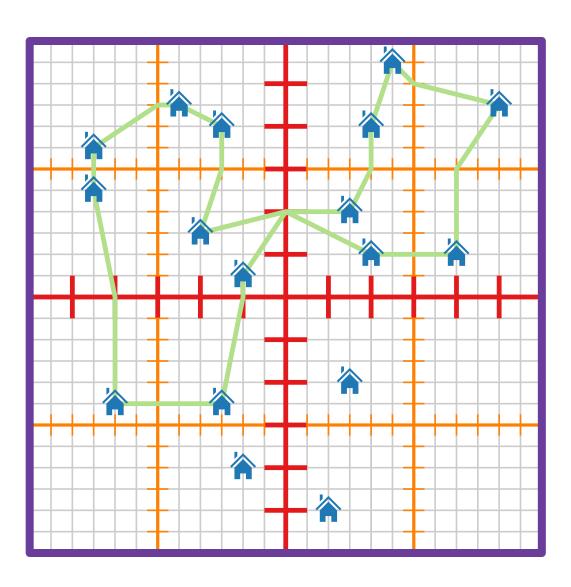
Lecture 9: PTAS for EuclideanTSP

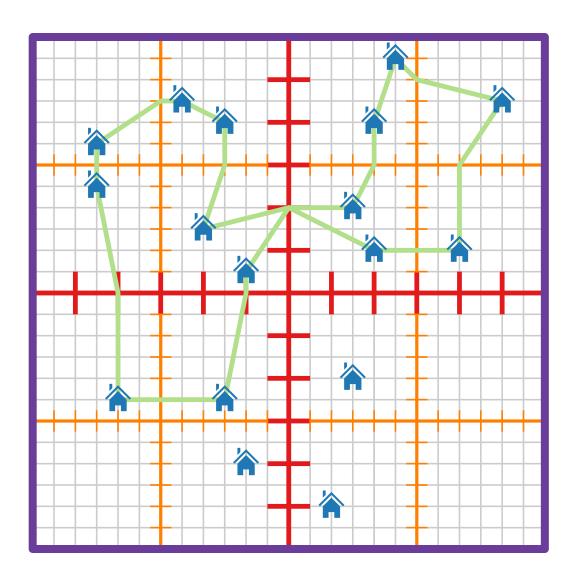
Part III:
Well Behaved Tours





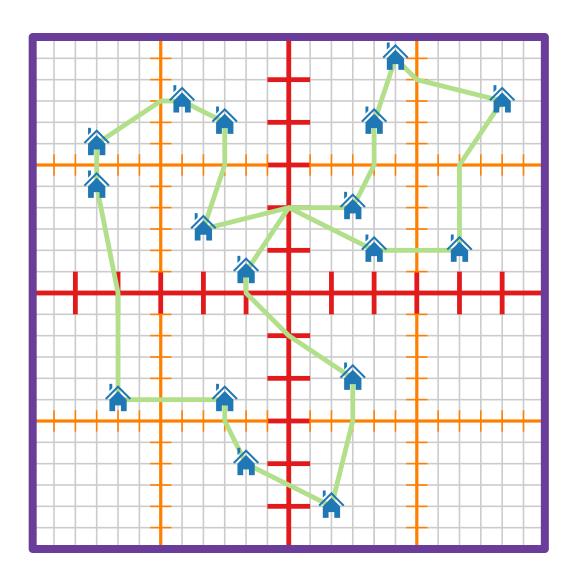






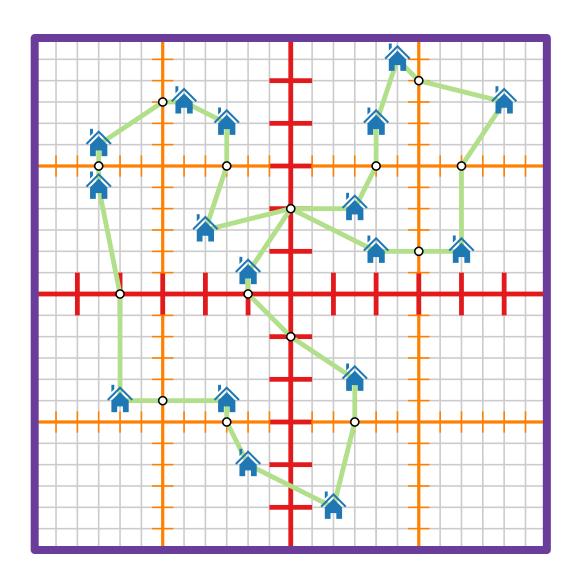
A tour is well behaved if

it involves all houses



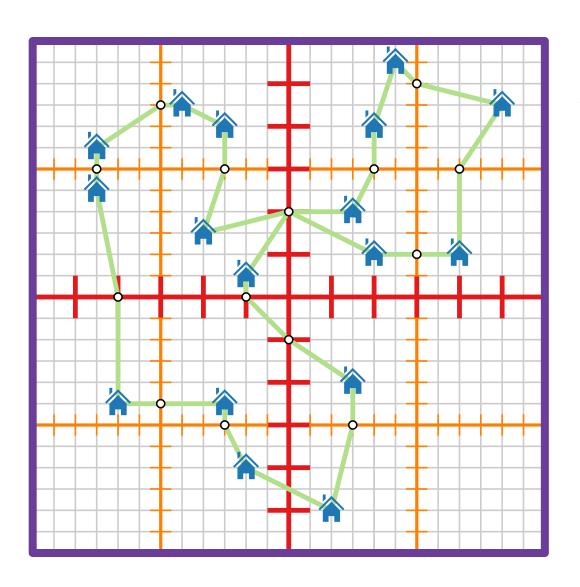
A tour is well behaved if

it involves all houses

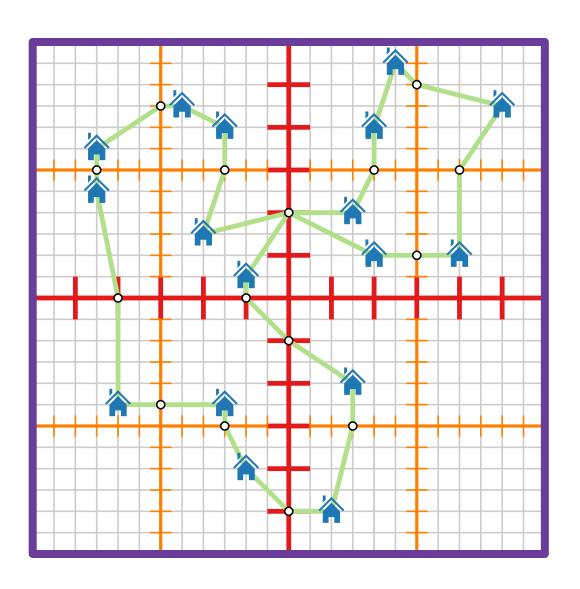


A tour is well behaved if

it involves all houses and a subset of the portals,



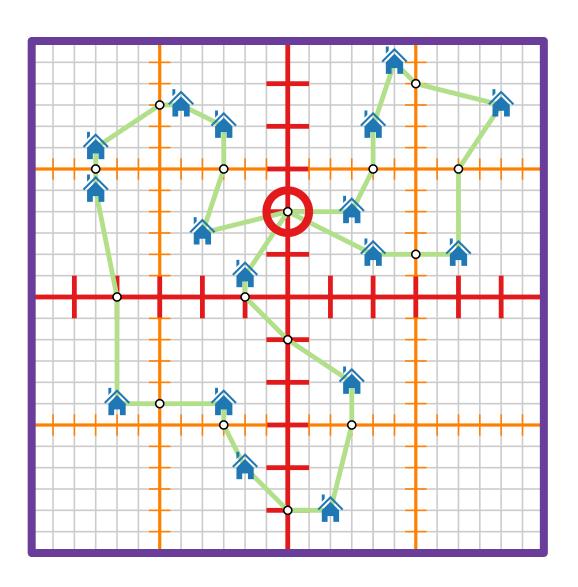
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,



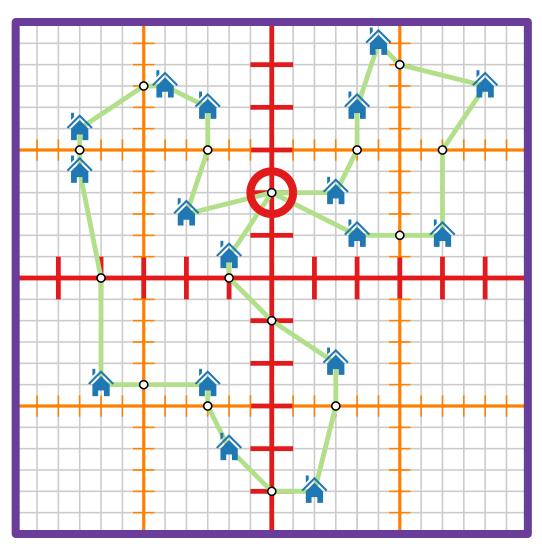
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,



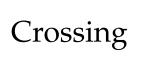
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

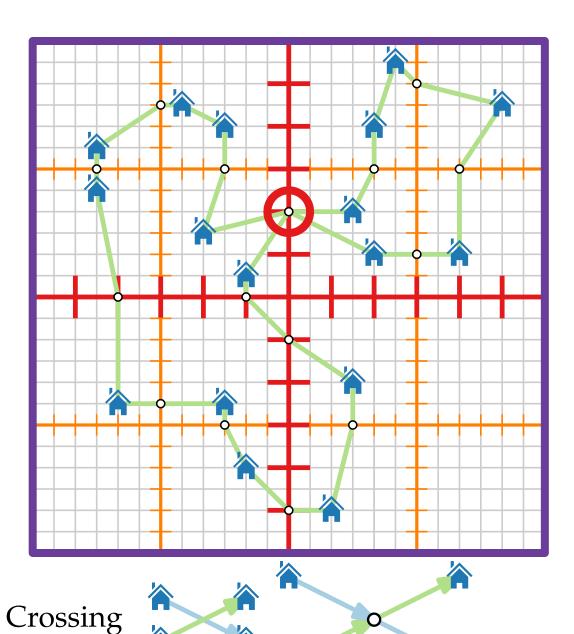


- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

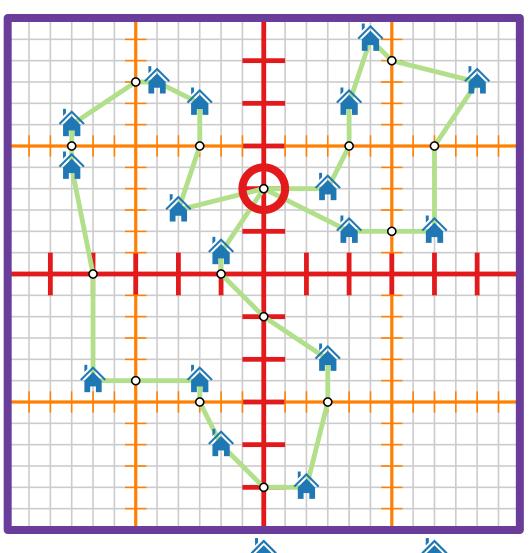


- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

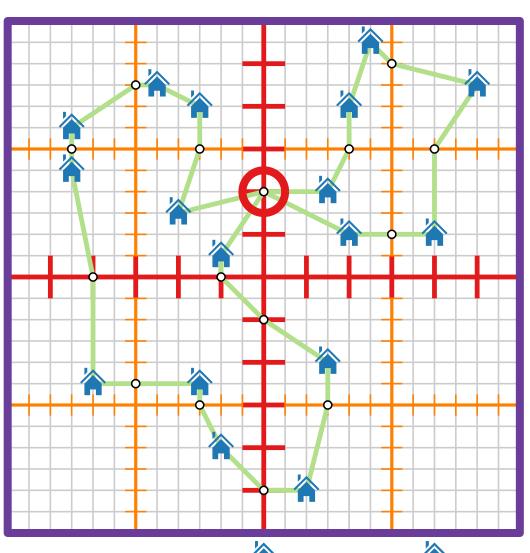




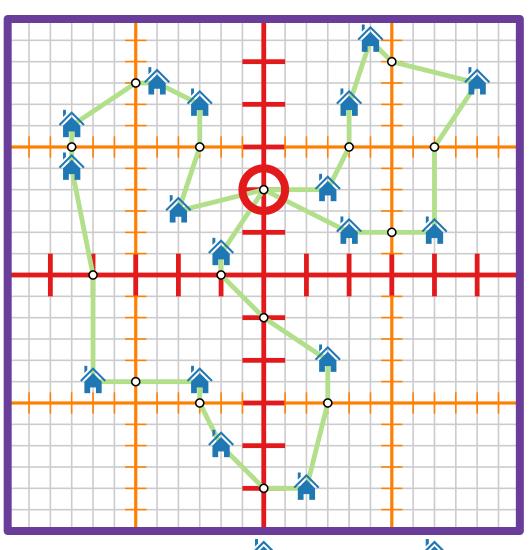
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.



- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.



- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.



A tour is well behaved if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

W.l.o.g. (homework):
No portal visited more than twice

No crossing

Lemma.

An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

Lemma.

An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

Sketch.

Lemma.

An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

Sketch.

Dynamic Programming!

Lemma.

An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

Sketch.

- Dynamic Programming!
- Compute sub-structure of an optimal tour for each square in the dissection tree.

Lemma.

An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

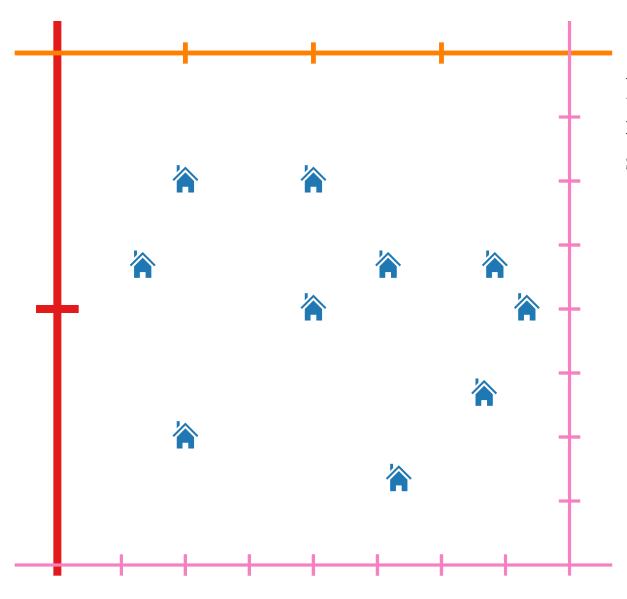
Sketch.

- Dynamic Programming!
- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

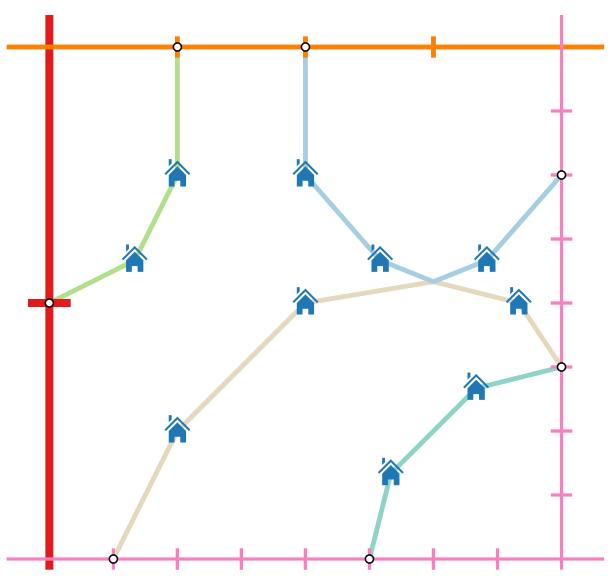
Approximation Algorithms

Lecture 9: PTAS for EuclideanTSP

Part IV: Dynamic Program

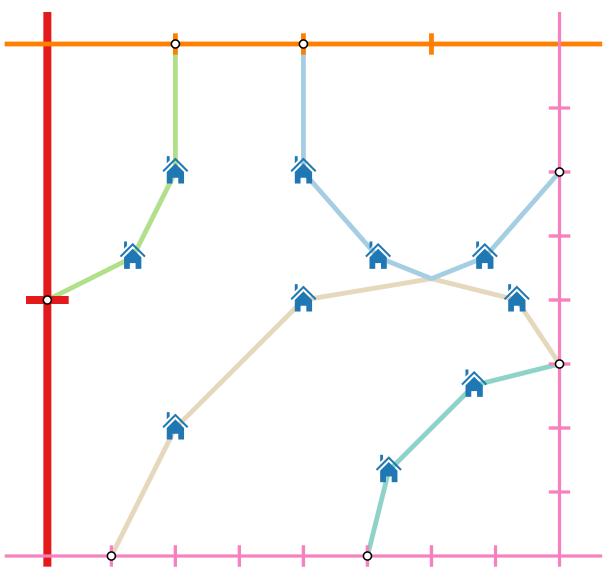


Each well behaved tour induces the following in each square *Q* of the dissection:



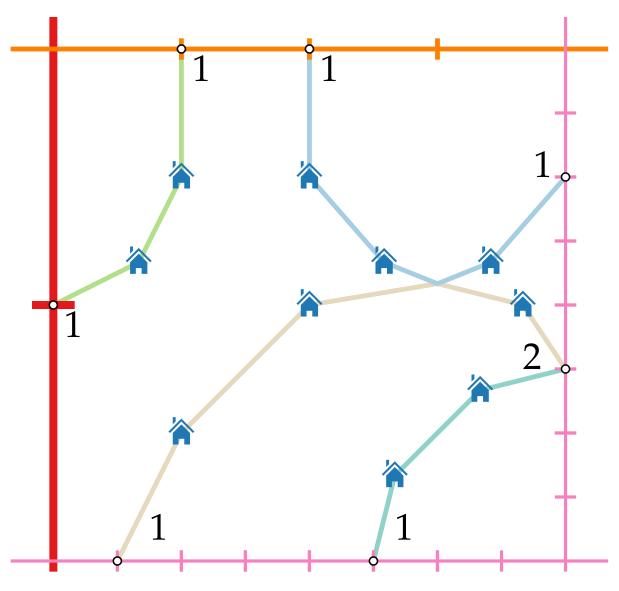
Each well behaved tour induces the following in each square *Q* of the dissection:

A path cover of the houses in *Q*



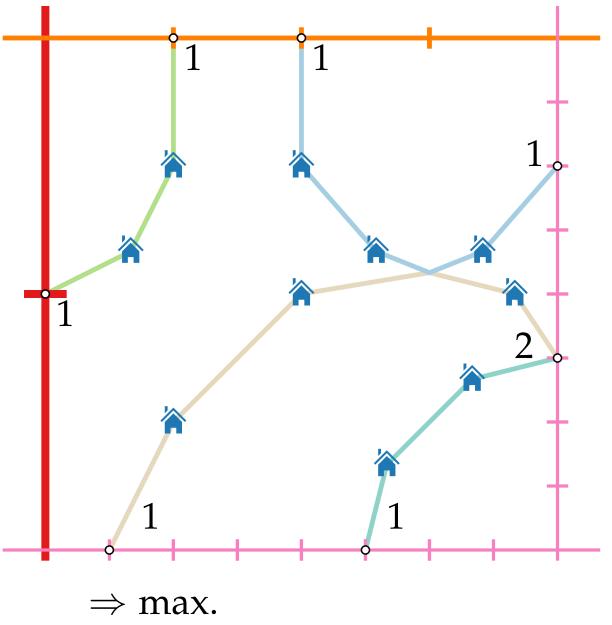
Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover



Each well behaved tour induces the following in each square *Q* of the dissection:

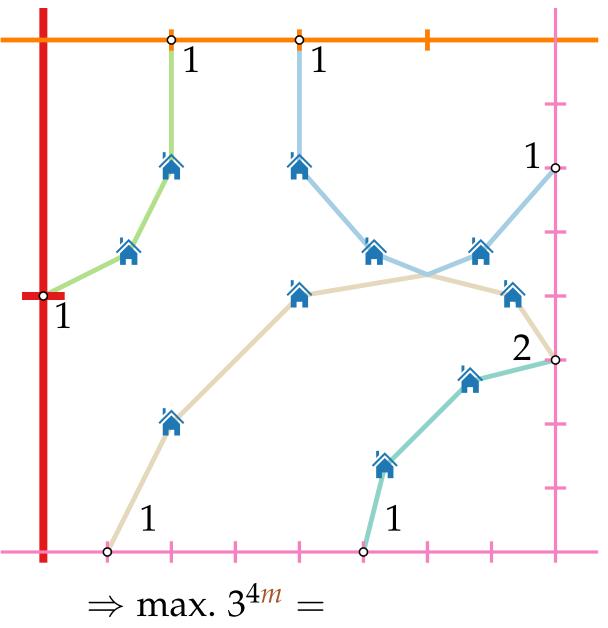
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover



Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in *Q*
- Each portal of *Q* is visited 0,1 or 2 times by this path cover

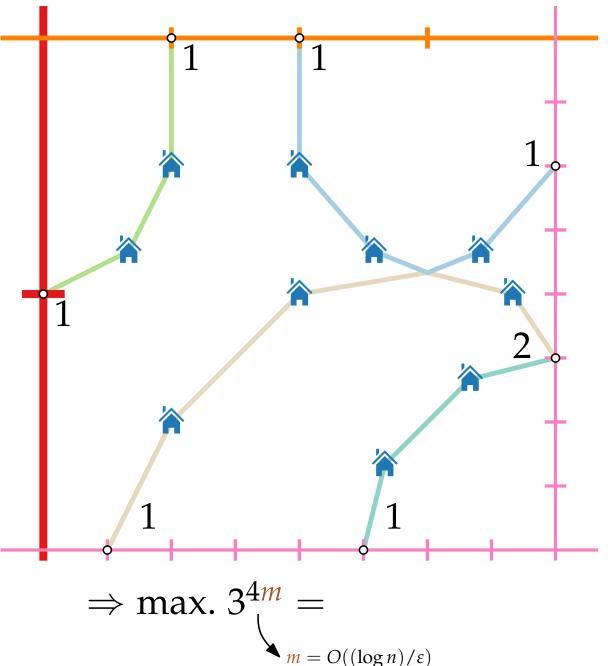
possibilities



Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in Q
- Each portal of *Q* is visited 0,1 or 2 times by this path cover

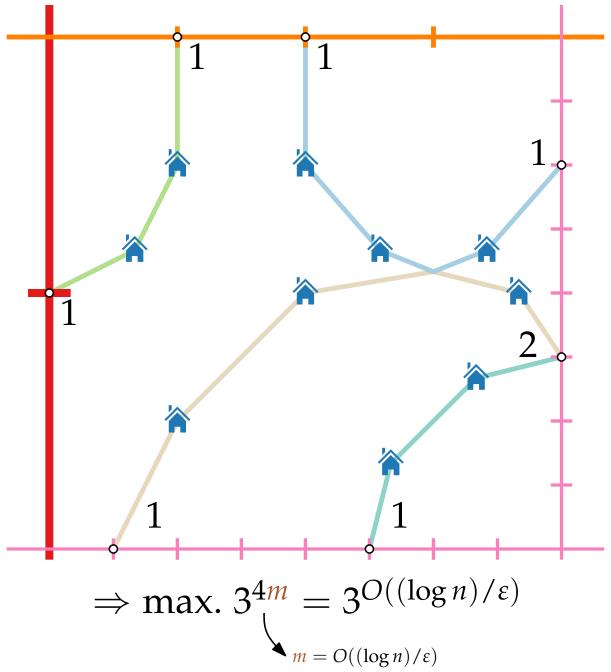
possibilities



Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover

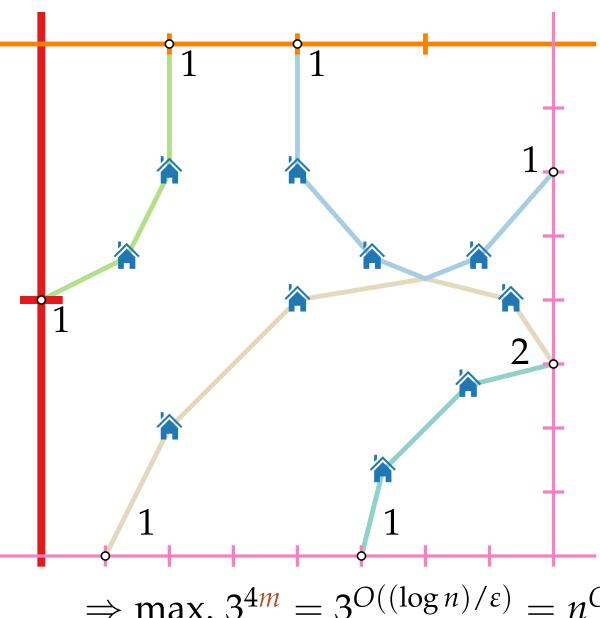
possibilities



Each well behaved tour induces the following in each square *Q* of the dissection:

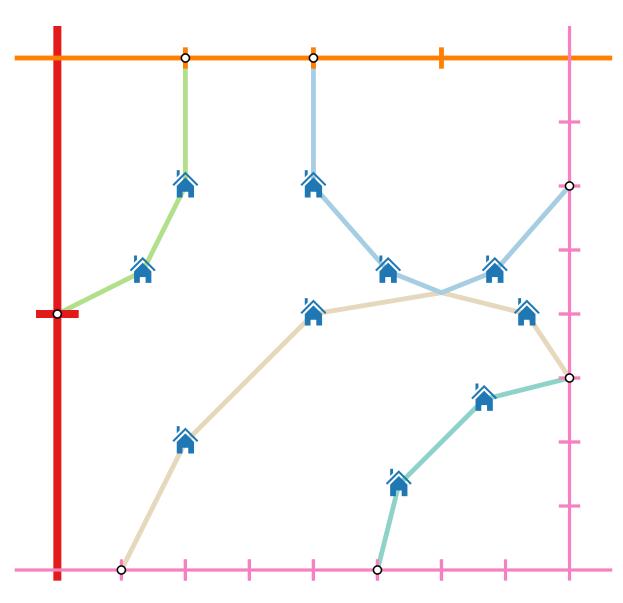
- A path cover of the houses in Q
- Each portal of *Q* is visited 0,1 or 2 times by this path cover

possibilities

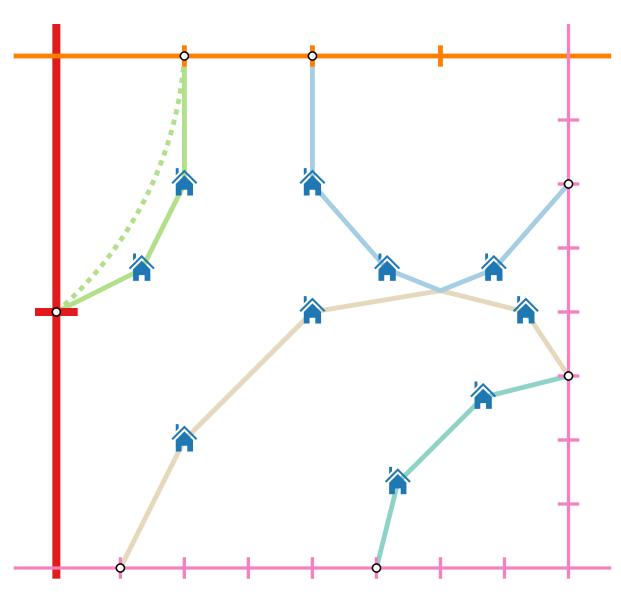


- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover

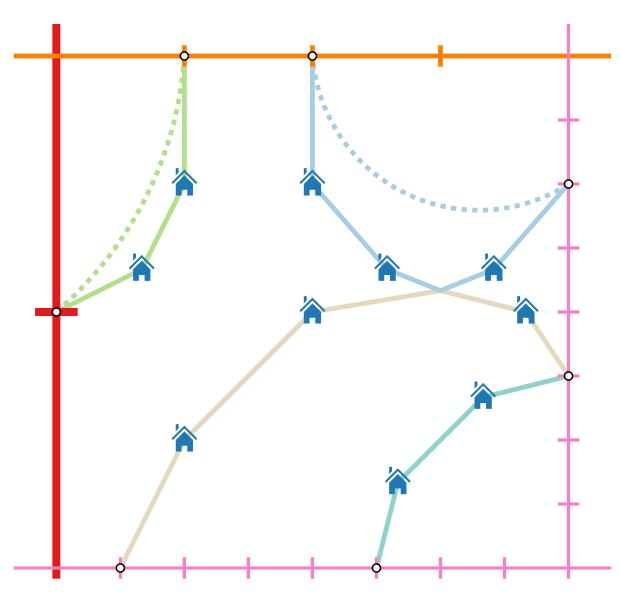
$$\Rightarrow$$
 max. $3^{4m} = 3^{O((\log n)/\varepsilon)} = n^{O(1/\varepsilon)}$ possibilities $m = O((\log n)/\varepsilon)$



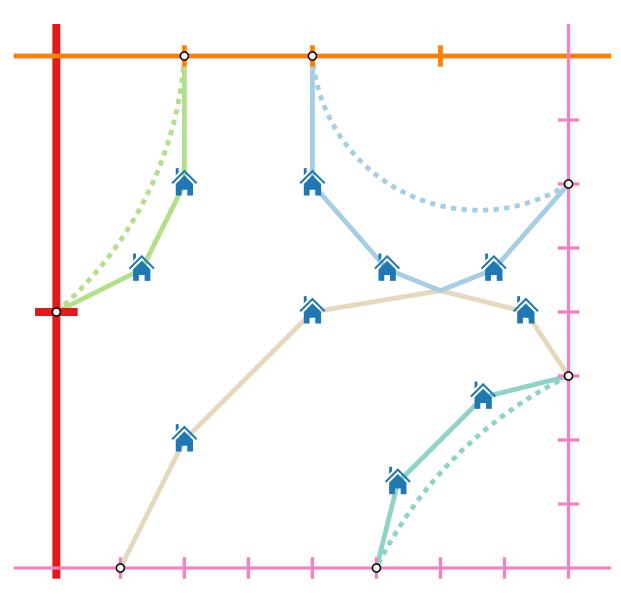
- A path cover of the houses in *Q*
- Each portal of *Q* is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



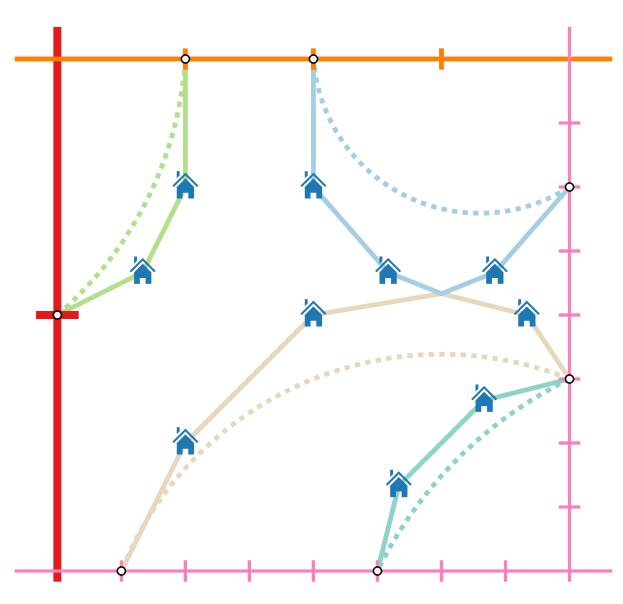
- A path cover of the houses in *Q*
- Each portal of *Q* is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



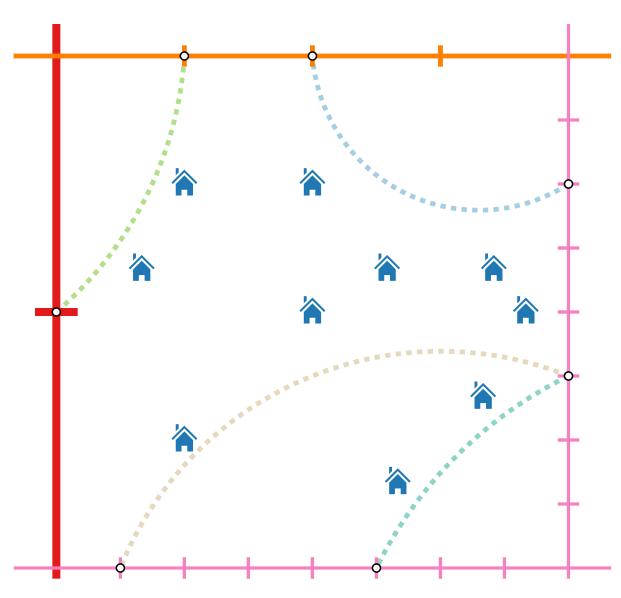
- A path cover of the houses in *Q*
- Each portal of *Q* is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



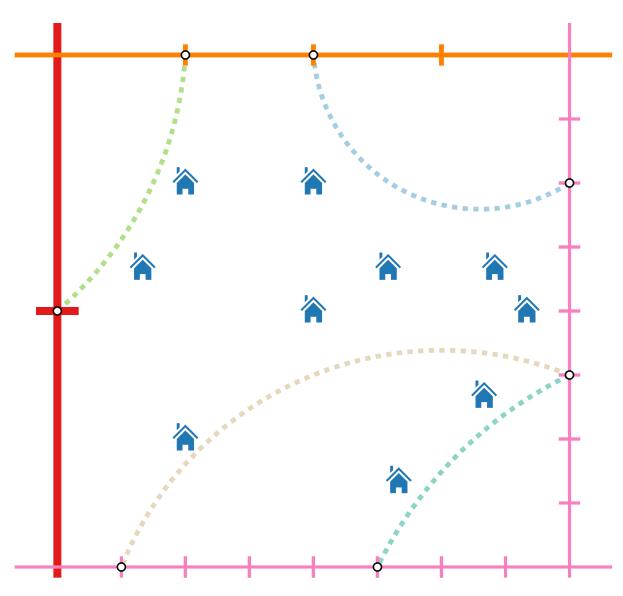
- A path cover of the houses in *Q*
- Each portal of *Q* is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



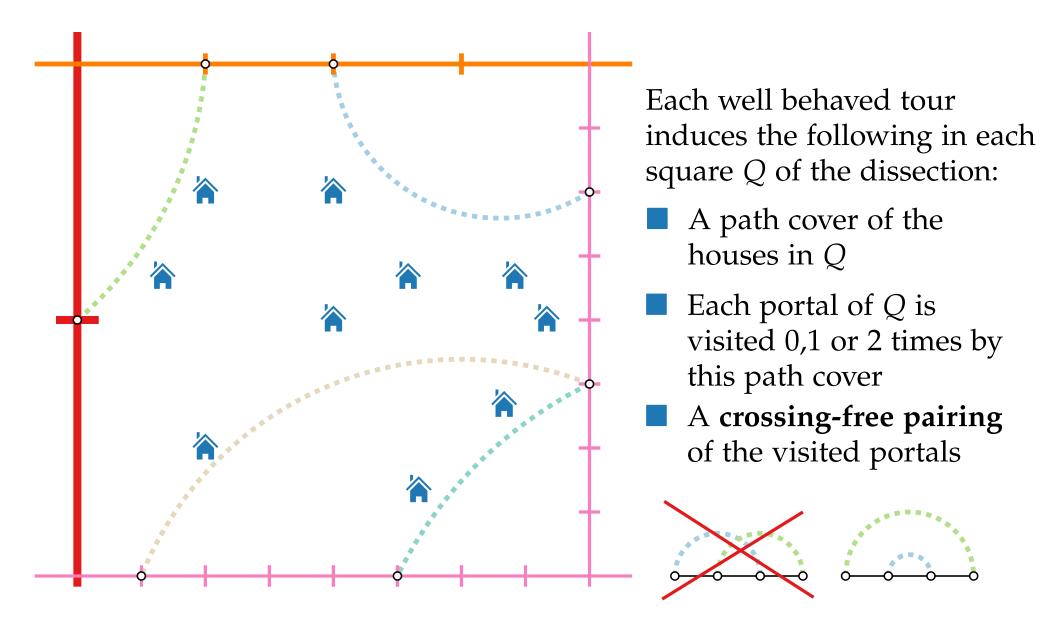
- A path cover of the houses in *Q*
- Each portal of *Q* is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals

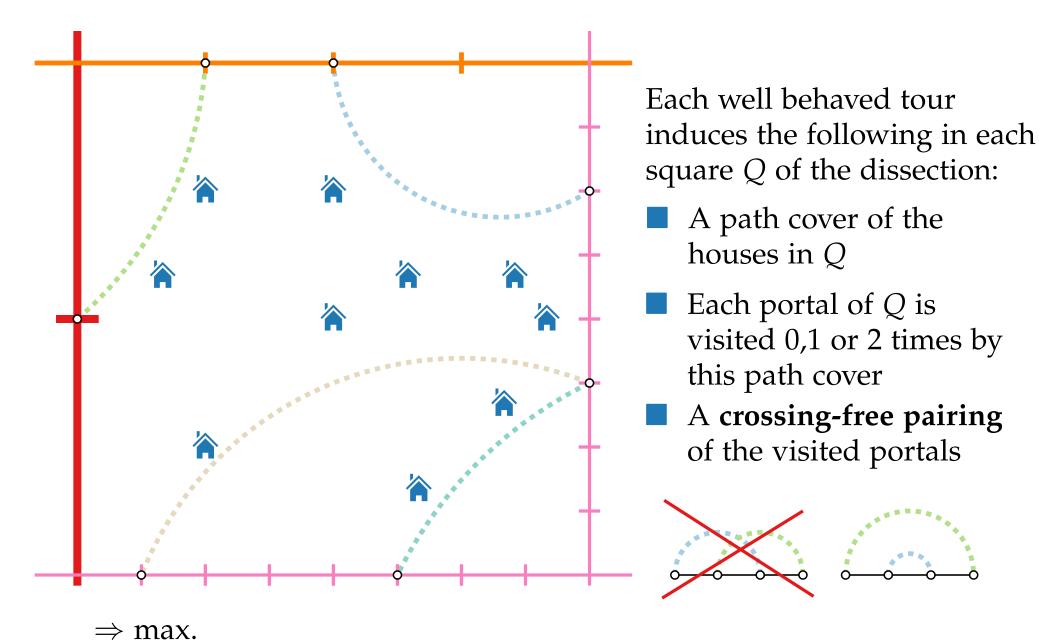


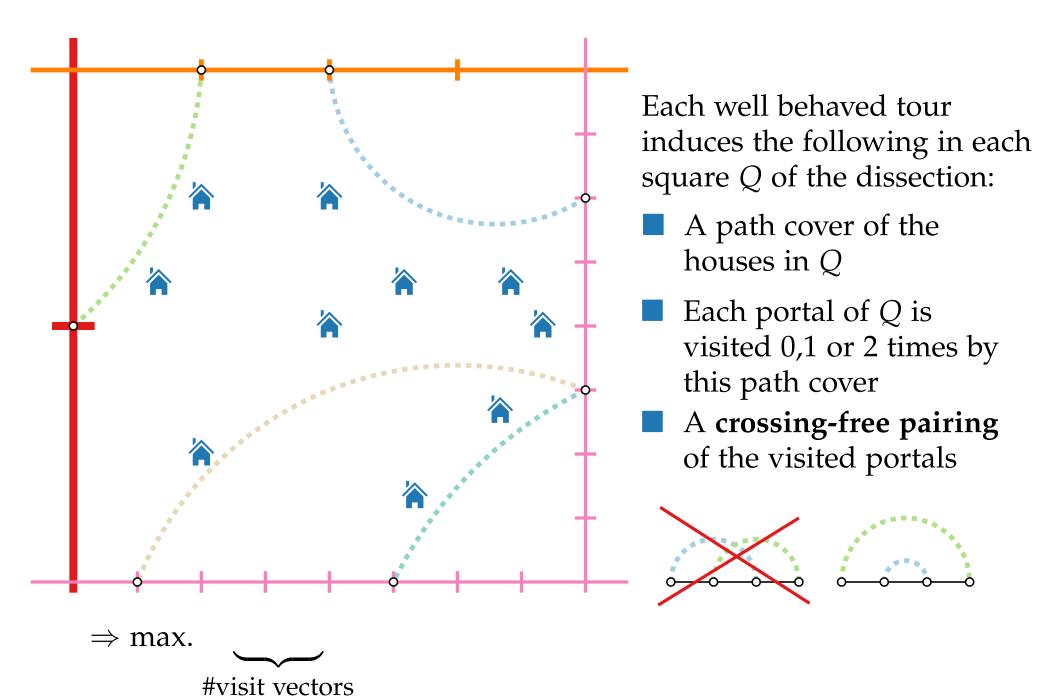
- A path cover of the houses in *Q*
- Each portal of *Q* is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals

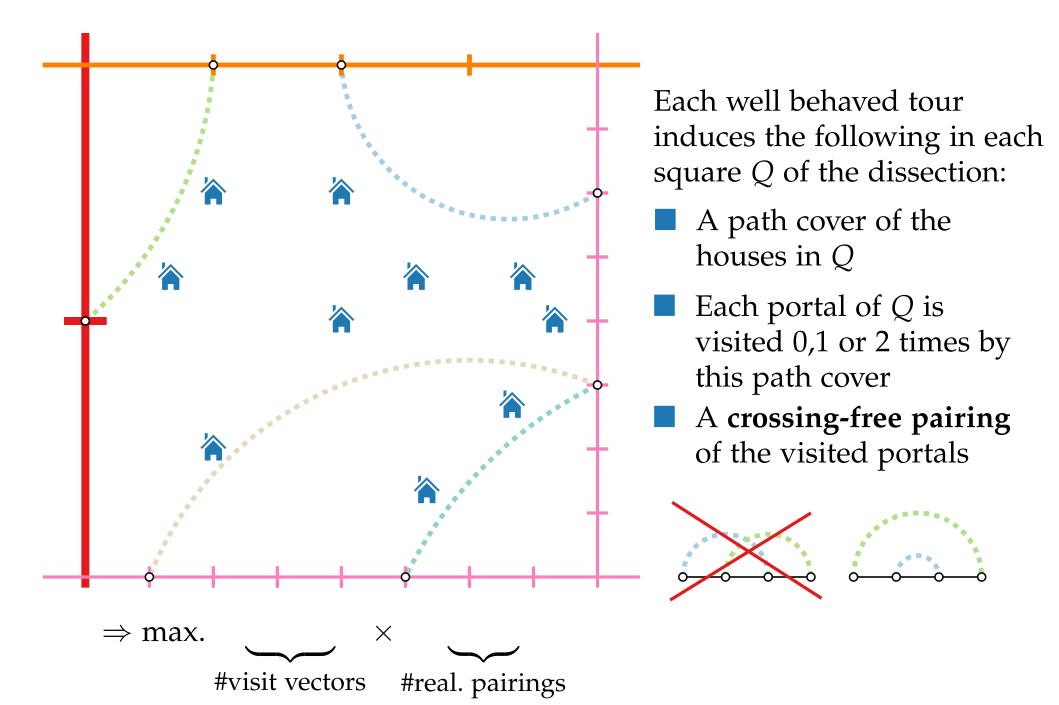


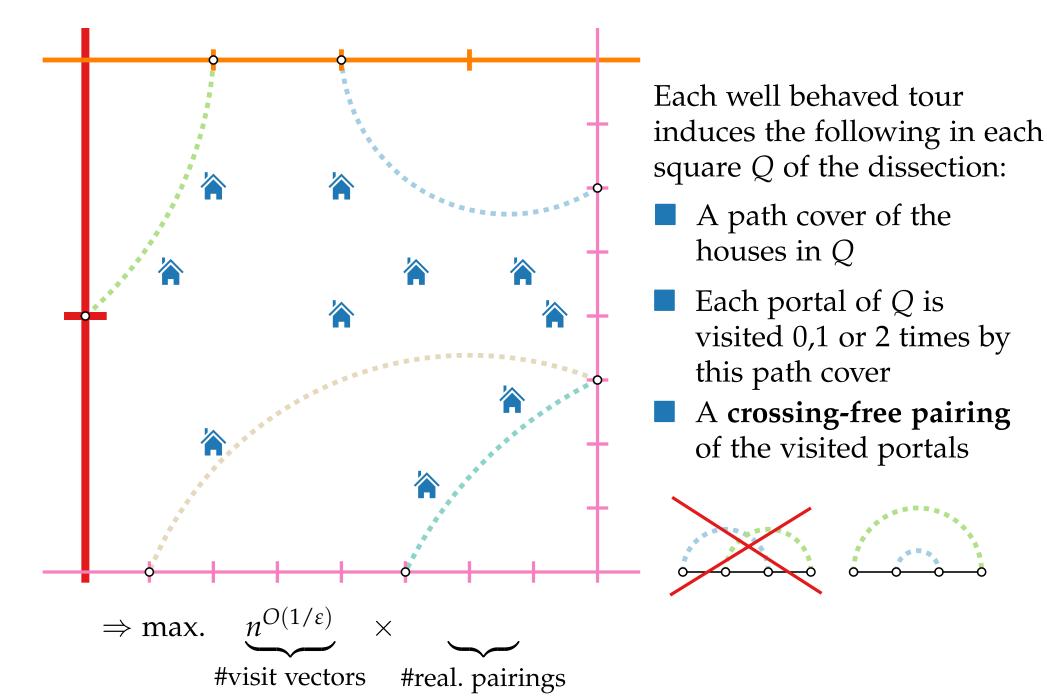
- A path cover of the houses in Q
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals

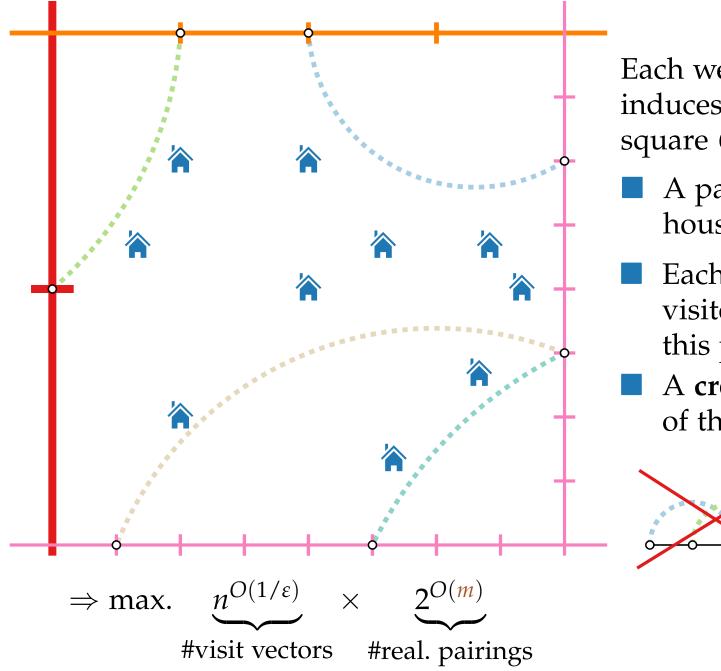




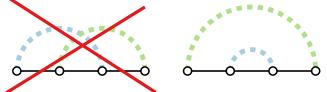


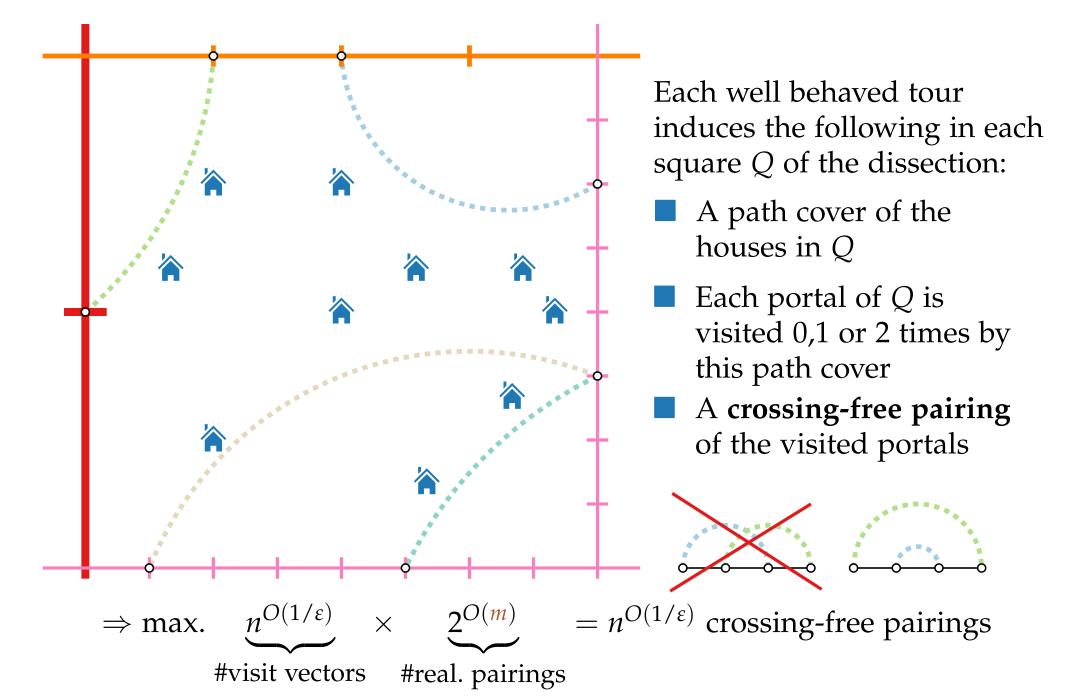


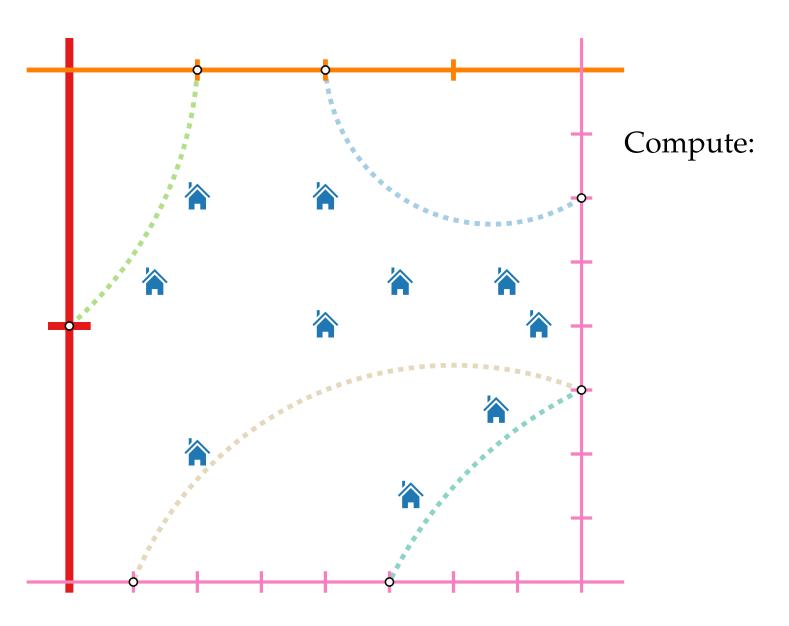


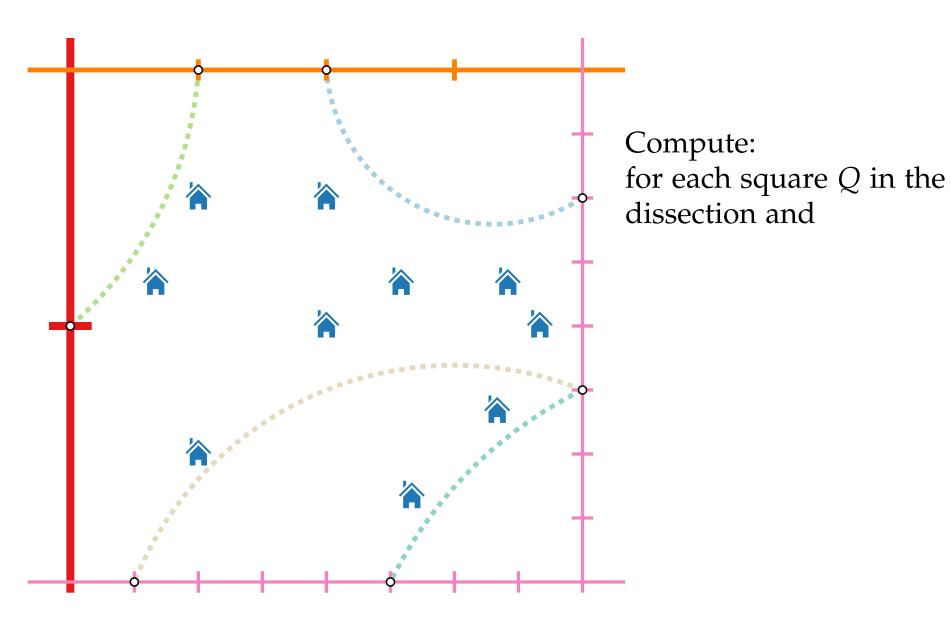


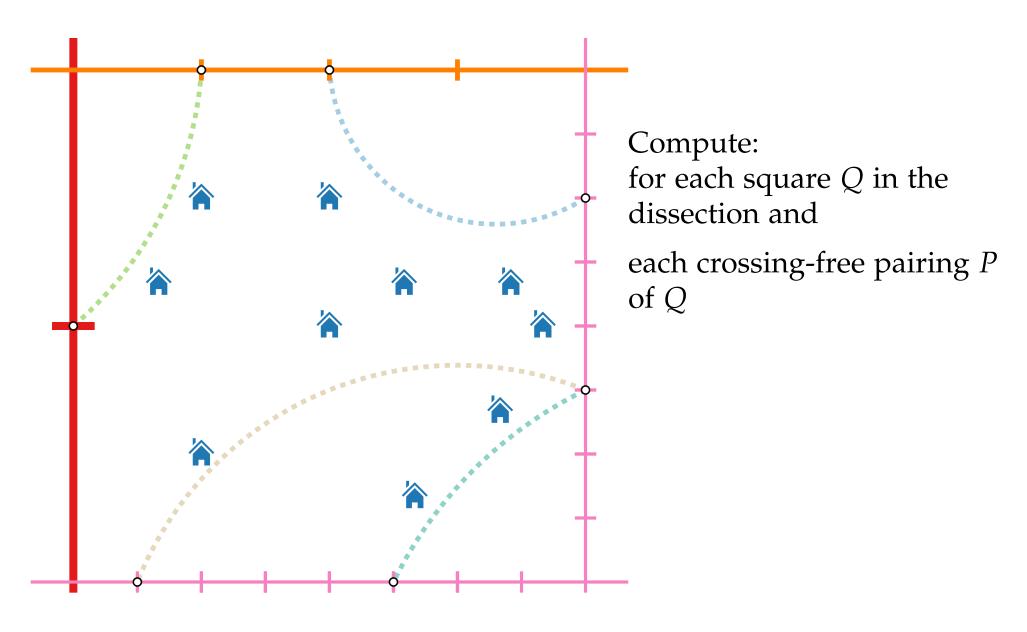
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals

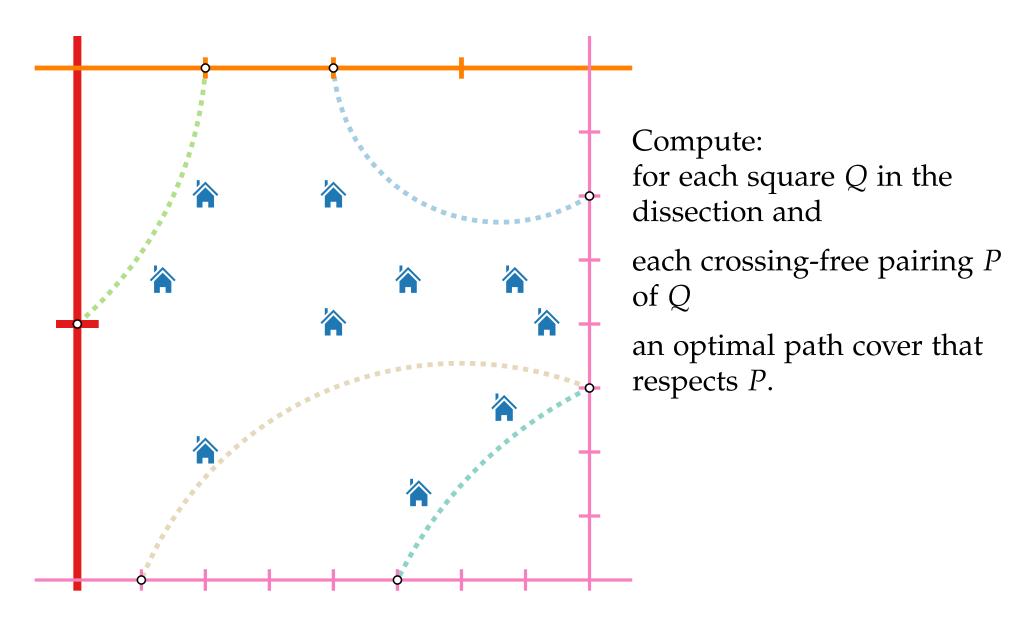


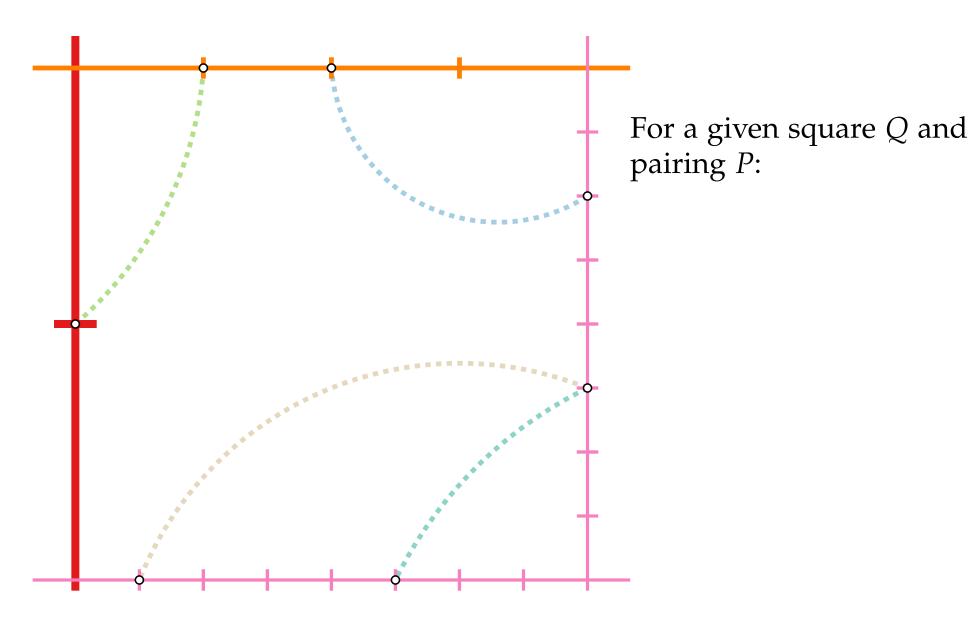


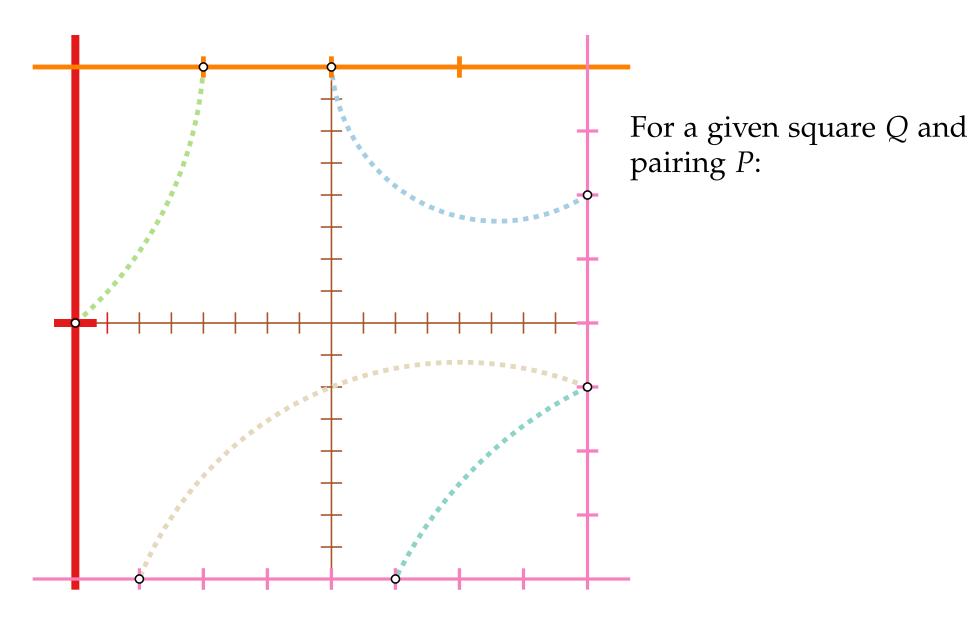


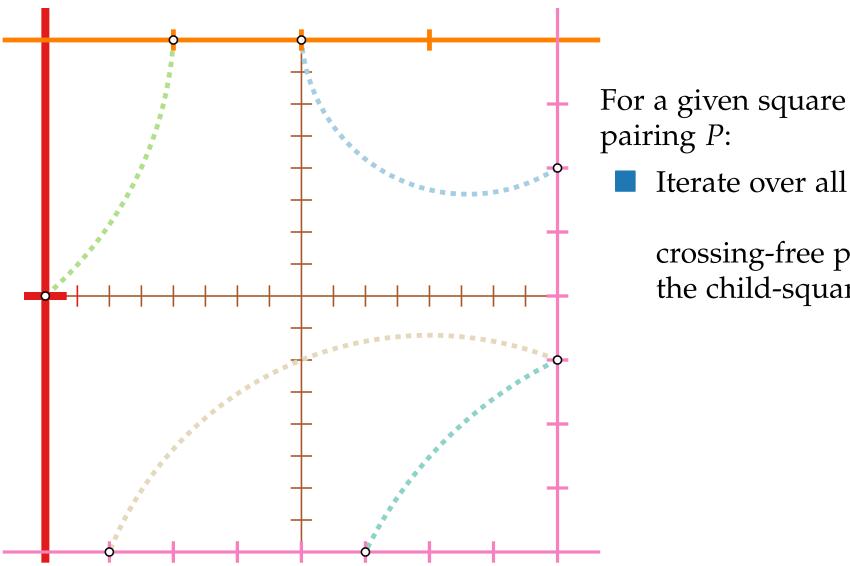






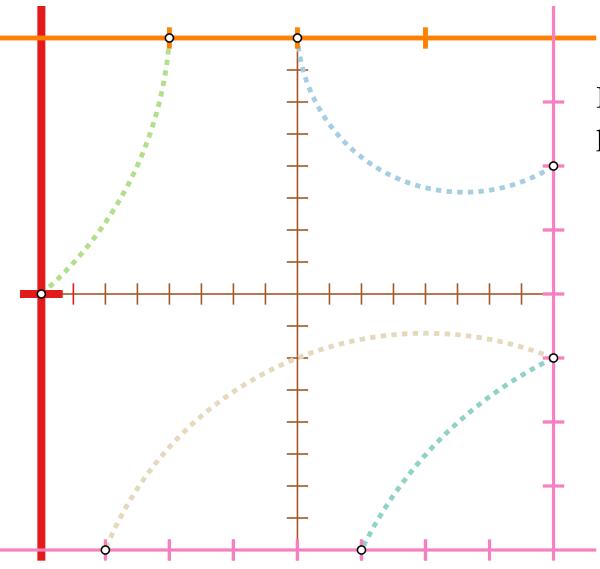






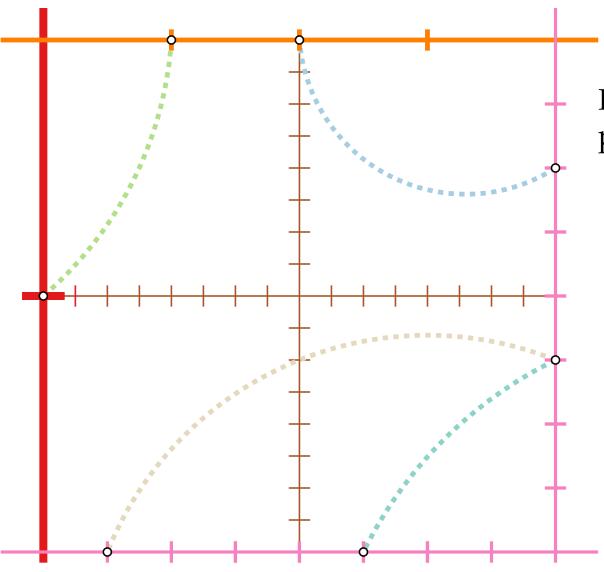
For a given square Q and

crossing-free pairings of the child-squares



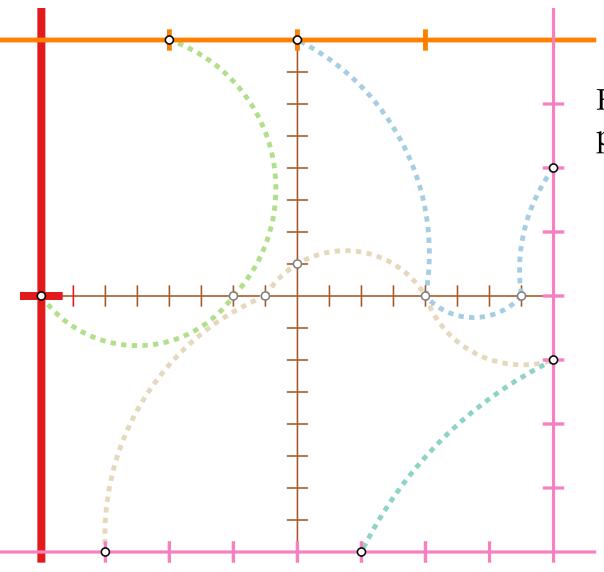
For a given square *Q* and pairing *P*:

Iterate over all $(n^{O(1/\varepsilon)})^4 =$ crossing-free pairings of the child-squares



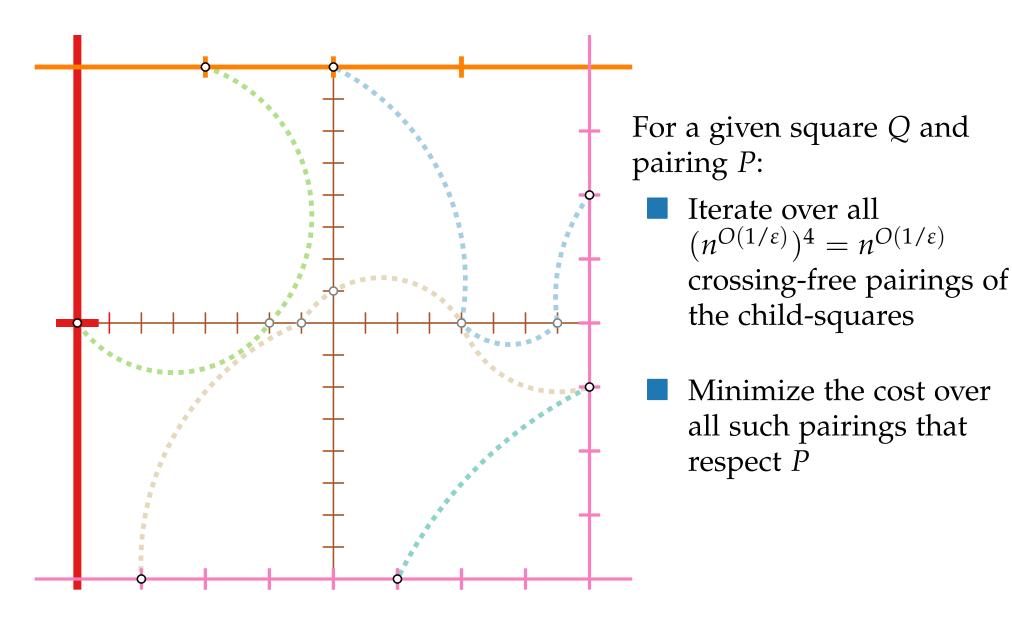
For a given square *Q* and pairing *P*:

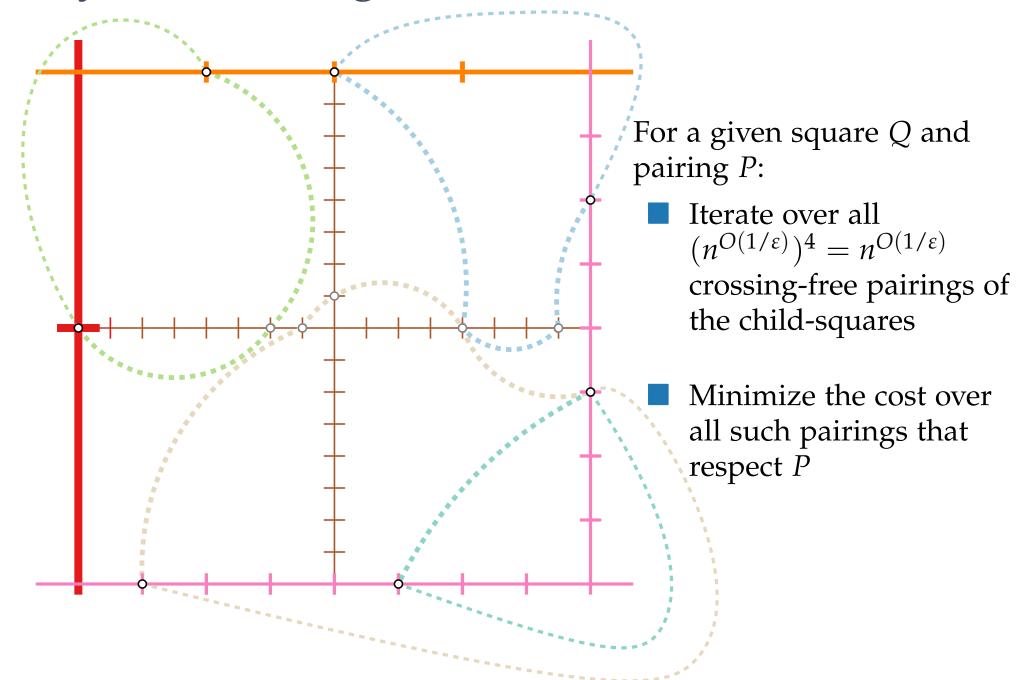
Iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares

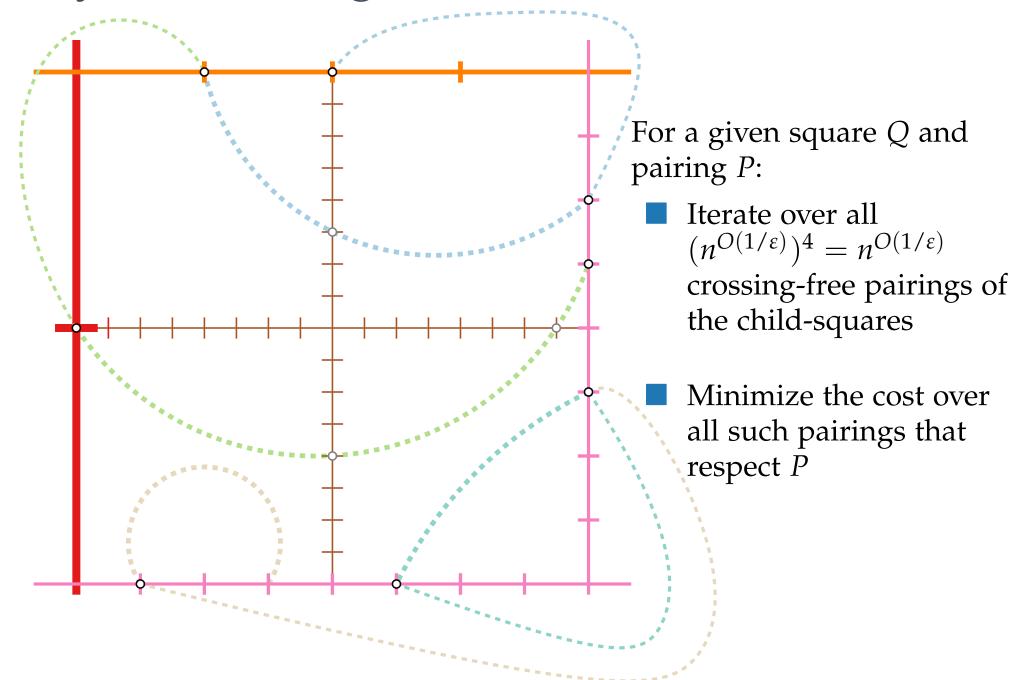


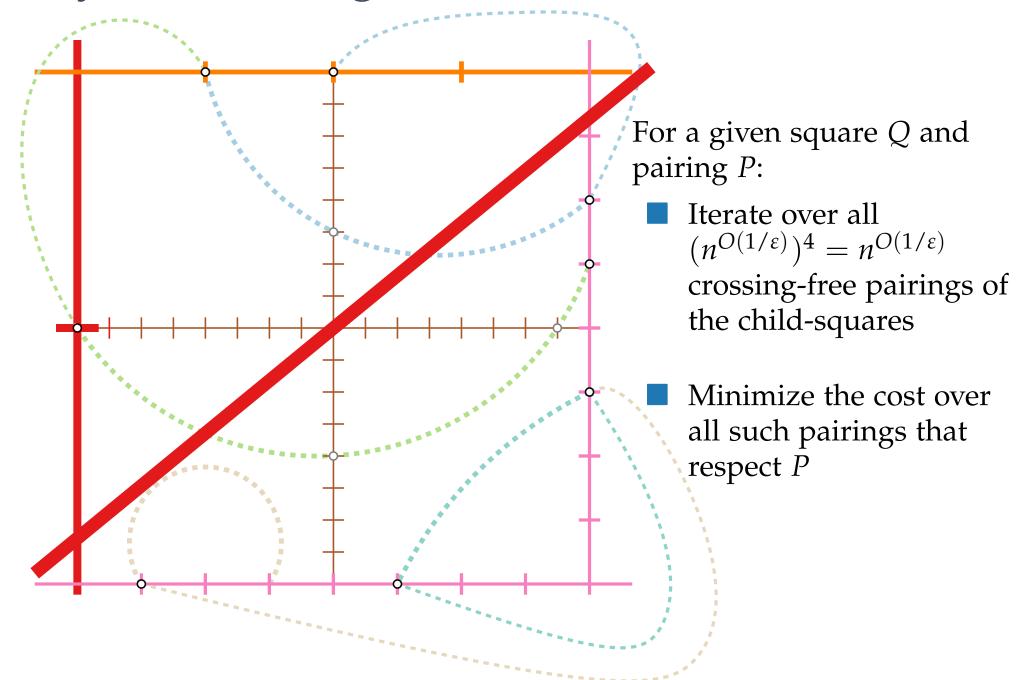
For a given square *Q* and pairing *P*:

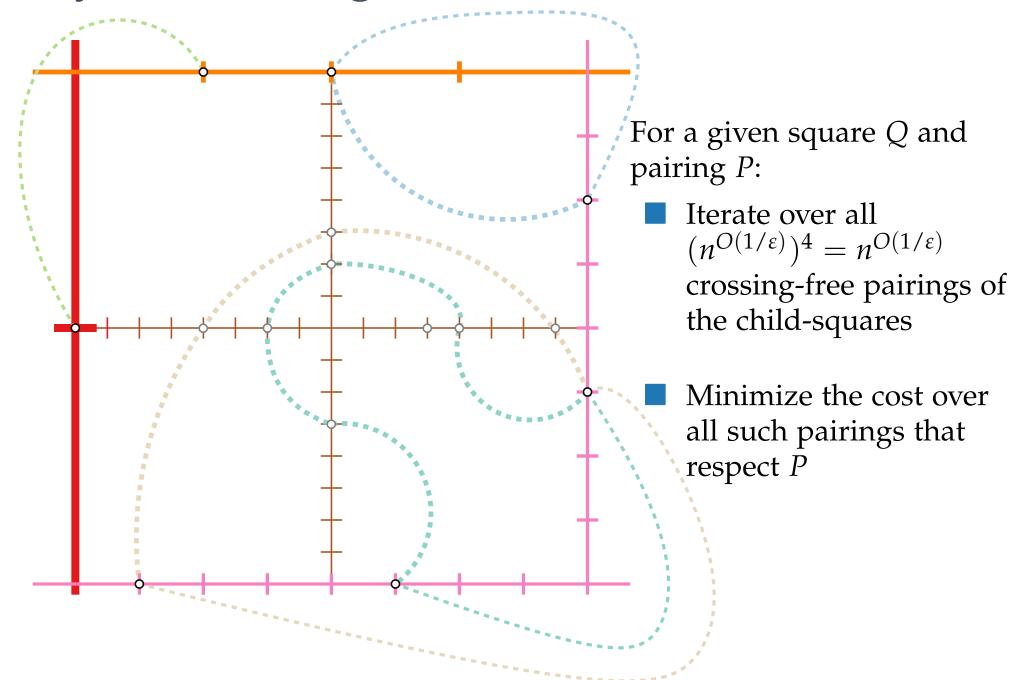
Iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares

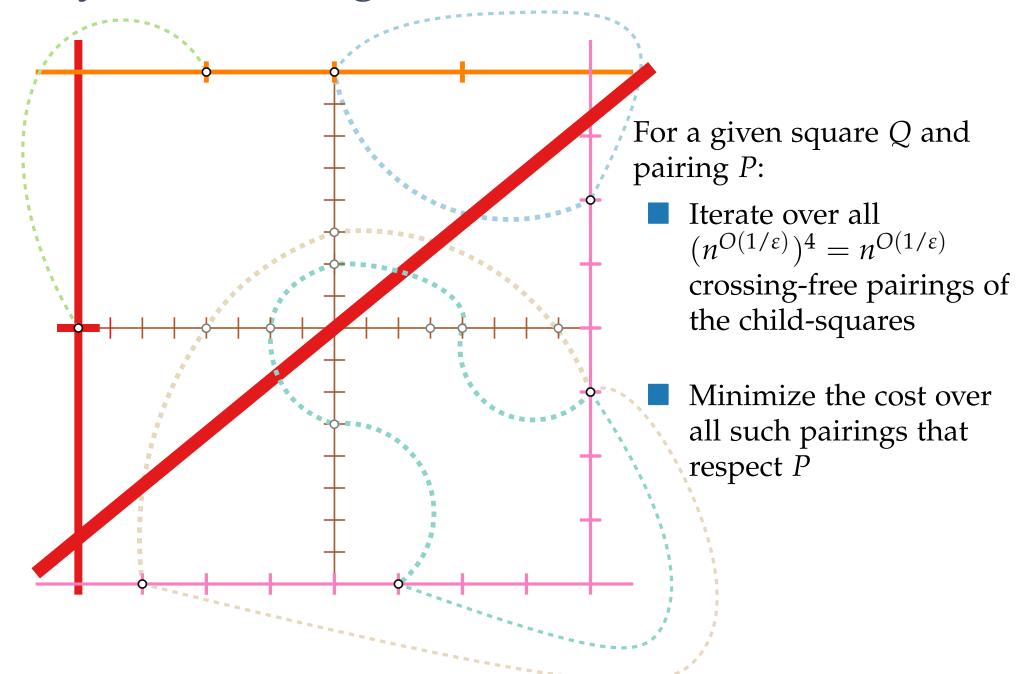


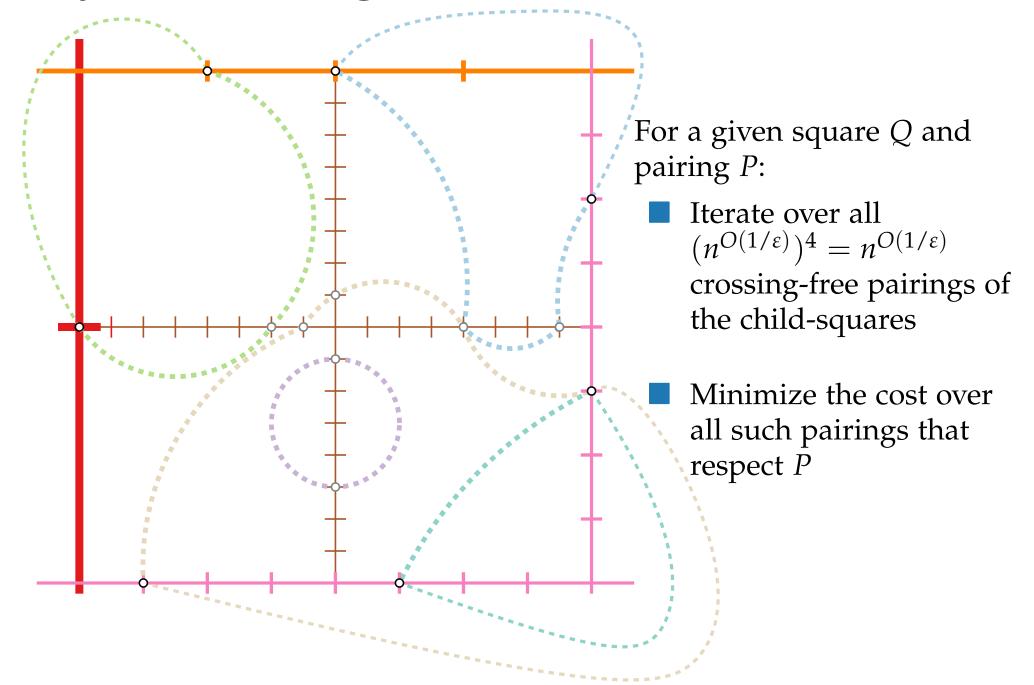


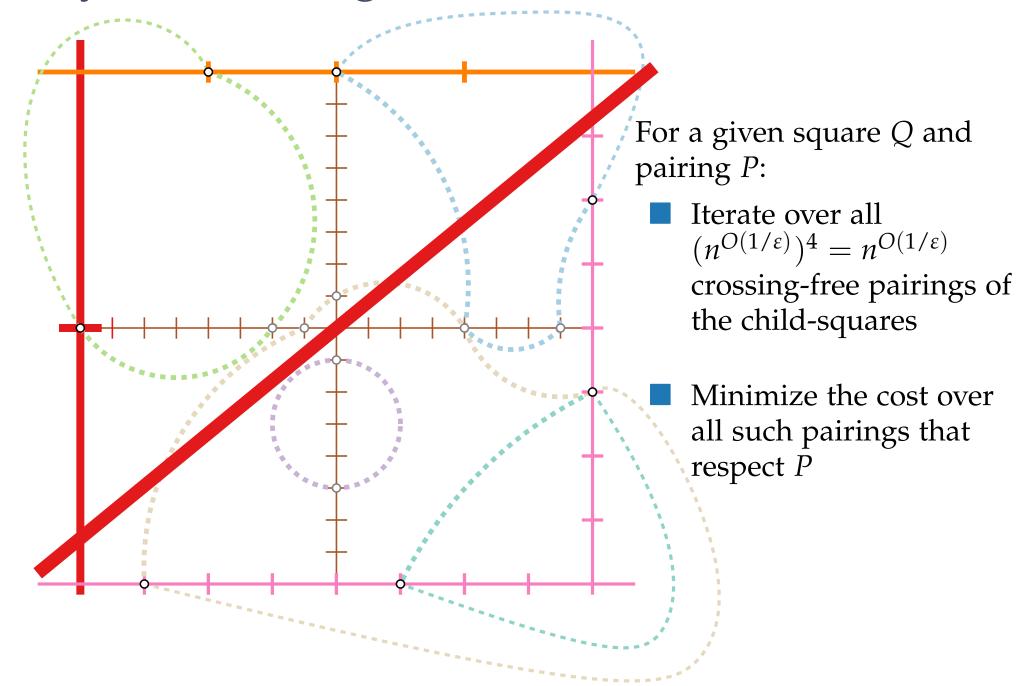


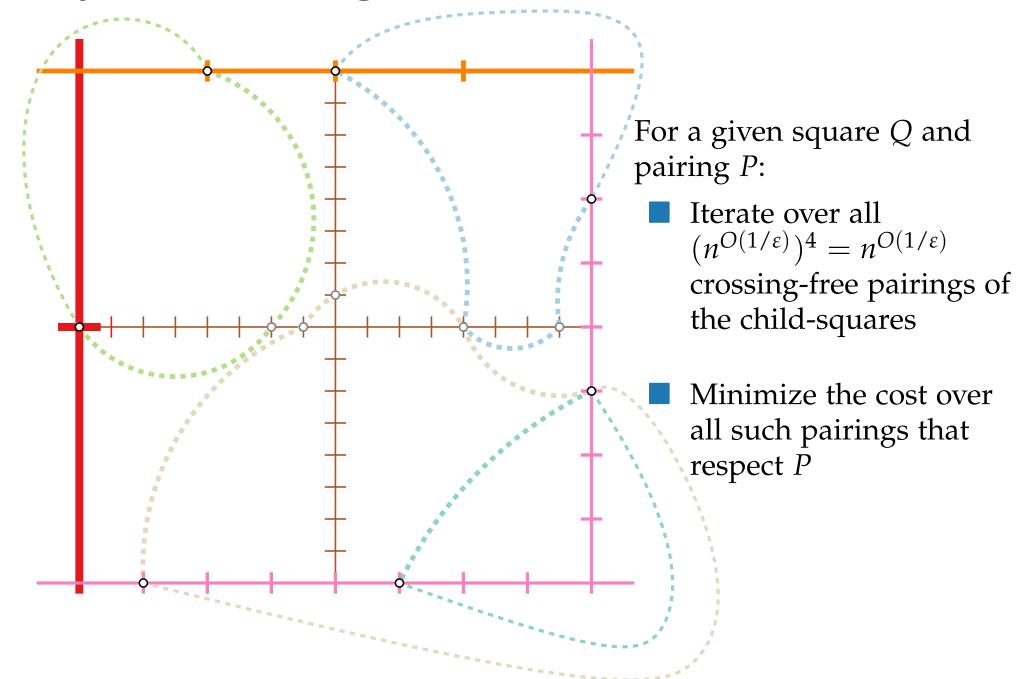


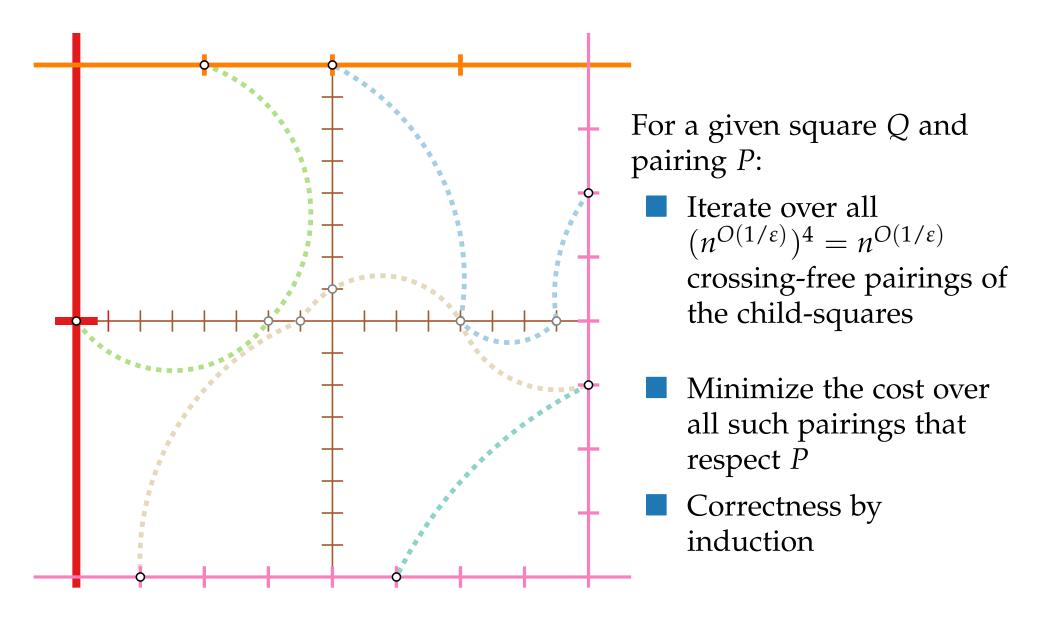




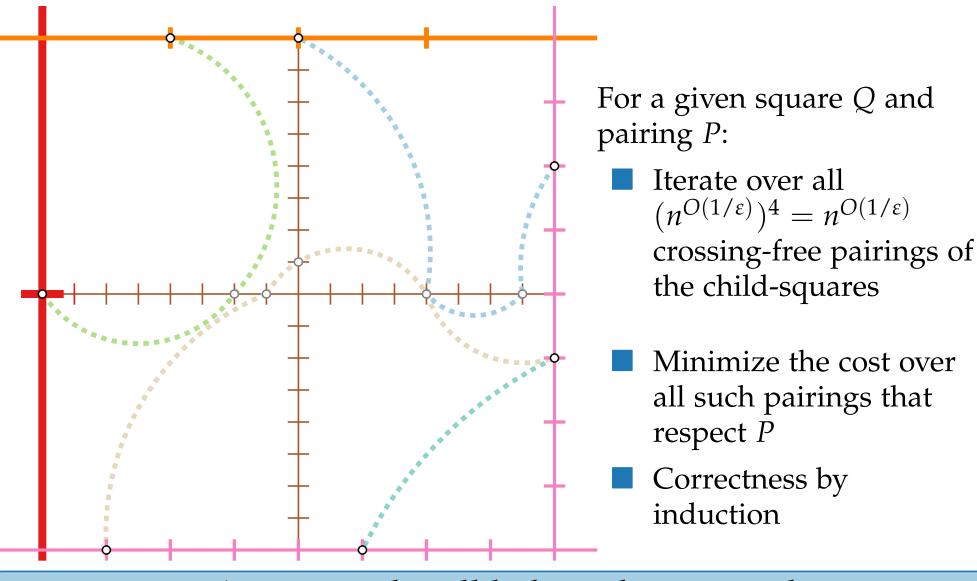








Dynamic Program (III)

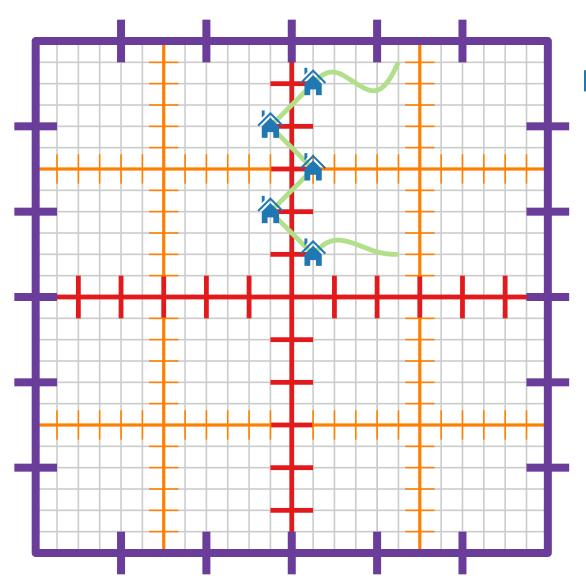


Lemma. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

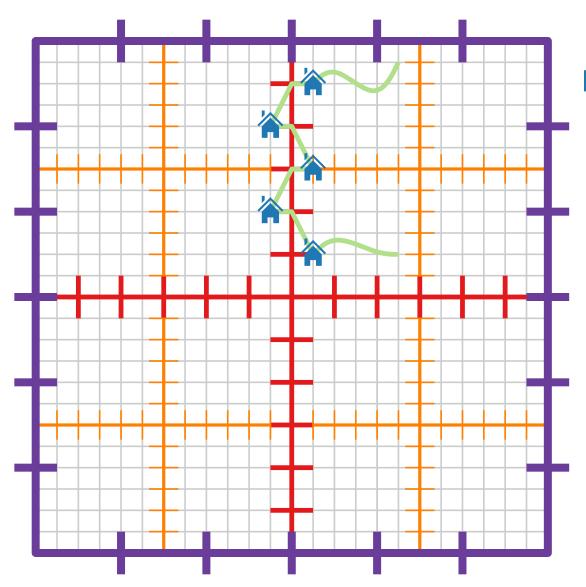
Approximation Algorithms

Lecture 9: PTAS for EuclideanTSP

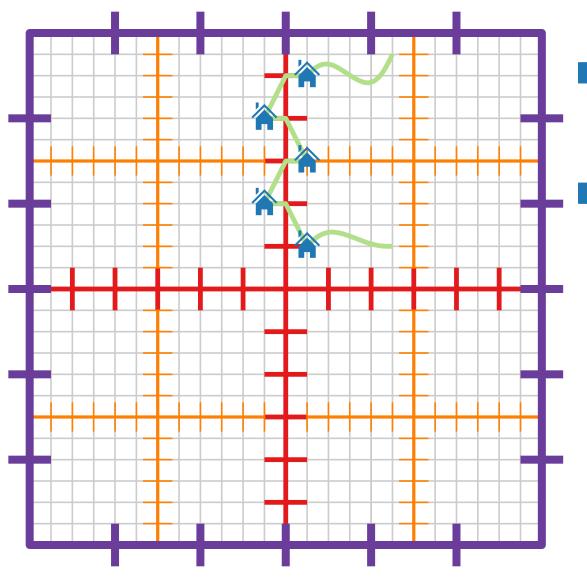
Part V: Shifted Dissections



The best well behaved tour can be a bad approximation.



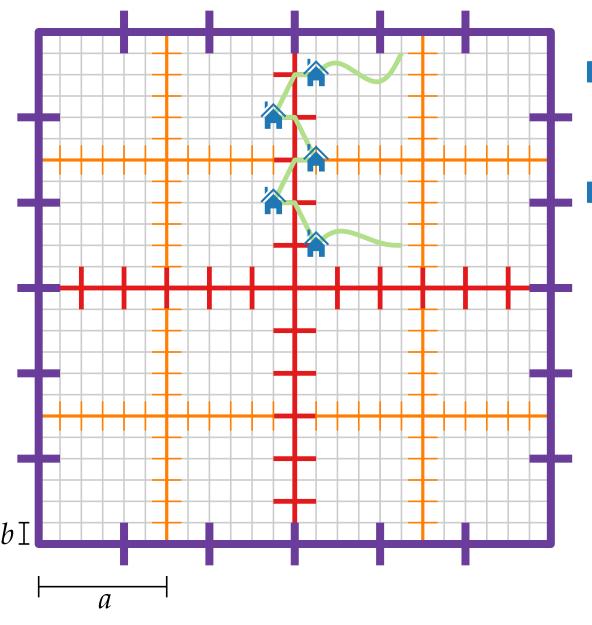
The best well behaved tour can be a bad approximation.



- The best well behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$

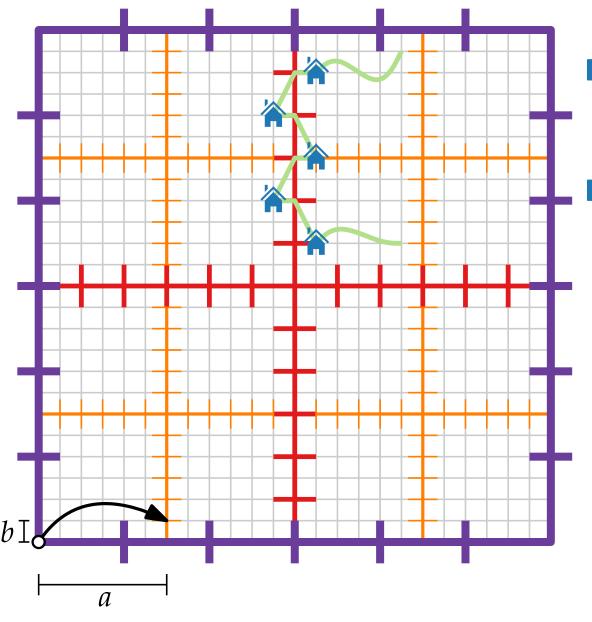
 $y \mapsto (y+b) \mod L$



- The best well behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$

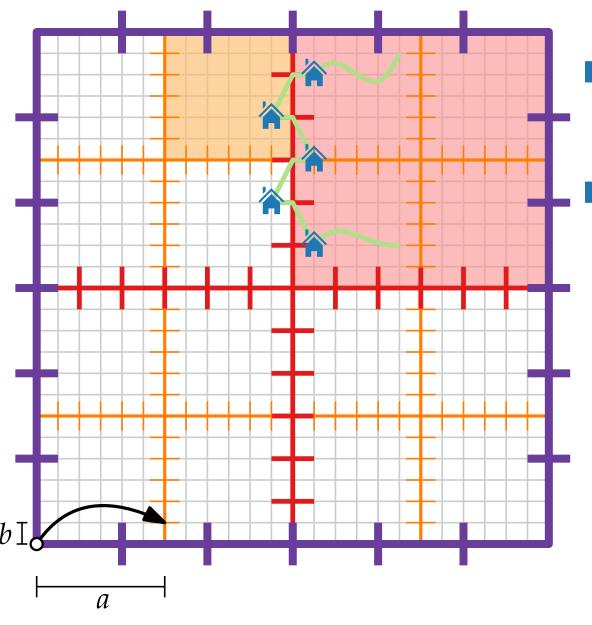
 $y \mapsto (y+b) \mod L$



- The best well behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$

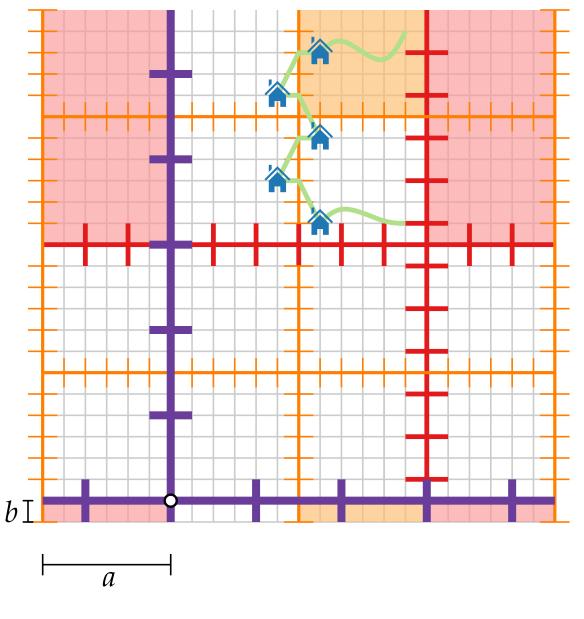
 $y \mapsto (y+b) \mod L$



- The best well behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$

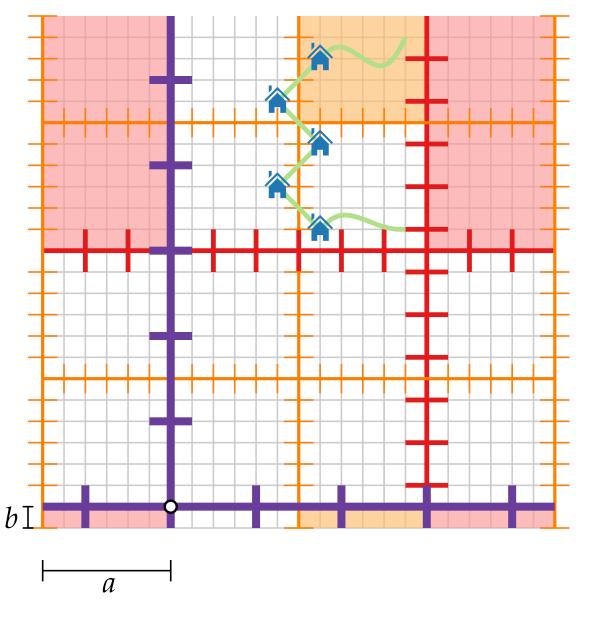
 $y \mapsto (y+b) \mod L$



- The best well behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$

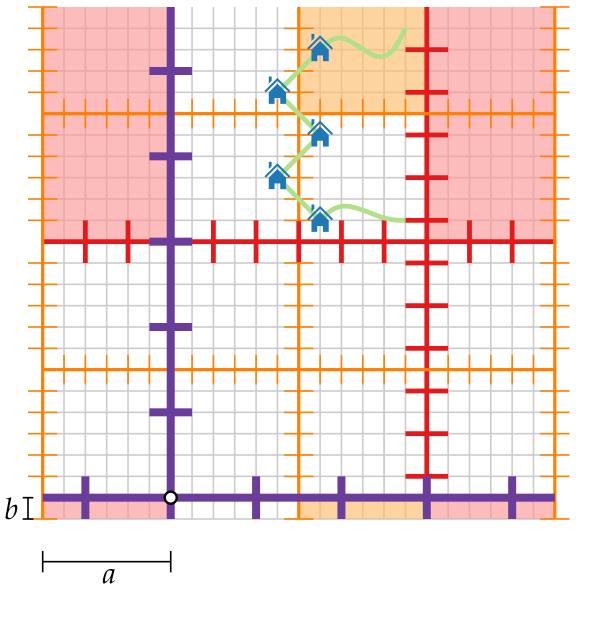
 $y \mapsto (y+b) \mod L$



- The best well behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$

 $y \mapsto (y+b) \mod L$

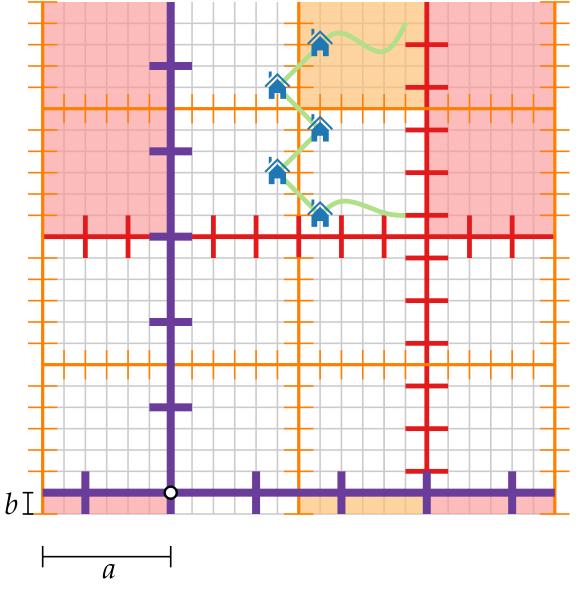


- The best well behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$

 $y \mapsto (y+b) \mod L$

Squares in the dissection tree are "wrapped around".



- The best well behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$

 $y \mapsto (y+b) \mod L$

- Squares in the dissection tree are "wrapped around".
- Dynamic program must be modified accordingly.

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid.

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

Proof.

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

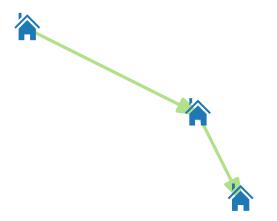
Proof.

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

Proof.

Consider a tour as an ordered cyclic sequence.

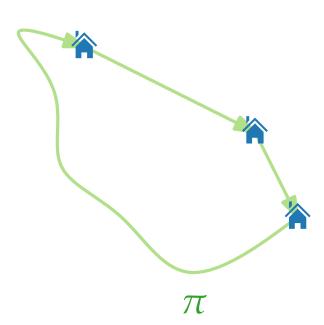


 $\mathcal{\Pi}$

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

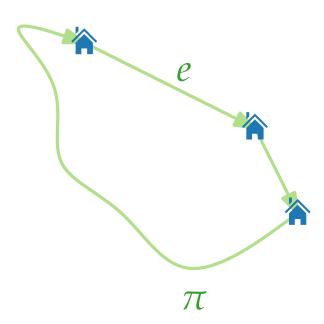
Proof.



Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

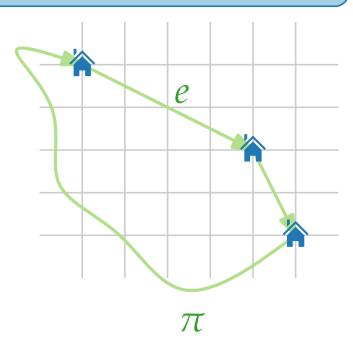
Proof.



Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

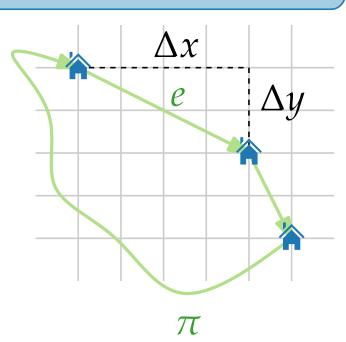
Proof.



Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

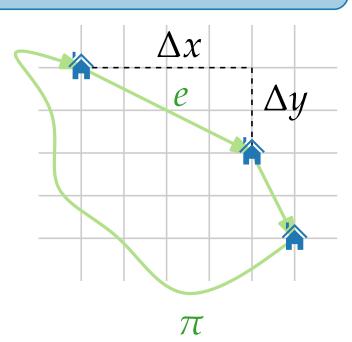
Proof.



Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

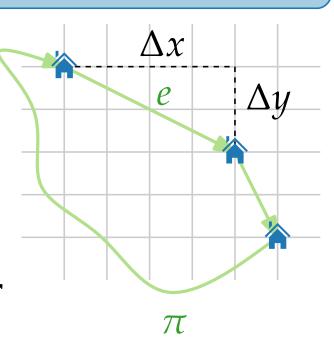
- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.



Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

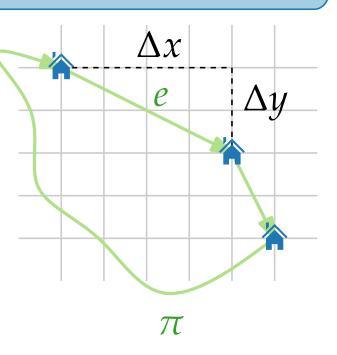


Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.



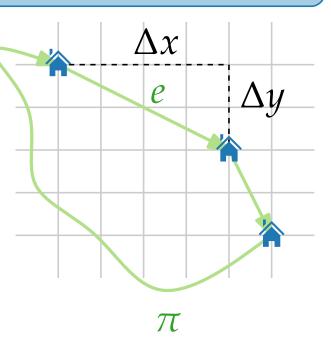
 $N_e^2 \leq$

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

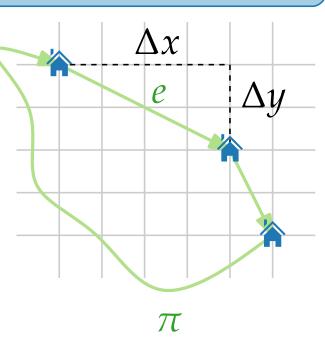


 $N_e^2 \leq (\Delta x + \Delta y)^2 \leq$

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

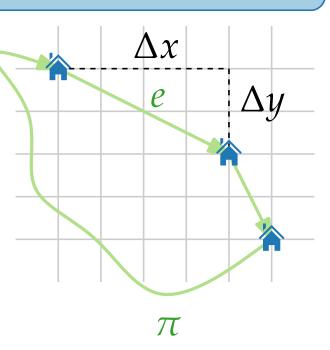


$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) =$$

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

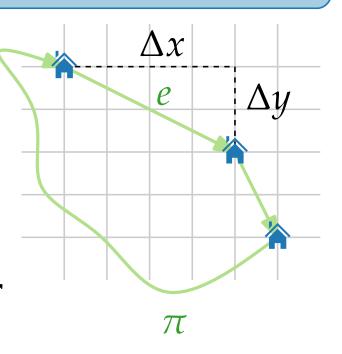


$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2$$
.

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.



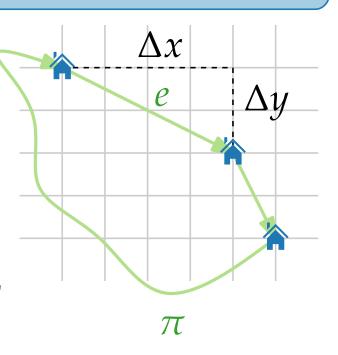
$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$$

$$N(\pi) =$$

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.



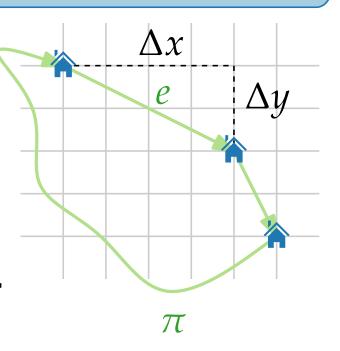
$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$$

$$N(\pi) = \sum_{e \in \pi} N_e \le$$

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.



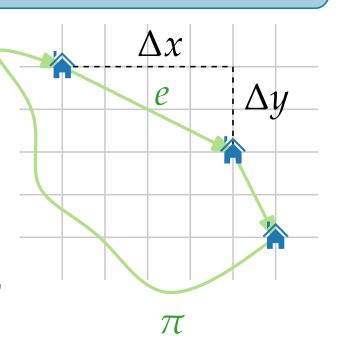
$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$$

$$N(\pi) = \sum_{e \in \pi} N_e \le \sum_{e \in \pi} \sqrt{2|e|^2}$$

Lemma.

Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.



$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$$

$$N(\pi) = \sum_{e \in \pi} N_e \le \sum_{e \in \pi} \sqrt{2|e|^2} = \sqrt{2} \cdot \text{OPT.}$$

Approximation Algorithms

Lecture 9: PTAS for EuclideanTSP

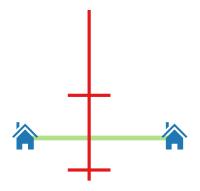
Part VI:
Approximation Factor

Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random.

Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

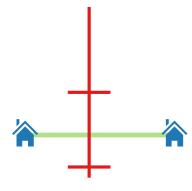
Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2}\varepsilon)$ OPT.

Proof. Consider optimal tour π .



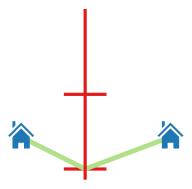
Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

Proof. Consider optimal tour π . Make π well behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.



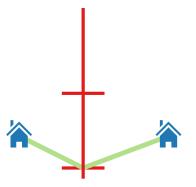
Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

Proof. Consider optimal tour π . Make π well behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.



Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

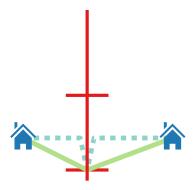
Proof. Consider optimal tour π . Make π well behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.



Detour per intersection \leq inter-portal distance.

Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

Proof. Consider optimal tour π . Make π well behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.



Detour per intersection \leq inter-portal distance.

Consider an intersection point between π and a line l of the $(L \times L)$ -grid.

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most , l is a level-i-line

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L$, l is a level-i-line

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of (inter-portal distance).

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^{i}/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^{i}m)$ (inter-portal distance).

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^im)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^im)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k}$$

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^im)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^k \frac{2^i}{L}$$
.

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^{i}/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^{i}m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \le$$

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^{i}/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^{i}m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \le \frac{k+1}{m} \le$$

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^{i}/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^{i}m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \le \frac{k+1}{m} \le$$

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^{i}/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^{i}m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \leq \frac{k+1}{m} \leq 2\varepsilon.$$

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^{i}/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^{i}m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \leq \frac{k+1}{m} \leq 2\varepsilon.$$

Summing over all $N(\pi) \le \sqrt{2} \cdot \text{OPT}$ intersection points, and applying linearity of expectation, provides the claim.

Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2}\varepsilon)$ OPT.

Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEANTSP that provides for every $\varepsilon > 0$ a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEANTSP that provides for every $\varepsilon > 0$ a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Proof. Try all L^2 many (a, b)-shifted dissections.

Theorem. Let $a, b \in [0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEANTSP that provides for every $\varepsilon > 0$ a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Proof. Try all L^2 many (a,b)-shifted dissections. By the previous theorem, one of them is good enough.