Approximation Algorithms

Lecture 10:

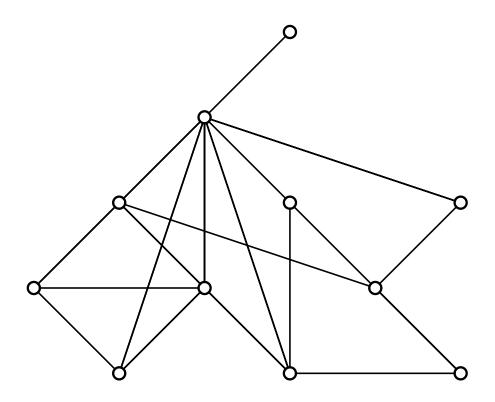
MINIMUM-DEGREE SPANNING TREE via Local Search

Part I:

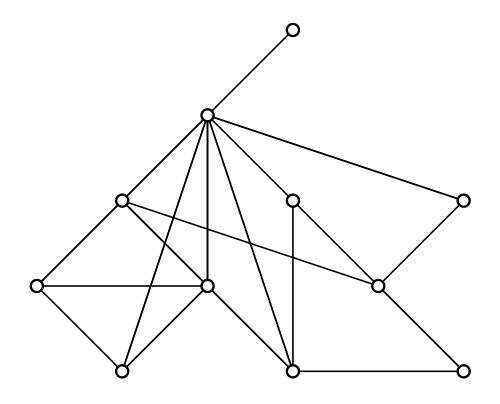
MINIMUM-DEGREE SPANNING TREE

Given: A connected graph G = (V, E)

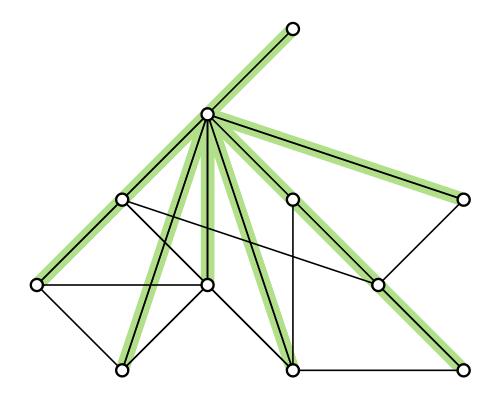
Given: A connected graph G = (V, E)



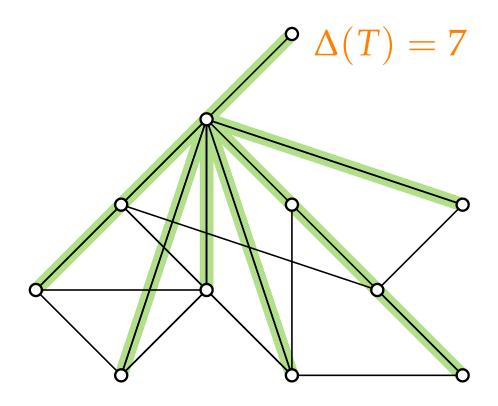
Given: Task:



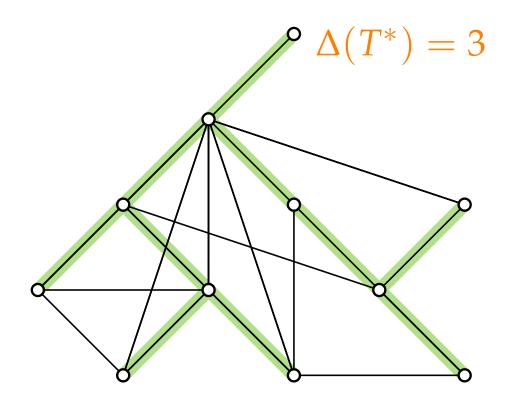
Given: Task:



Given: Task:



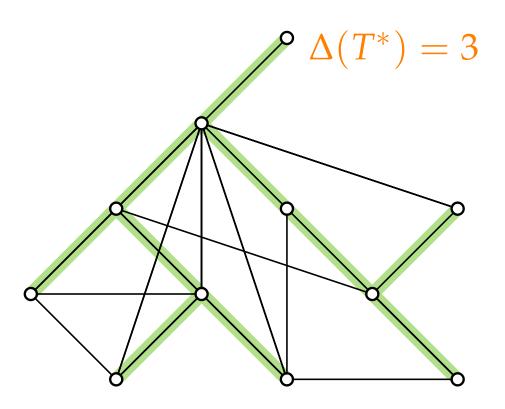
Given: Task:



Given: Task:

A connected graph G = (V, E)Find a spanning tree T that has the minimum maximum degree $\Delta(T)$ among all spanning trees of G.

NP-hard

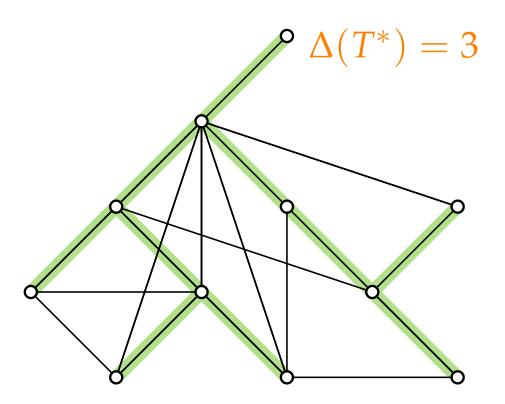


Given: Task:

A connected graph G = (V, E)Find a spanning tree T that has the minimum maximum degree $\Delta(T)$ among all spanning trees of G.

NP-hard 😃

Why?



Given:

A connected graph G = (V, E)

Task:

Find a spanning tree *T* that has the

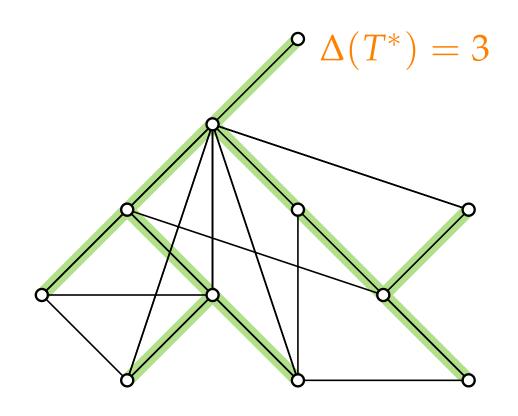
minimum maximum degree $\Delta(T)$ among

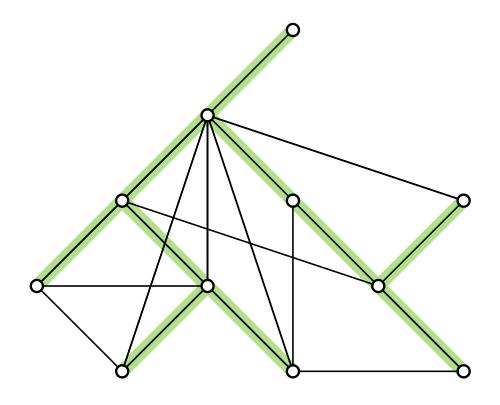
all spanning trees of *G*.

NP-hard 💢

Why?

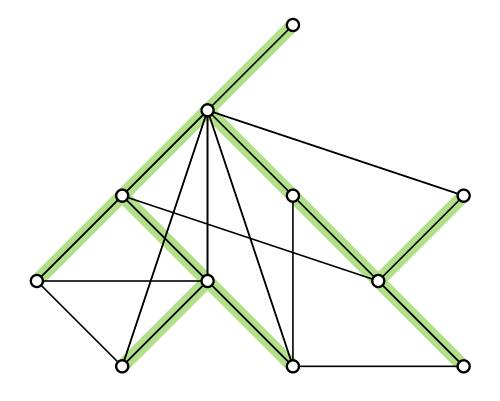
Special case of Hamiltonian Path!



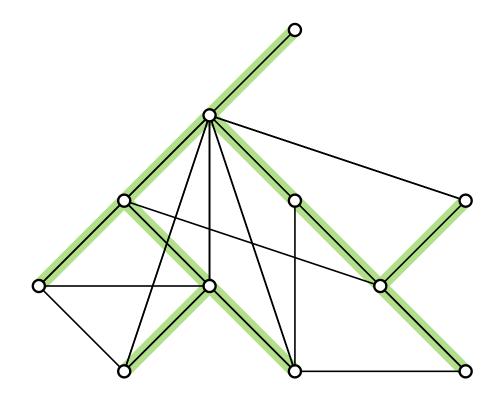


Obs. A spanning tree *T* has...

n vertices and n edges,

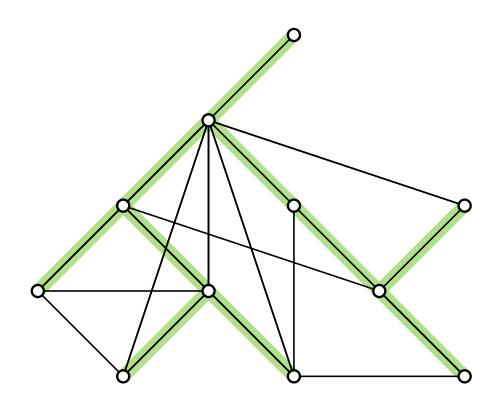


- \blacksquare *n* vertices and ? edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) =$?



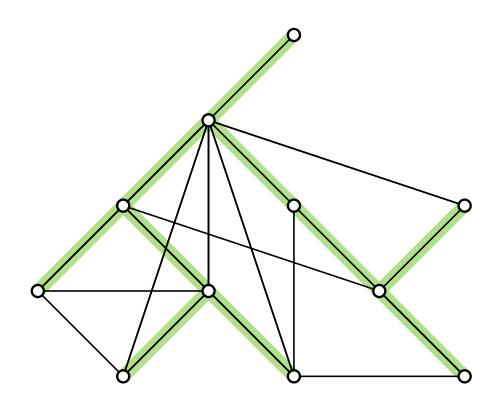
```
Obs. A spanning tree T has...
```

- \blacksquare *n* vertices and ? edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) =$?
- average degree ?

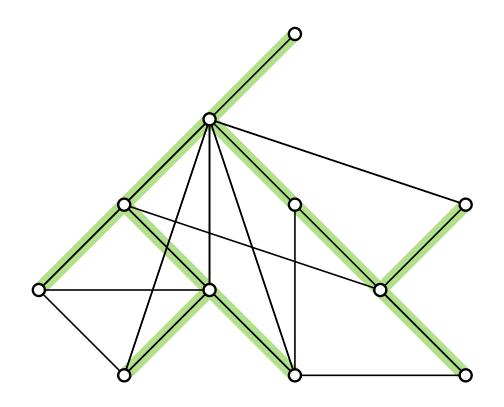


```
Obs. A spanning tree T has...
```

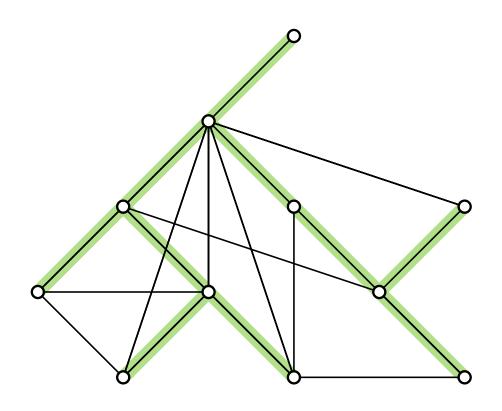
- \blacksquare *n* vertices and n-1 edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) =$?
- average degree ?



- \blacksquare *n* vertices and n-1 edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) = 2n 2$,
- average degree ?

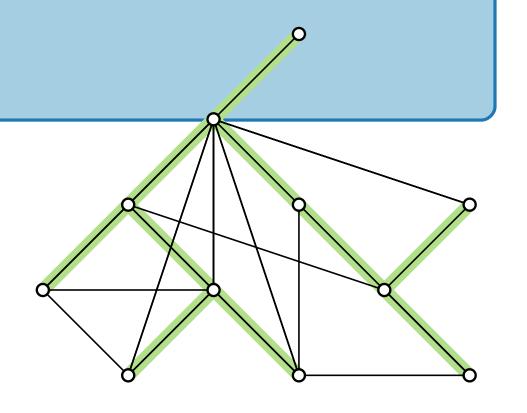


- \blacksquare *n* vertices and n-1 edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) = 2n 2$,
- average degree < 2.</p>



- \blacksquare *n* vertices and n-1 edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) = 2n 2$,
- average degree < 2.</p>

Obs. Let
$$V' \subseteq V(G)$$
.
Then $\Delta(G) \ge$?



- \blacksquare *n* vertices and n-1 edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) = 2n 2$,
- average degree < 2.</p>

Obs. Let
$$V' \subseteq V(G)$$
. Then $\Delta(G) \ge \sum_{v \in V'} \deg(v) / |V'|$.

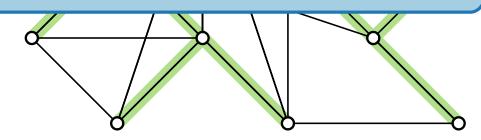
Obs. A spanning tree *T* has...

- \blacksquare *n* vertices and n-1 edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) = 2n 2$,
- average degree < 2.</p>

Obs. Let
$$V' \subseteq V(G)$$
.

Then
$$\Delta(G) \ge \sum_{v \in V'} \deg(v)/|V'|$$
.

Obs. Let T be a spanning tree with $k = \Delta(T)$. Then T has at most ? vertices of degree k.



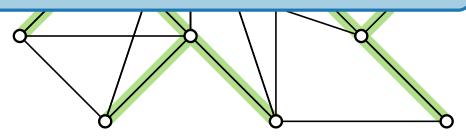
Obs. A spanning tree *T* has...

- \blacksquare *n* vertices and n-1 edges,
- sum of degrees $\sum_{v \in V} \deg_T(v) = 2n 2$,
- average degree < 2.</p>

Obs. Let
$$V' \subseteq V(G)$$
.

Then
$$\Delta(G) \ge \sum_{v \in V'} \deg(v)/|V'|$$
.

Obs. Let T be a spanning tree with $k = \Delta(T)$. Then T has at most $\frac{2n-2}{k}$ vertices of degree k.

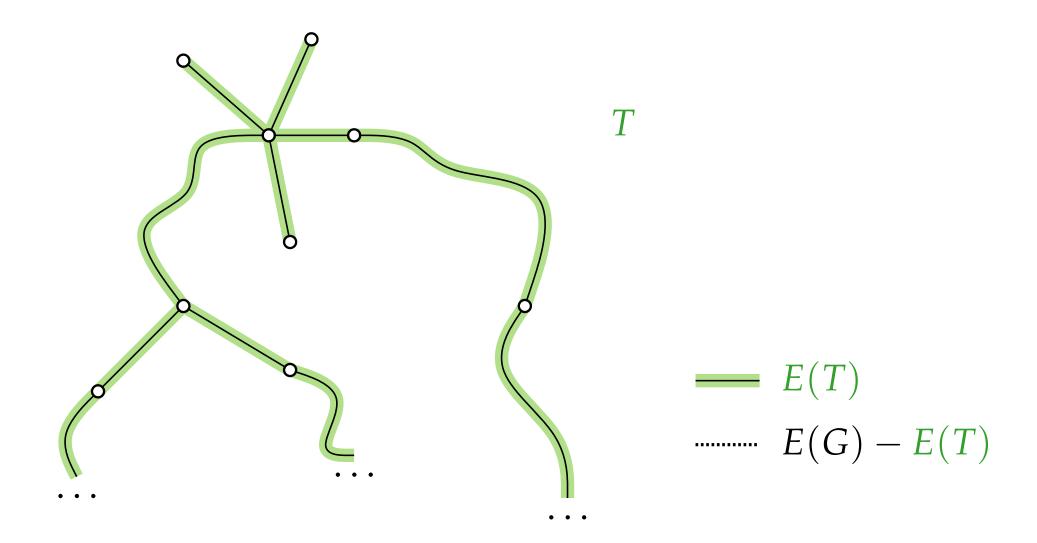


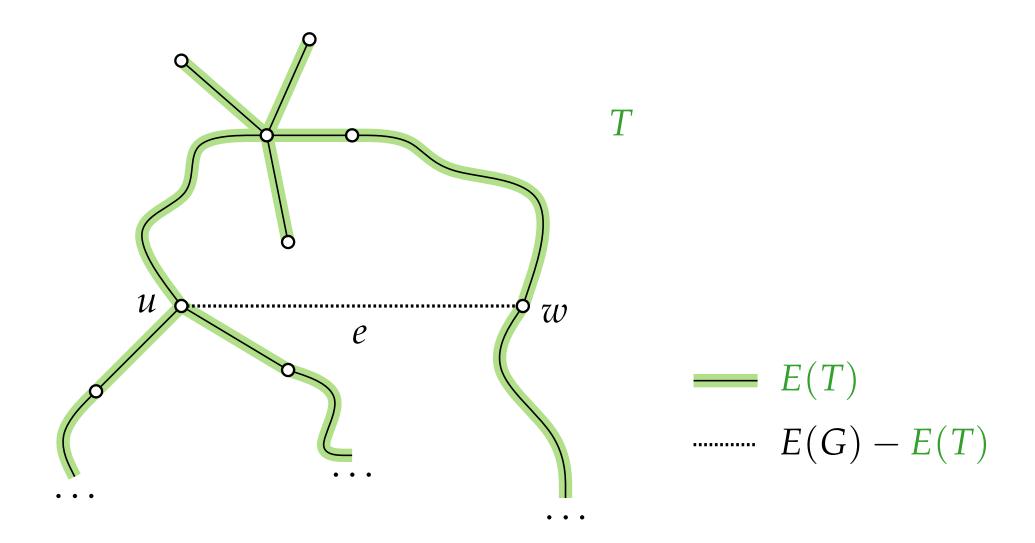
Approximation Algorithms

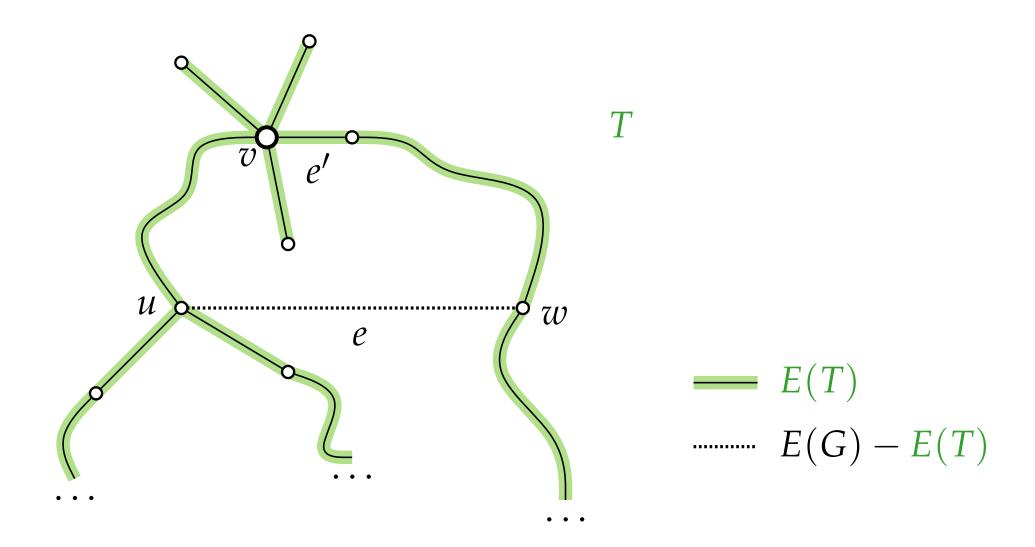
Lecture 10:

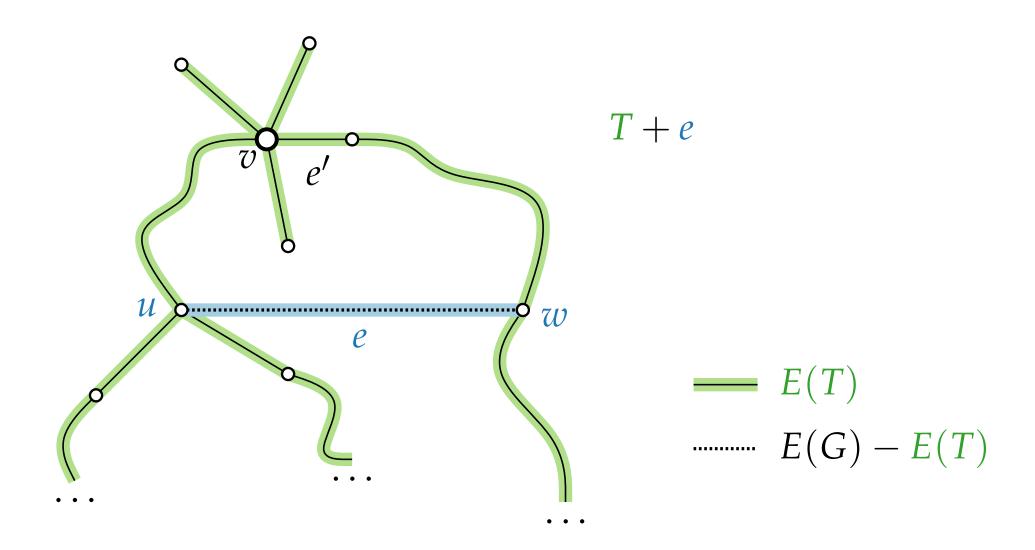
MINIMUM-DEGREE SPANNING TREE via Local Search

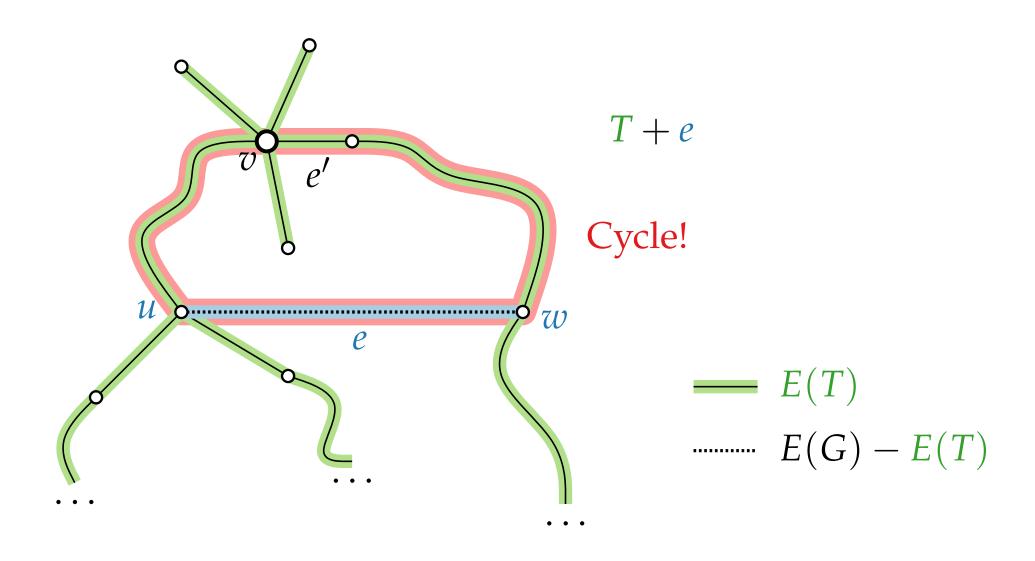
Part II: Edge Flips and Local Search

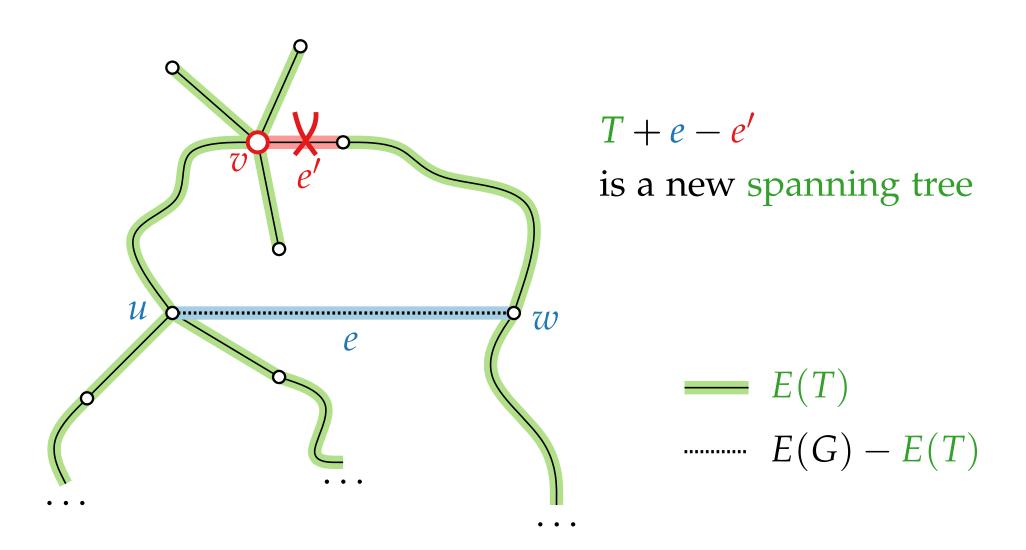




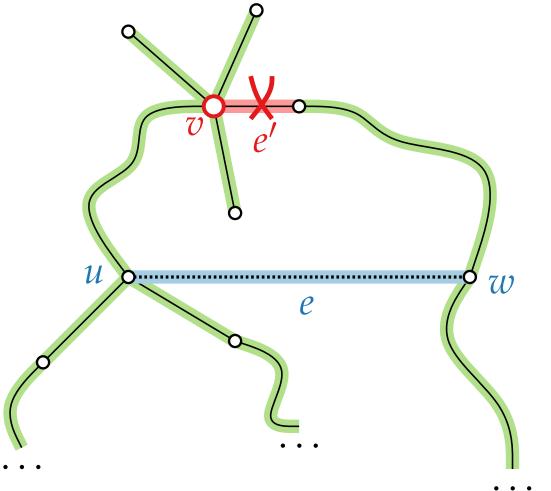








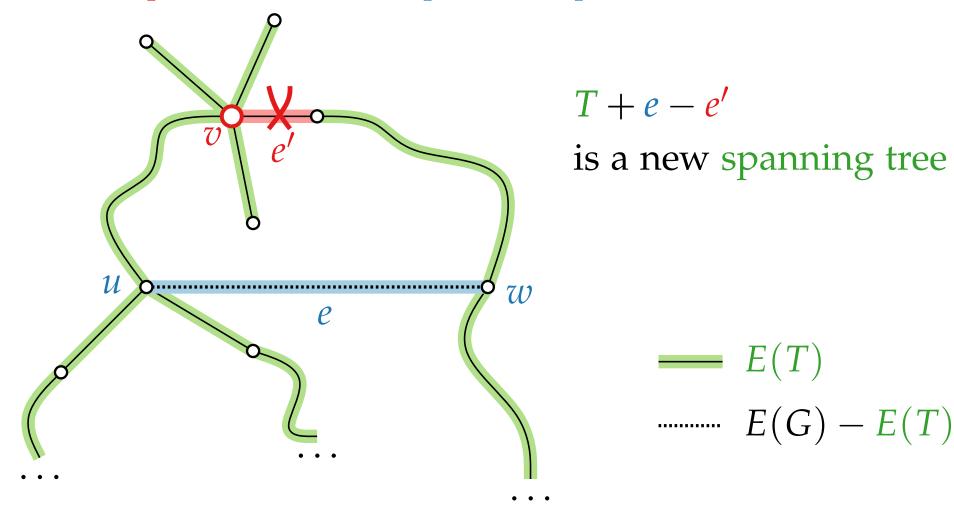
Def. An **improving flip** in T for a vertex v and an edge $uw \in E(G) \setminus E(T)$ is a flip with $\deg_T(v) >$



$$T+e-e'$$

is a new spanning tree

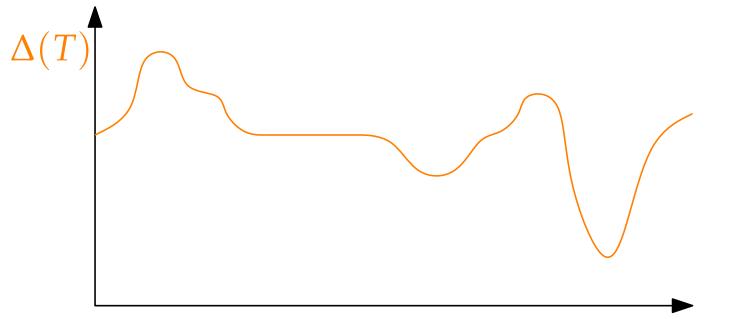
Def. An **improving flip** in T for a vertex v and an edge $uw \in E(G) \setminus E(T)$ is a flip with $\deg_T(v) > \max\{\deg_T(u), \deg_T(w)\} + 1$.



```
MinDegSpanningTreeLocalSearch(G)
T \leftarrow \text{any spanning tree of } G
\mathbf{while} \ \exists \ \text{improving flip in } T \ \text{for a vertex } v
\text{with } \deg_T(v) \geq \Delta(T) - \ell \ \mathbf{do}
\mid \ \text{do the improving flip}
```

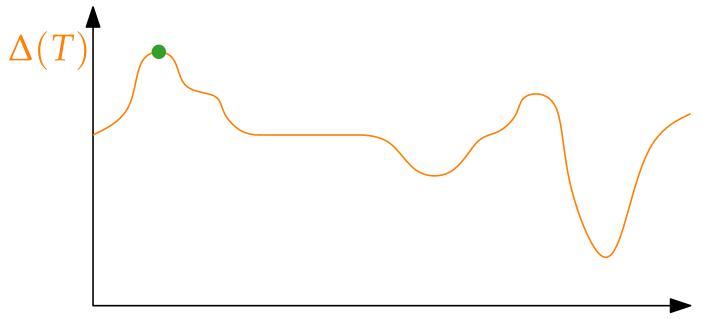
MinDegSpanningTreeLocalSearch(G)

```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



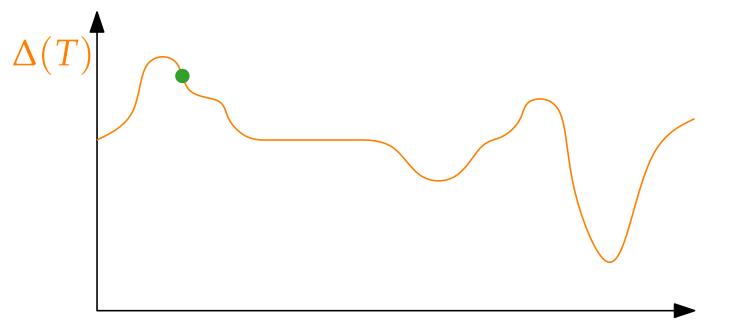
MinDegSpanningTreeLocalSearch(G)

```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



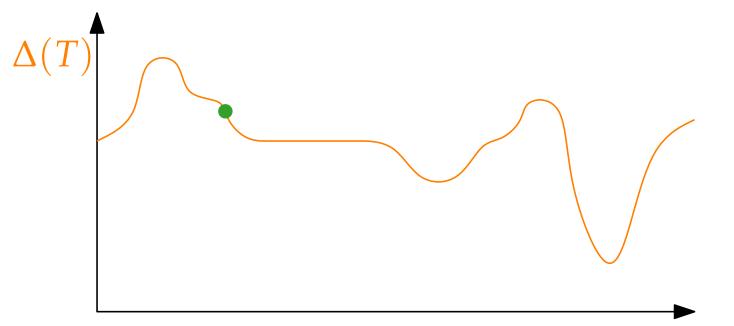
MinDegSpanningTreeLocalSearch(G)

```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



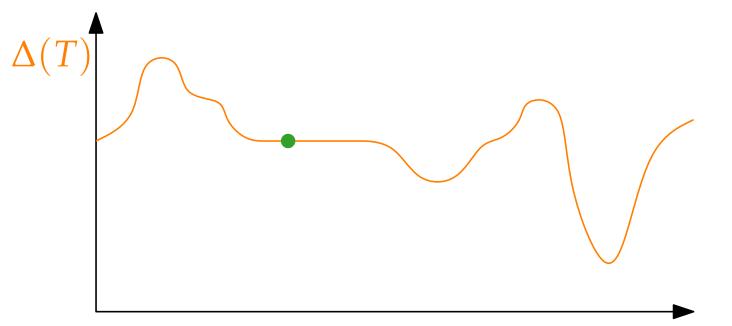
MinDegSpanningTreeLocalSearch(G)

```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



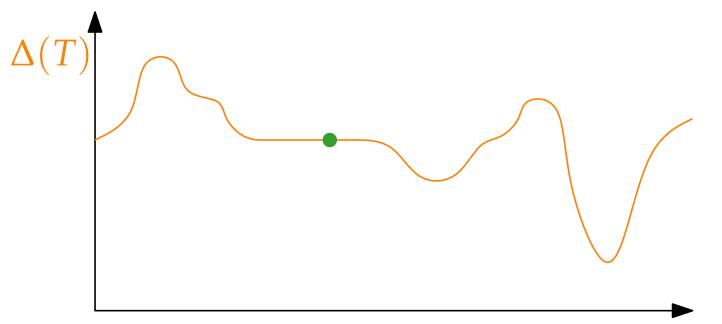
MinDegSpanningTreeLocalSearch(G)

```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



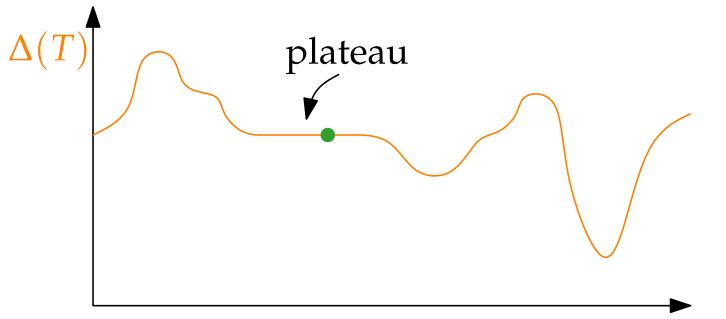
MinDegSpanningTreeLocalSearch(G)

```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



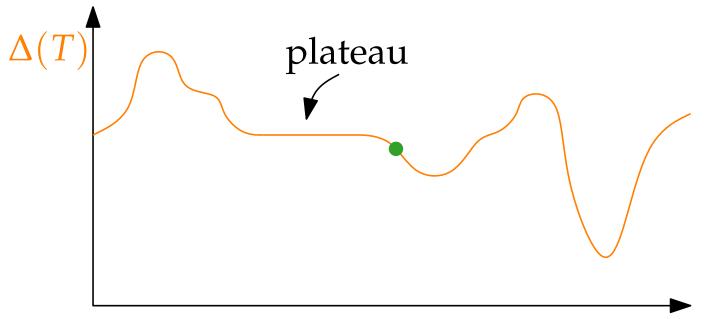
MinDegSpanningTreeLocalSearch(G)

```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



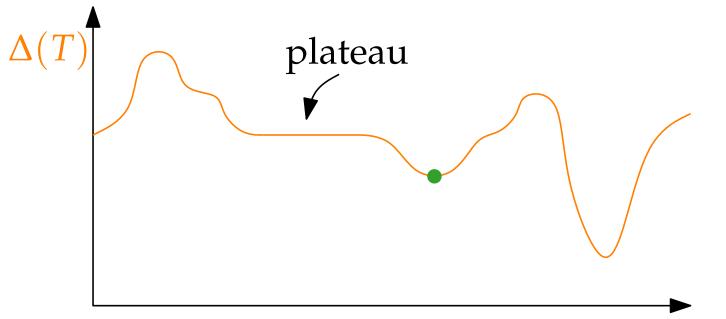
MinDegSpanningTreeLocalSearch(G)

```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



MinDegSpanningTreeLocalSearch(G)

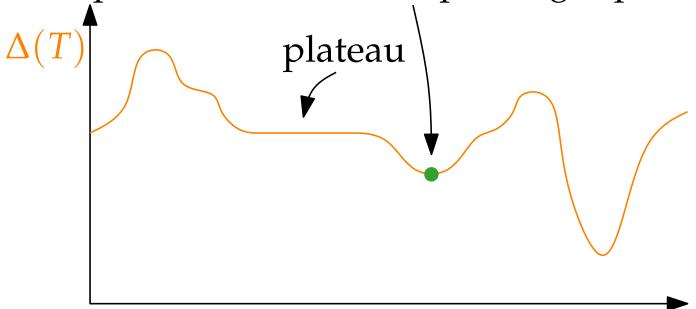
```
T \leftarrow any spanning tree of G while \exists improving flip in T for a vertex v with \deg_T(v) \geq \Delta(T) - \ell do do the improving flip
```



MinDegSpanningTreeLocalSearch(G)

 $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip

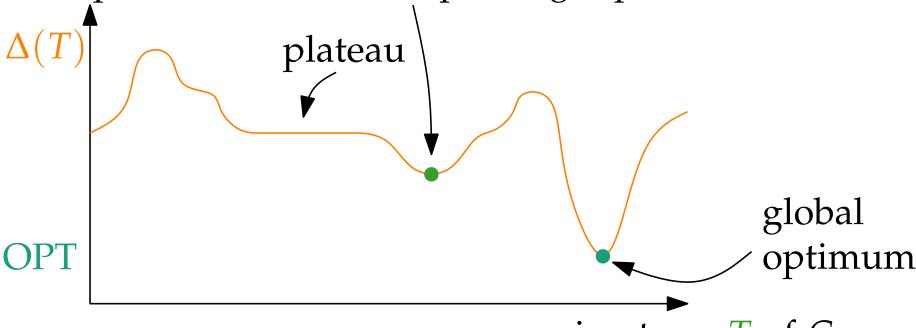
local optimum; no more improving flips!



MinDegSpanningTreeLocalSearch(G)

 $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip

local optimum; no more improving flips!

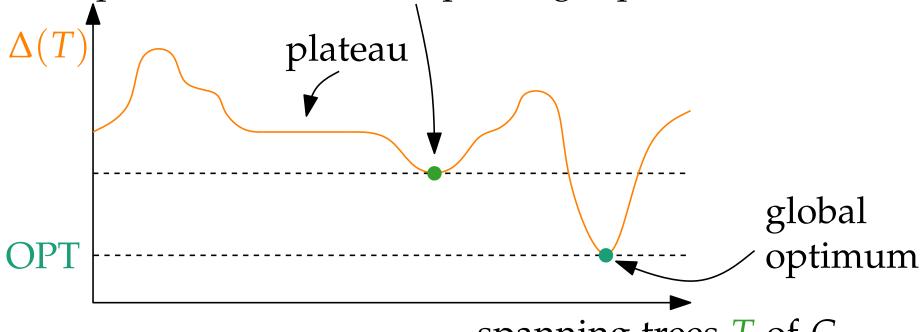


Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(G)

 $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip

local optimum; no more improving flips!

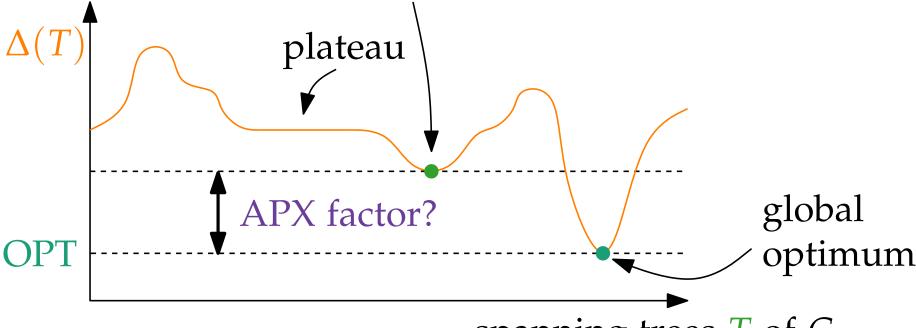


Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(G)

 $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip

local optimum; no more improving flips!



Note: overly simplified visualization!

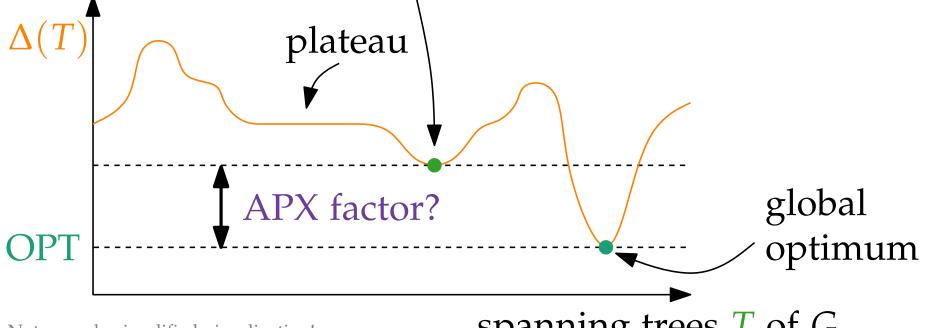
MinDegSpanningTreeLocalSearch(G)

 $T \leftarrow$ any spanning tree of G**while** \exists improving flip in T for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell \operatorname{do}$

do the improving flip

Termination?

local optimum; no more improving flips!



Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(G)

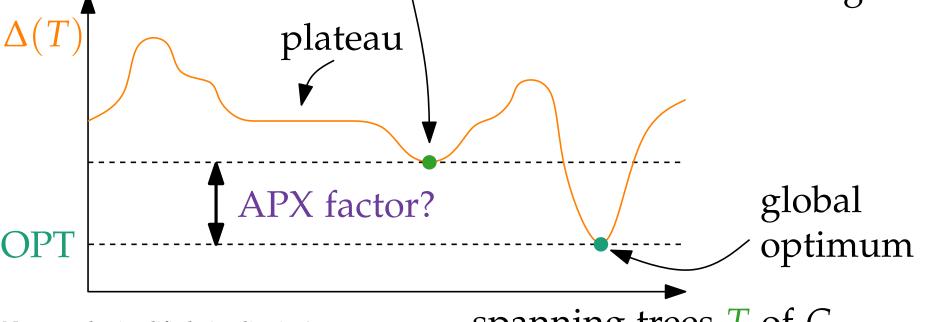
 $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\deg_T(v) \ge \Delta(T) - \ell$ do

do the improving flip

Termination?

local optimum; no more improving flips!

Running Time?



Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(G)

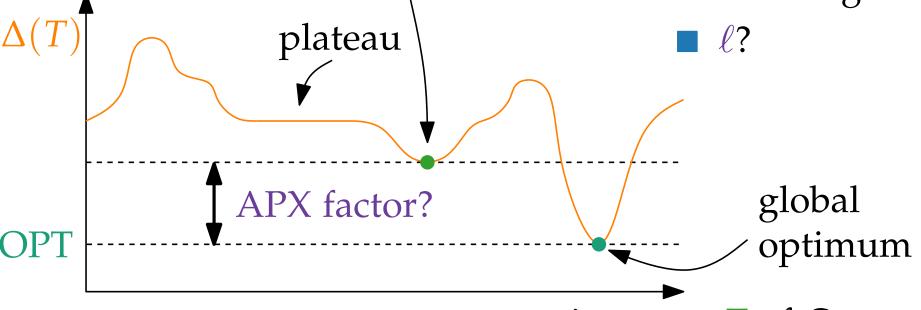
 $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\deg_T(v) \geq \Delta(T) - \ell$ do

do the improving flip

Termination?

local optimum; no more improving flips!

Running Time?



Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(*G*)

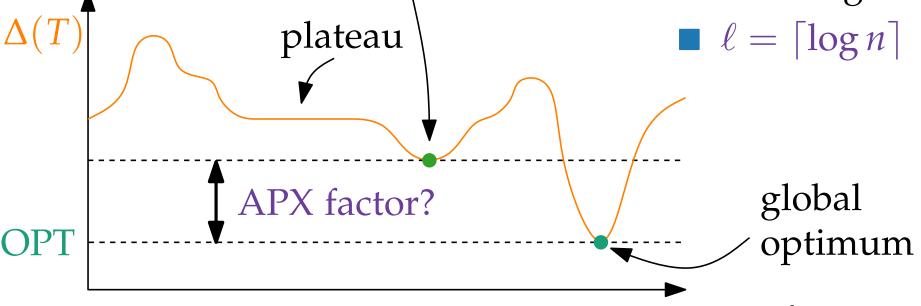
 $T \leftarrow$ any spanning tree of G **while** \exists improving flip in T for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell$ **do**

do the improving flip

Termination?

local optimum; no more improving flips!

Running Time?



Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(*G*)

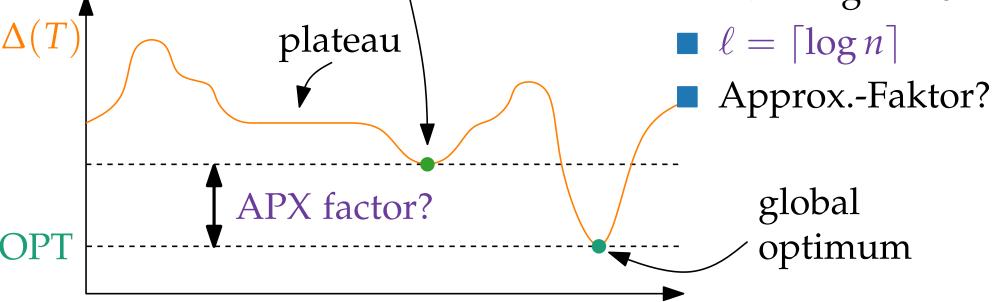
 $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\deg_T(v) \geq \Delta(T) - \ell$ do

do the improving flip

Termination?

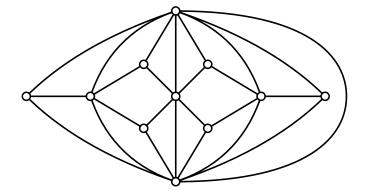
local optimum; no more improving flips!

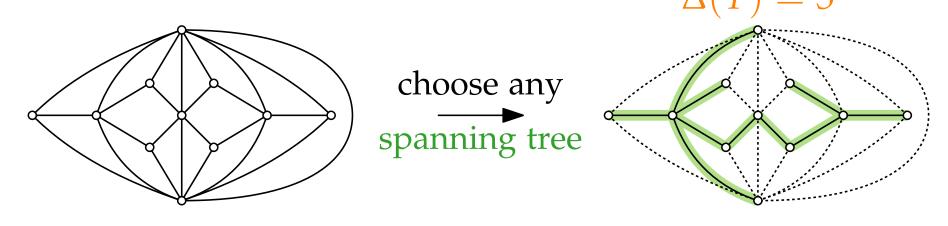
Running Time?

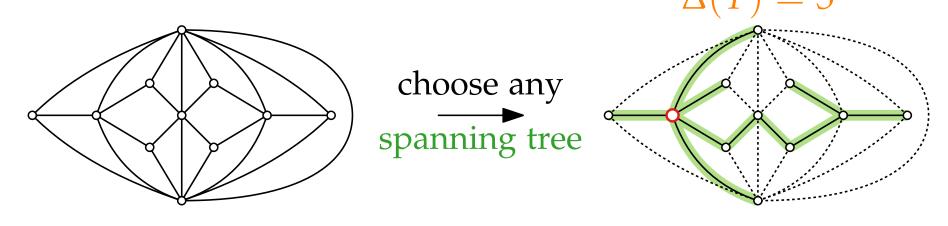


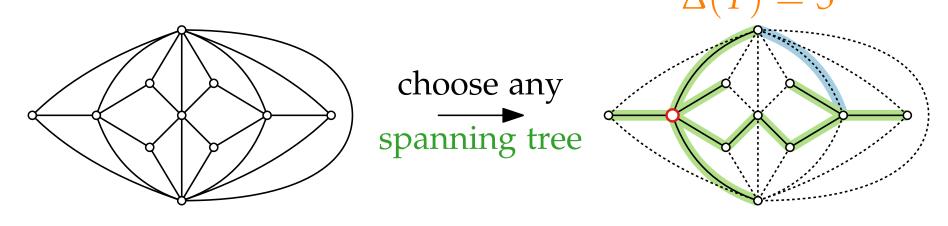
spanning trees *T* of *G*

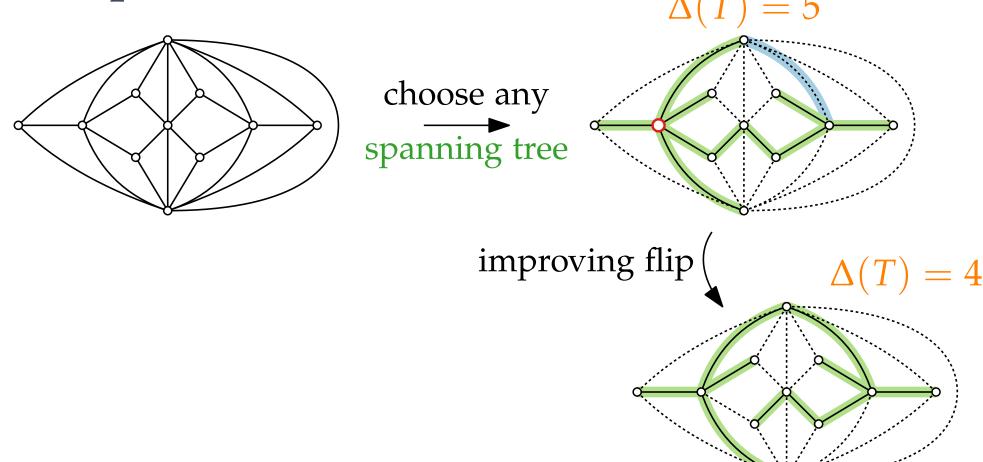
Note: overly simplified visualization!

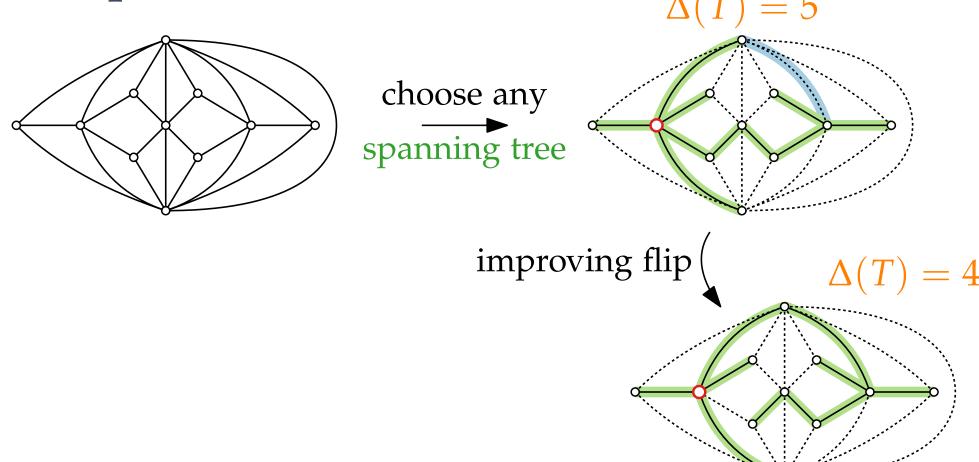


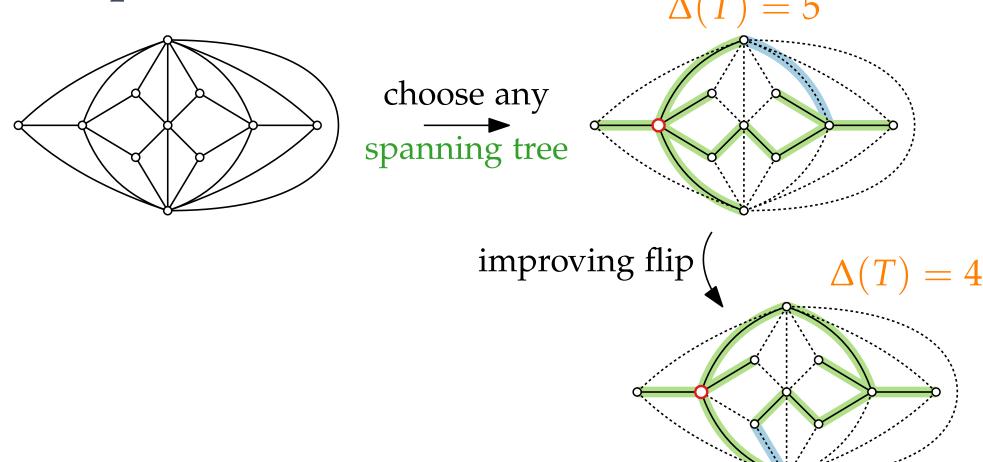


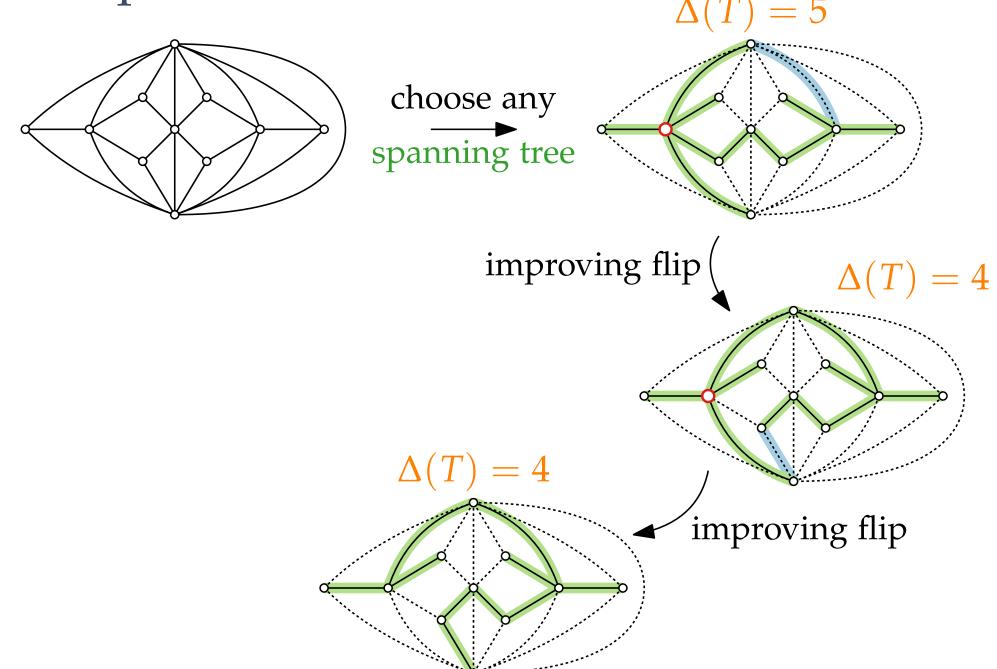


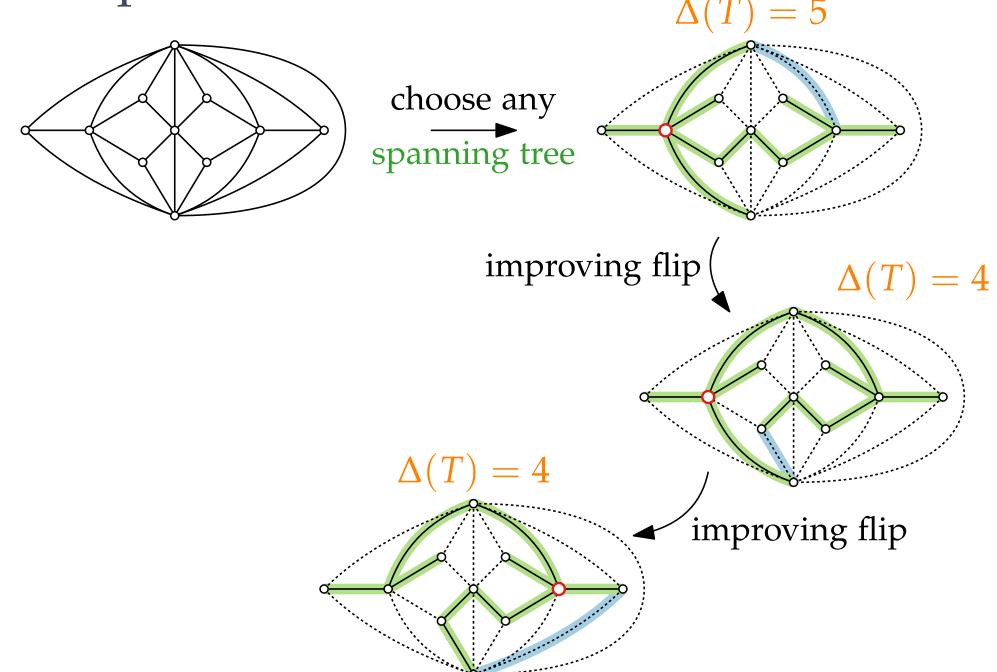


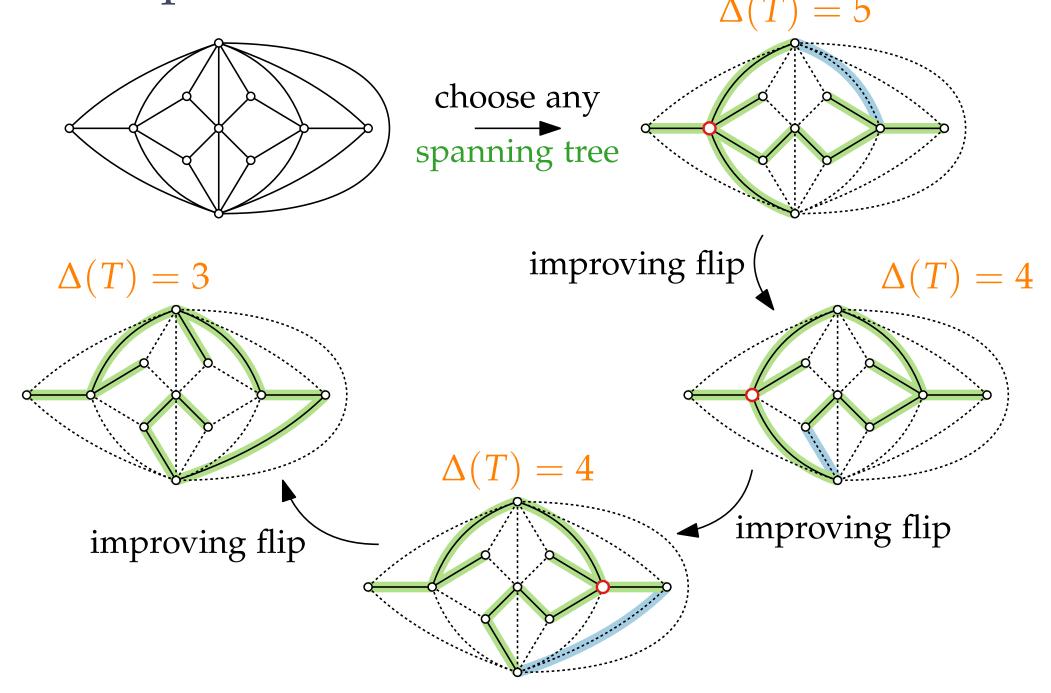


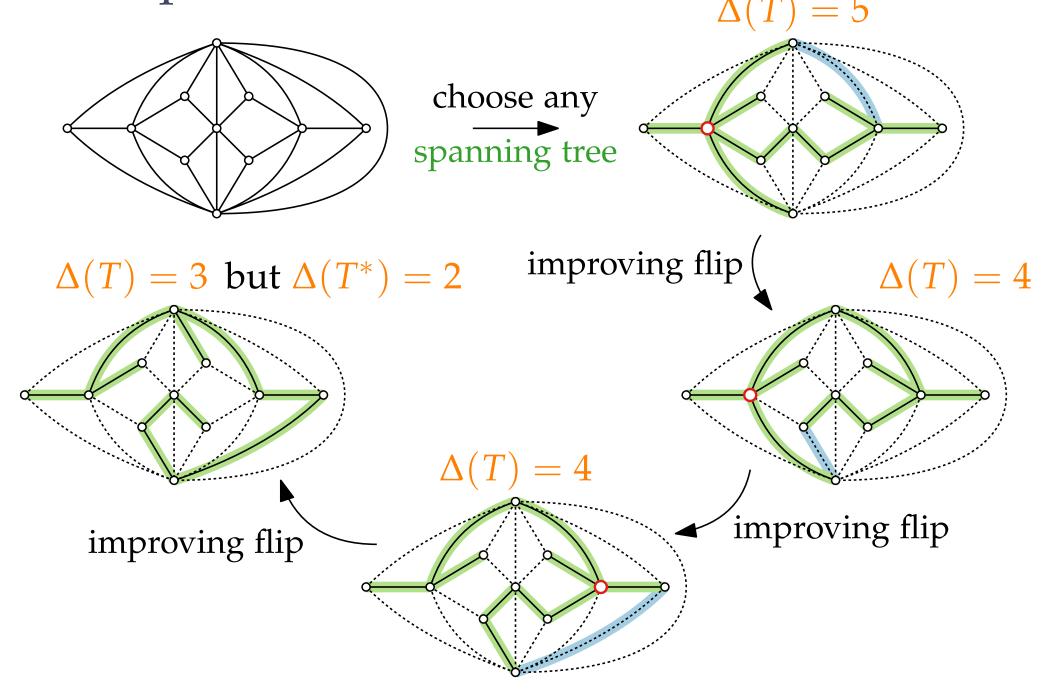


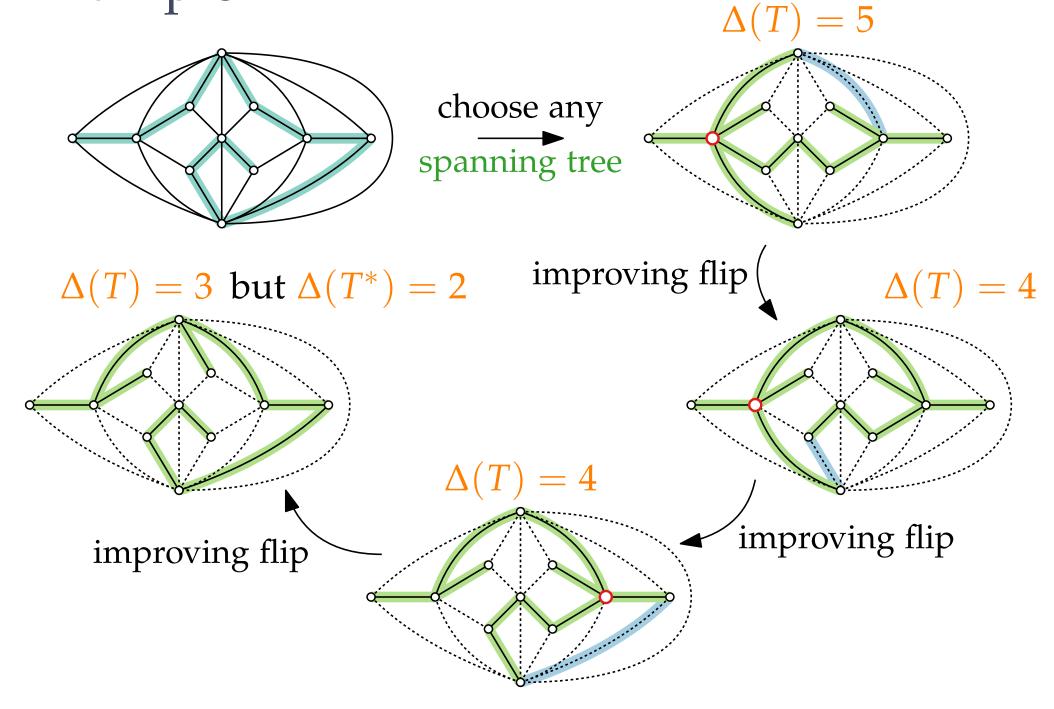










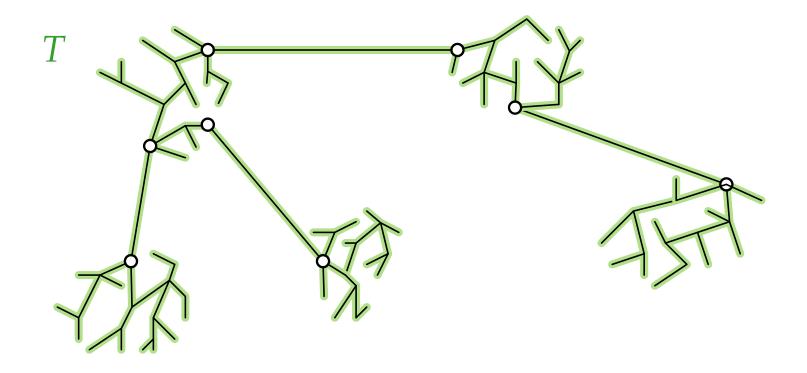


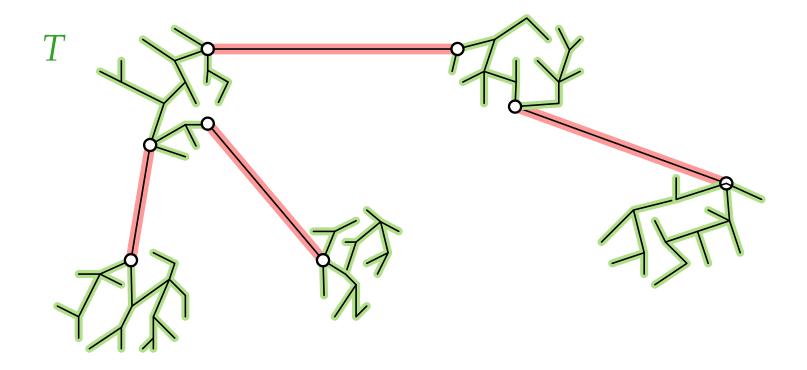
Approximation Algorithms

Lecture 10:

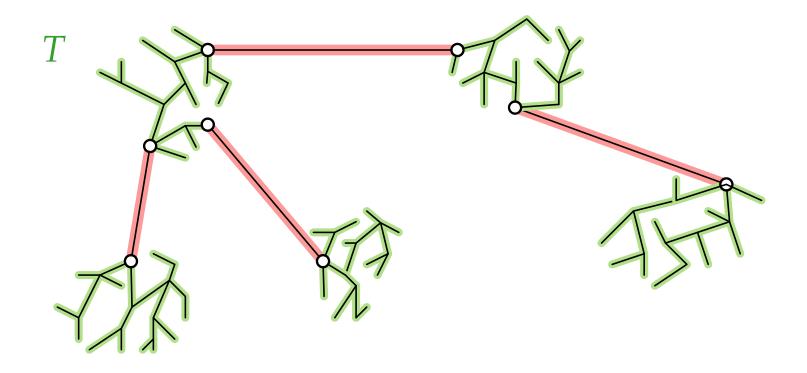
MINIMUM-DEGREE SPANNING TREE via Local Search

Part III:
Lower Bound

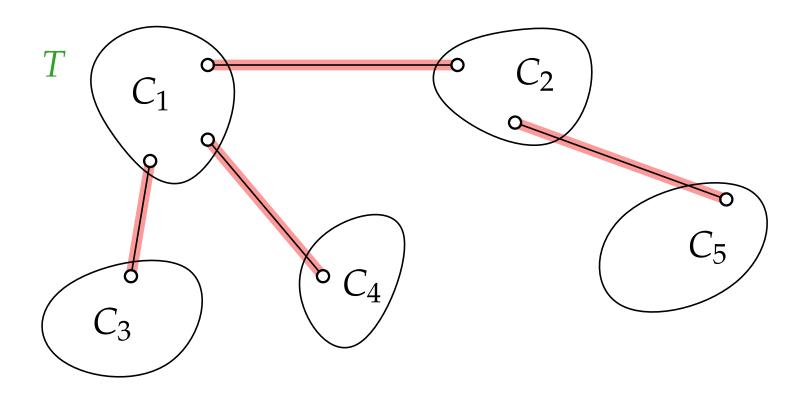




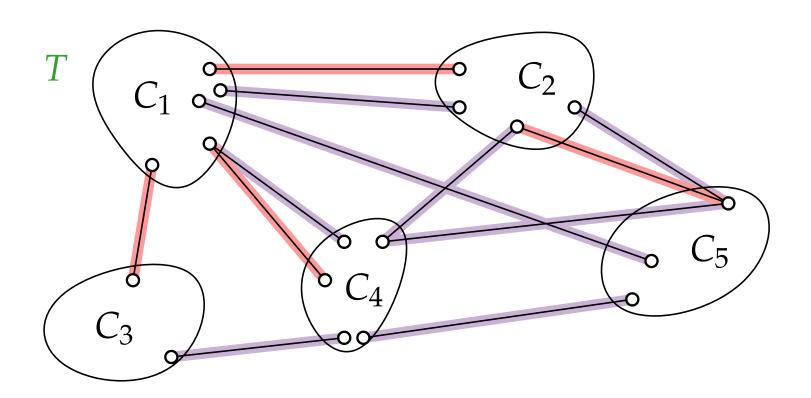
Removing k edges decomposes T into k+1 components



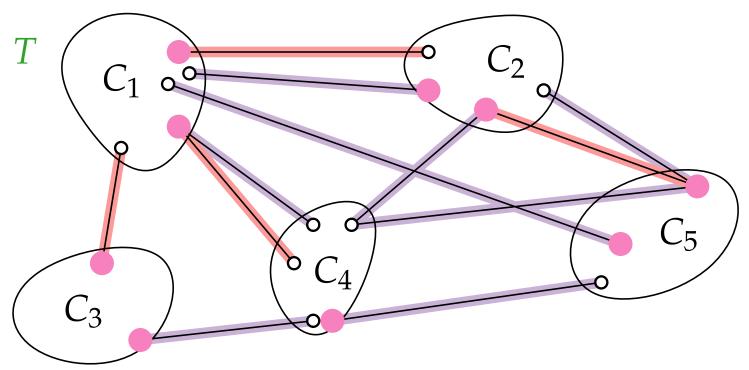
Removing k edges decomposes T into k+1 components



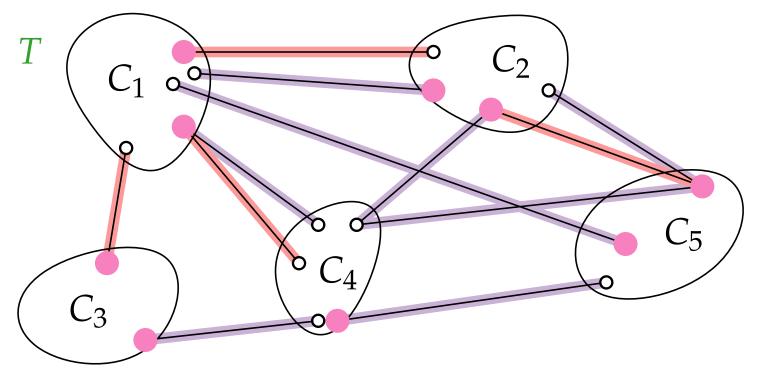
- Removing k edges decomposes T into k+1 components
- $E' := \{ \text{edges is } G \text{ btw. different components } C_i \neq C_j \}.$



- Removing k edges decomposes T into k+1 components
- $E' := \{ \text{edges is } G \text{ btw. different components } C_i \neq C_i \}.$
- S :=vertex cover of E'.

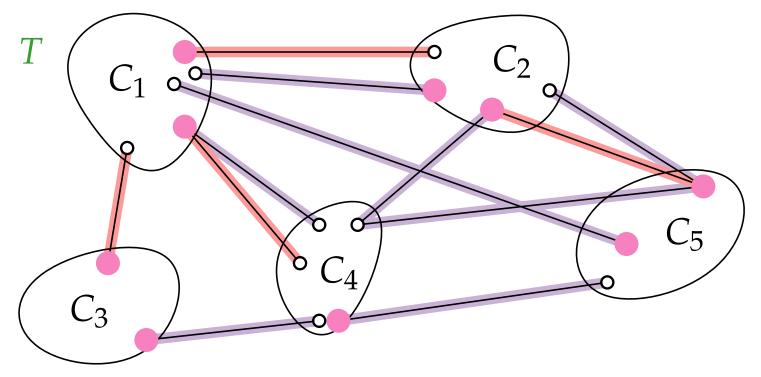


- Removing k edges decomposes T into k+1 components
- $E' := \{ \text{edges is } G \text{ btw. different components } C_i \neq C_i \}.$
- \blacksquare S := vertex cover of E'.



 $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

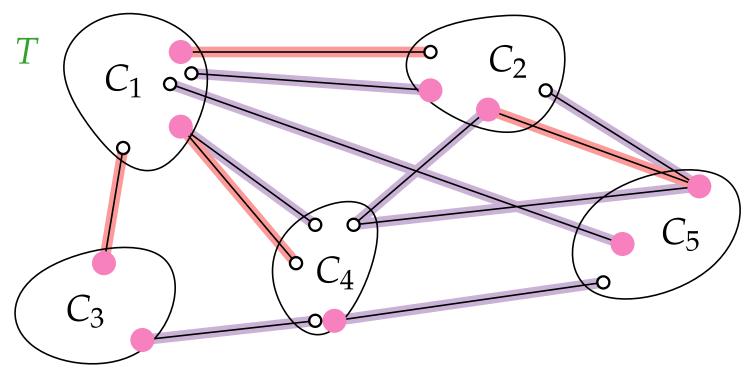
- Removing k edges decomposes T into k+1 components
- $E' := \{ \text{edges is } G \text{ btw. different components } C_i \neq C_i \}.$
- \blacksquare S := vertex cover of E'.



- $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

Decomposition ⇒ Lower Bound for OPT

- Removing k edges decomposes T into k+1 components
- $E' := \{ \text{edges is } G \text{ btw. different components } C_i \neq C_j \}.$
- \blacksquare S := vertex cover of E'.



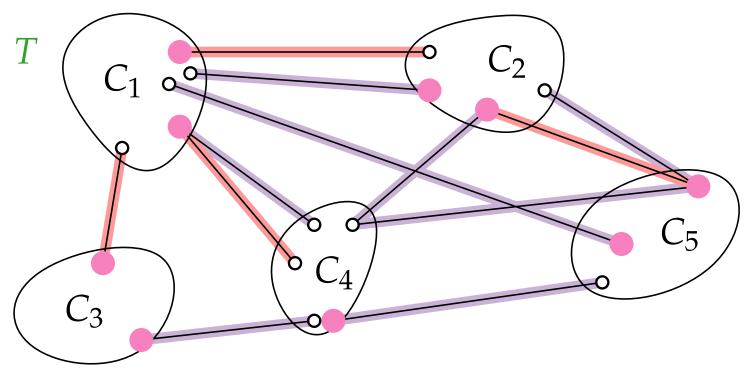
- $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

Lemma 1.

 \Rightarrow OPT \geq

Decomposition ⇒ Lower Bound for OPT

- Removing k edges decomposes T into k+1 components
- $E' := \{ \text{edges is } G \text{ btw. different components } C_i \neq C_i \}.$
- \blacksquare S := vertex cover of E'.



- $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

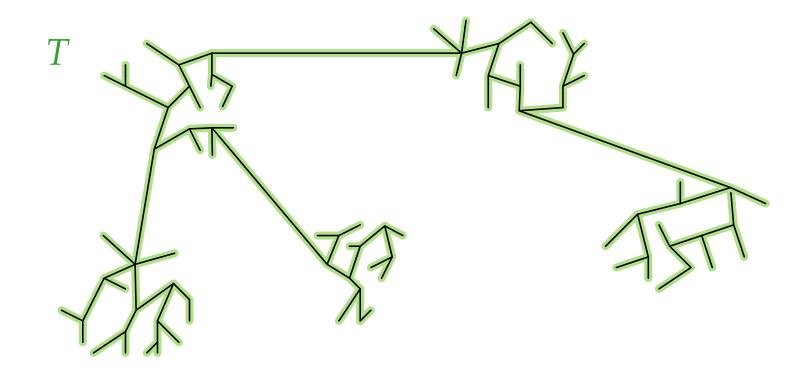
Lemma 1. \Rightarrow OPT $\geq k/|S|$

Approximation Algorithms

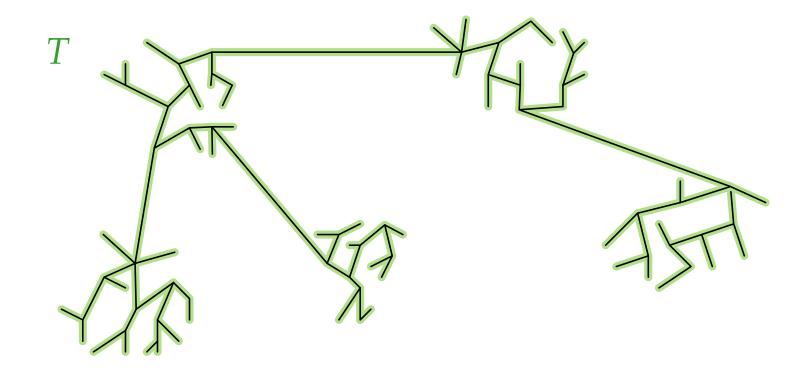
Lecture 10:

MINIMUM-DEGREE SPANNING TREE via Local Search

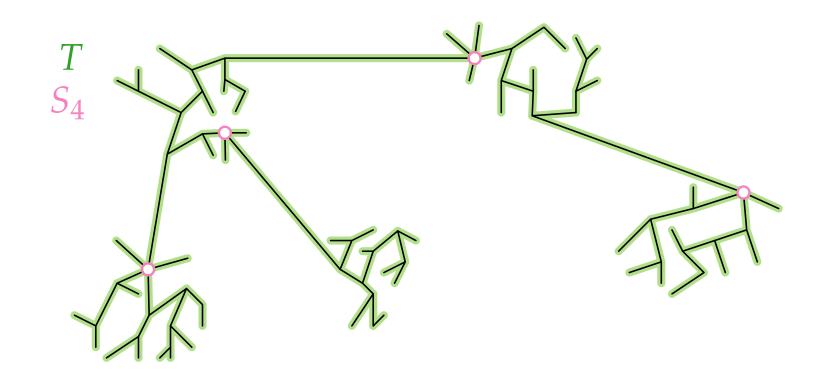
Part IV:
More Lemmas



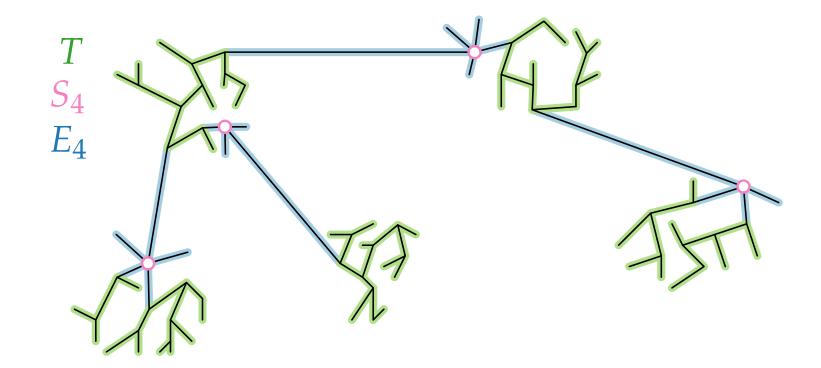
Let S_i be the vertices v in T with $\deg_T(v) \geq i$.



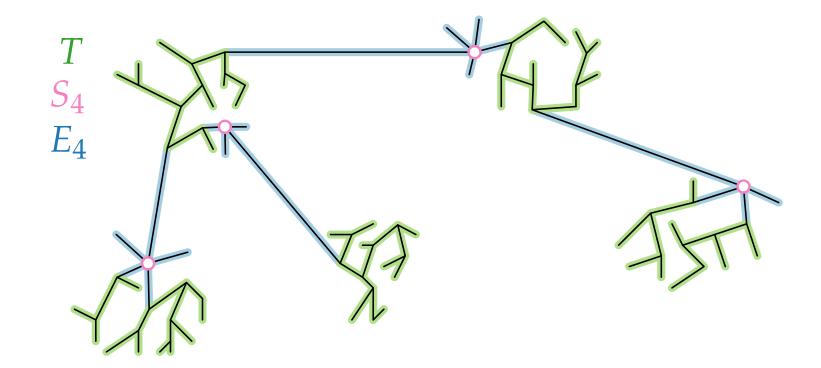
Let S_i be the vertices v in T with $\deg_T(v) \geq i$.



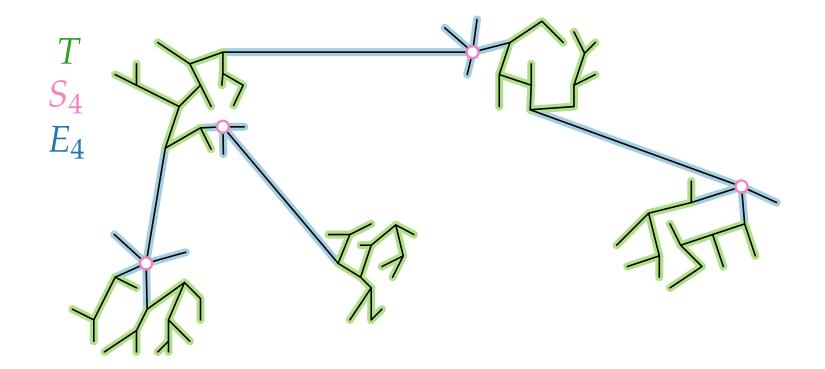
Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .



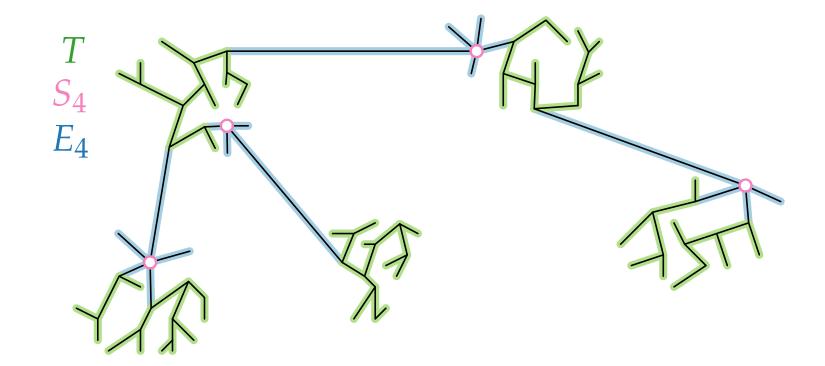
Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .



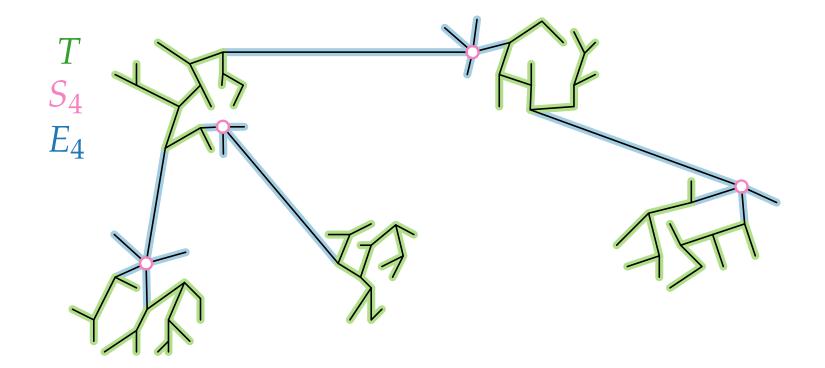
Let S_i be the vertices v in T with $\deg_T(v) \geq i$. $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$ Let E_i be the edges in T incident to S_i .



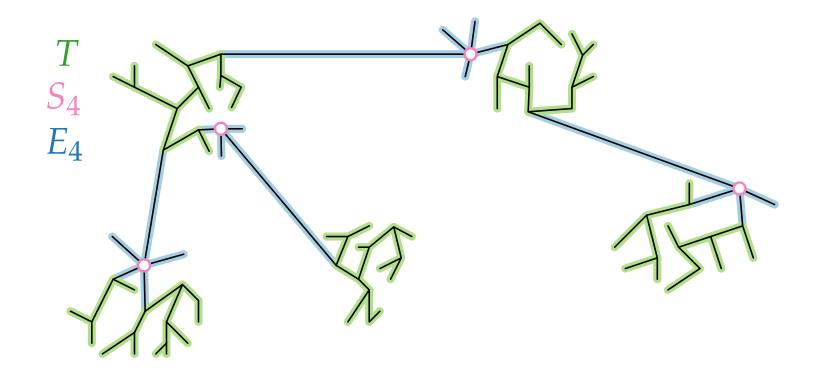
Let S_i be the vertices v in T with $\deg_T(v) \ge i$. $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$ Let E_i be the edges in T incident to S_i .



Let S_i be the vertices v in T with $\deg_T(v) \ge i$. $\Rightarrow S_1 \supseteq S_2 \supseteq \dots \Rightarrow S_1 = V(G)$ Let E_i be the edges in T incident to S_i . $\Rightarrow E_1 = E(T)$



Let S_i be the vertices v in T with $\deg_T(v) \geq i$. $\Rightarrow S_1 \supseteq S_2 \supseteq \dots \Rightarrow S_1 = V(G)$ Let E_i be the edges in T incident to S_i . $\Rightarrow E_1 = E(T)$

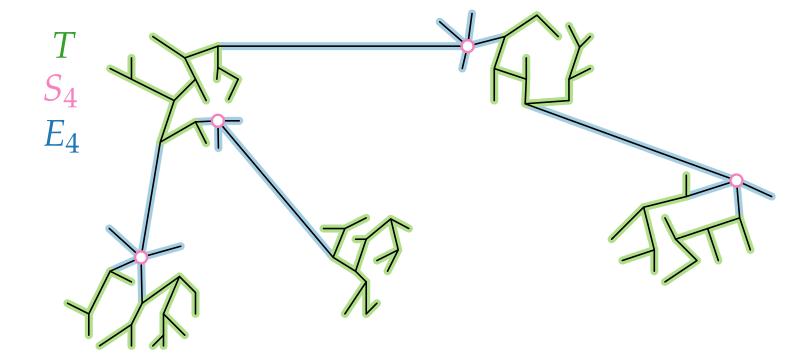


Let S_i be the vertices v in T with $\deg_T(v) \ge i$. $\Rightarrow S_1 \supseteq S_2 \supseteq \dots \Rightarrow S_1 = V(G)$ Let E_i be the edges in T incident to S_i . $\Rightarrow E_1 = E(T)$

Lemma 2. There is some $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

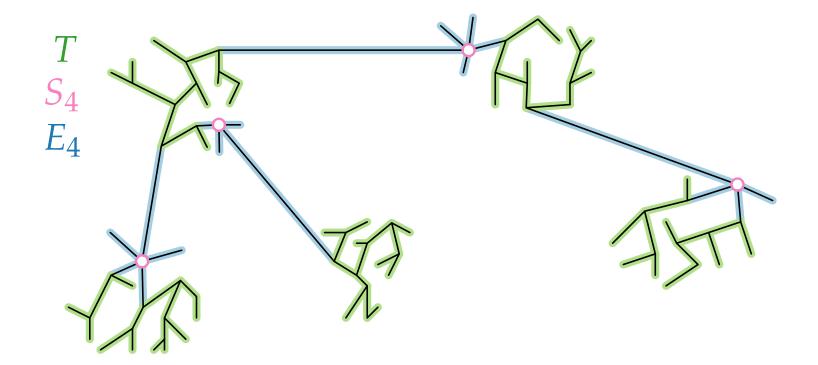
Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}|$$

Otherwise



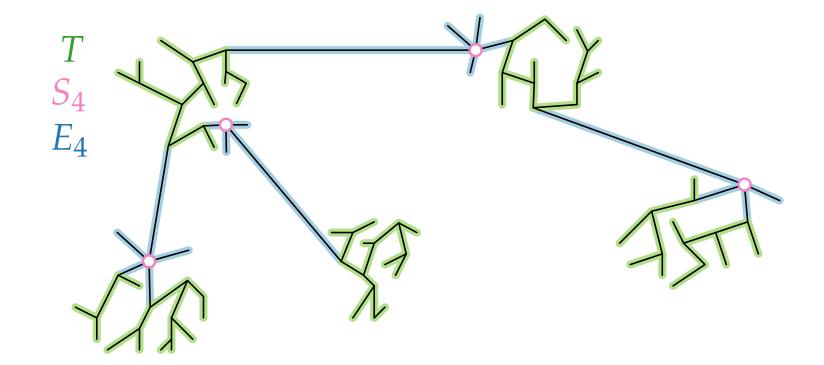
Let S_i be the vertices v in T with $\deg_T(v) \ge i$. $\Rightarrow S_1 \supseteq S_2 \supseteq \dots \Rightarrow S_1 = V(G)$ Let E_i be the edges in T incident to S_i . $\Rightarrow E_1 = E(T)$

Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}|$$
Otherwise



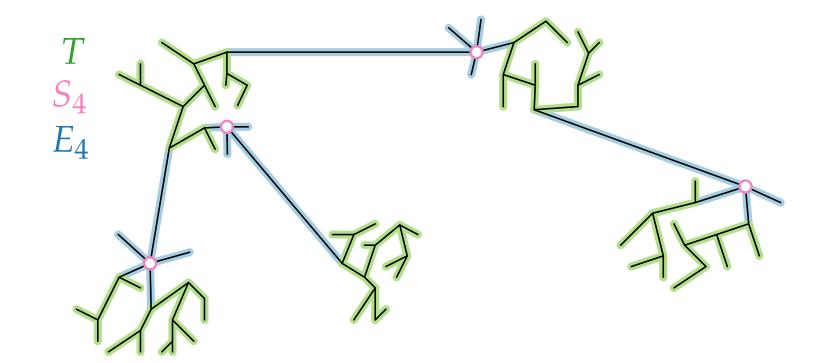
Let S_i be the vertices v in T with $\deg_T(v) \ge i$. $\Rightarrow S_1 \supseteq S_2 \supseteq \dots \Rightarrow S_1 = V(G)$ Let E_i be the edges in T incident to S_i . $\Rightarrow E_1 = E(T)$

Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \ge n |S_{\Delta(T)}|$$
Otherwise

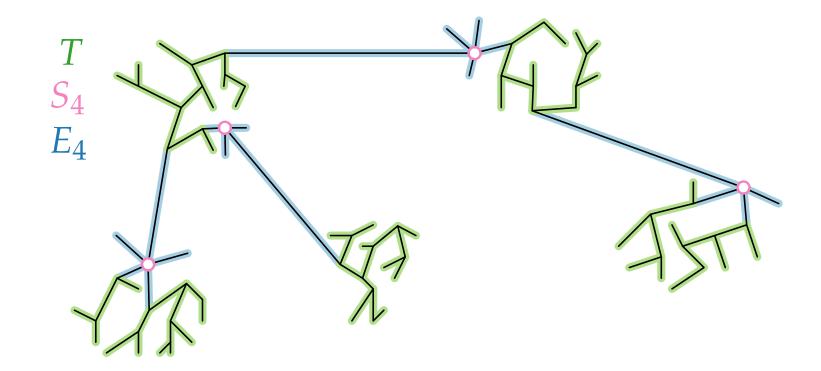


Let S_i be the vertices v in T with $\deg_T(v) \ge i$. $\Rightarrow S_1 \supseteq S_2 \supseteq \dots \Rightarrow S_1 = V(G)$ Let E_i be the edges in T incident to S_i . $\Rightarrow E_1 = E(T)$

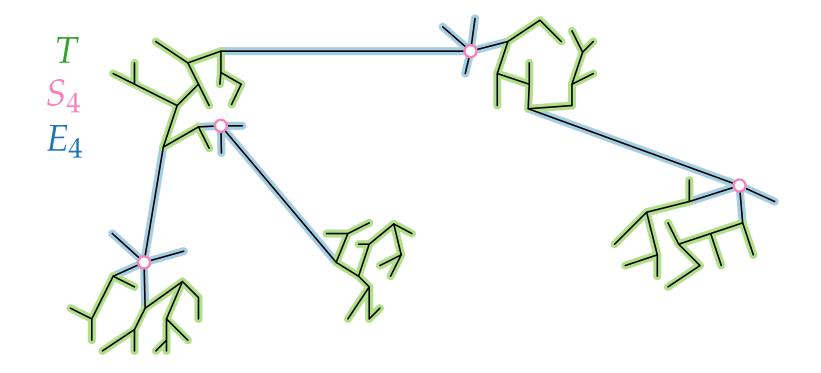
Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \ge n |S_{\Delta(T)}|$$
Otherwise



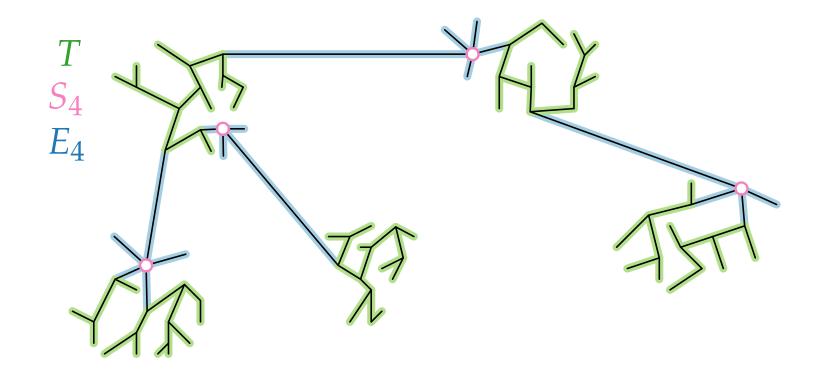
Lemma 3. For
$$i \ge \Delta(T) - \ell + 1$$
,



Lemma 3. For
$$i \ge \Delta(T) - \ell + 1$$
, (i) $|E_i| \ge (i-1)|S_i| + 1$,



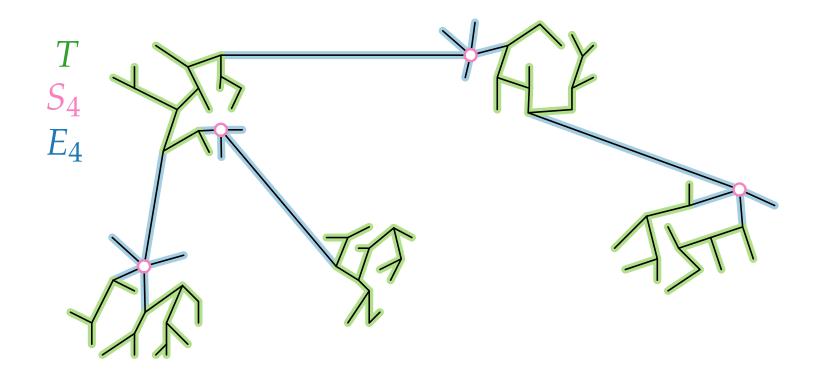
- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .



Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

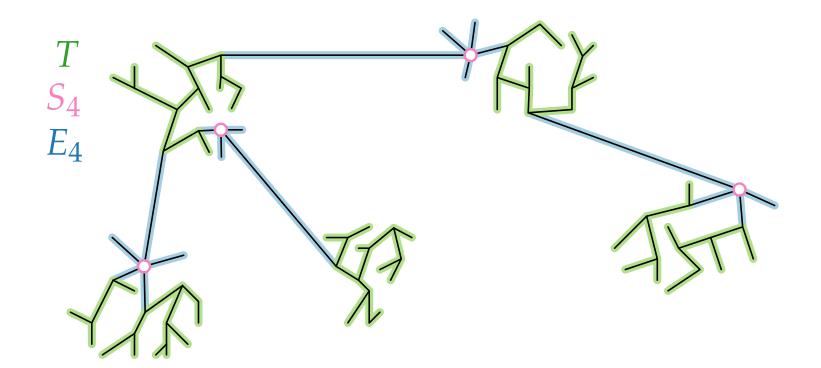
- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq$



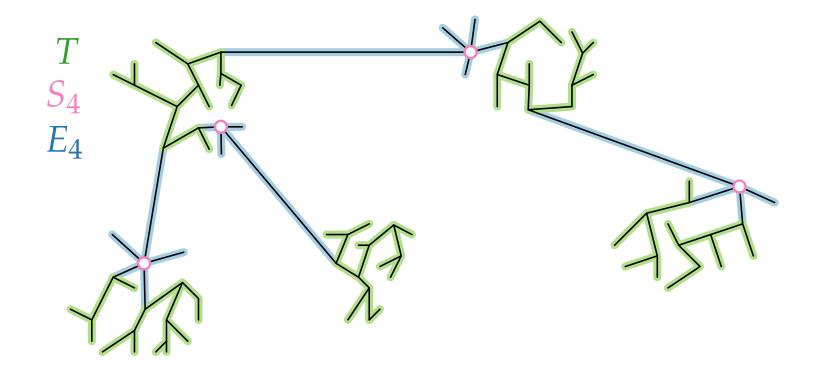
- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i |S_i|$$
 vertex-deg



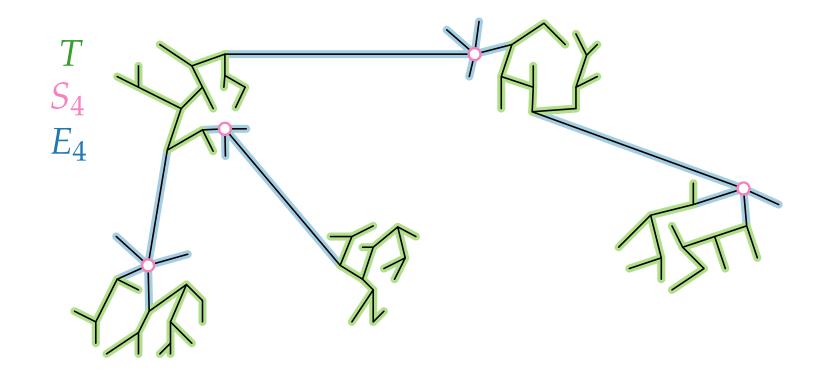
- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1)$$
 vertex-deg counted twice?



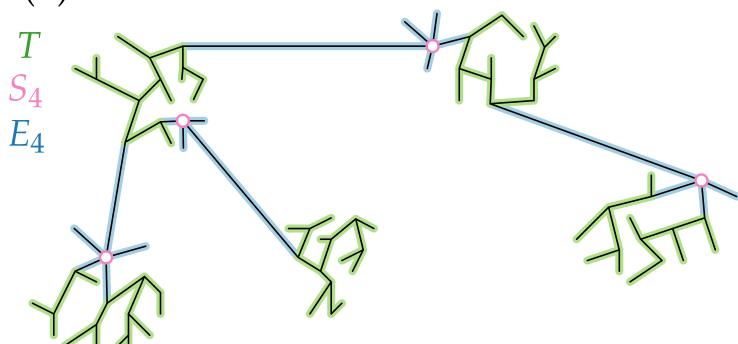
- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$



- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$
 (ii)



Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$

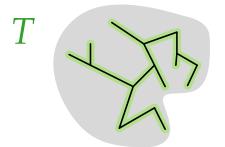
(ii)

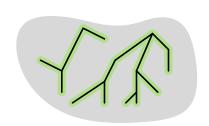
Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

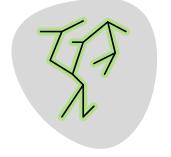
- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

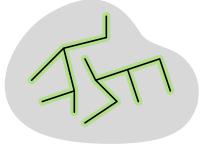
Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$

(ii)





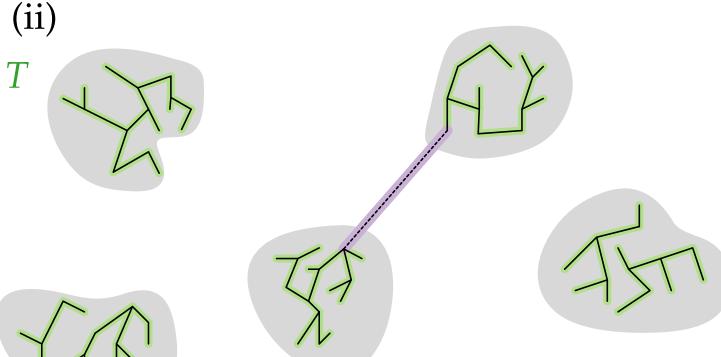




Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

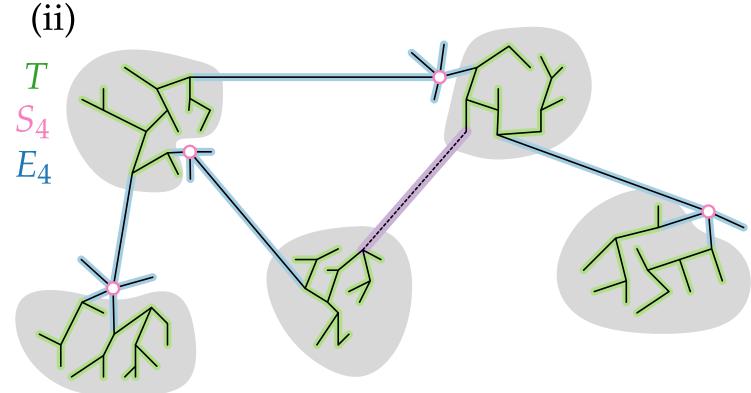
- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$



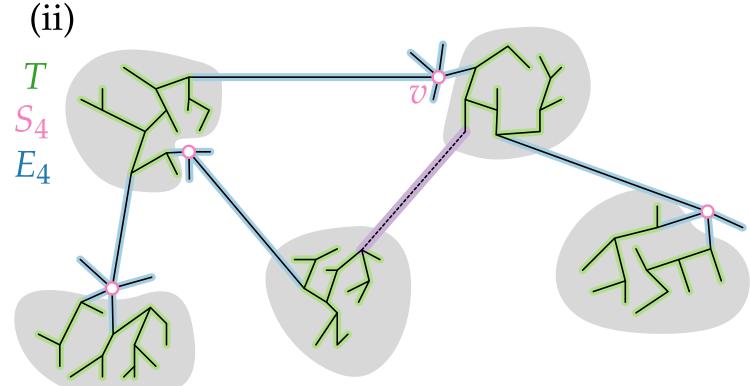
- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$
 vertex-deg counted twice?



- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$
 vertex-deg counted twice?

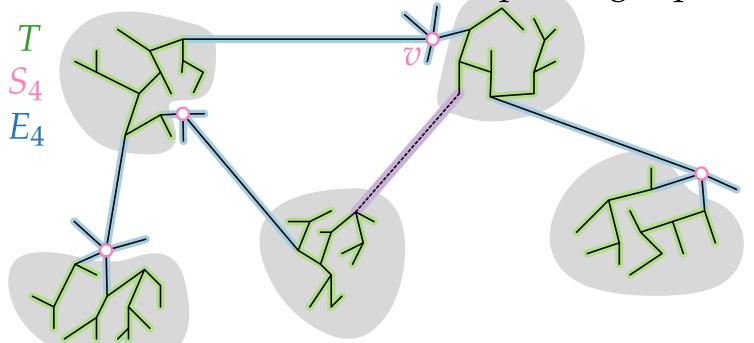


Lemma 3. For $i \ge \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$

(ii) Otherwise, there is an improving flip for $v \in S_i$.



Approximation Algorithms

Lecture 10:

MINIMUM-DEGREE SPANNING TREE via Local Search

Part V: Approximation Factor

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i!

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Lemma 3. For $i \ge \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges btw. comp.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Lemma 3. For $i \ge \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges btw. comp.

$$OPT \ge \frac{k}{|S|}$$
Lemma 1

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges btw. comp.

$$OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|}$$
Lemma 1

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Lemma 3. For $i \ge \Delta(T) - \ell + 1$,

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges btw. comp.

OPT
$$\geq \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \geq \frac{(i-1)|S_i|+1}{|S_{i-1}|}$$

Lemma 1

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges btw. comp.

$$OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|}$$
Lemma 1 Lemma 2

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges btw. comp.

$$OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2}$$
Lemma 1. Lemma 3. Lemma 2.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$, k = |rem. edges|, S vert. cover

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Lemma 3. For $i \ge \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges btw. comp.

Approximation Algorithms

Lecture 10:

MINIMUM-DEGREE SPANNING TREE via Local Search

Part VI:

Termination, Running Time & Extensions

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

each iteration decreases the potential of a solution.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

each iteration decreases the potential of a solution.

the function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

each iteration decreases the potential of a solution.

the function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

each iteration decreases the potential of a solution.

the function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

the function is bounded both from above and below.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. How does $\Phi(T)$ change?

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. How does $\Phi(T)$ change?

decreases by: $(1 - \frac{2}{27n^3})^{f(n)}$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. How does $\Phi(T)$ change?

decreases by:
$$(1 - \frac{2}{27n^3})^{f(n)}$$

 $1 + x \le e^x$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. How does $\Phi(T)$ change?

decreases by:
$$(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)}$$

 $1 + x \le e^x$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. How does $\Phi(T)$ change?

decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)}$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change?

decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)}$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change?

decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3}$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change? decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} = 3^{-n}$

Cool. A then f(u) items tions $\Phi(T)$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after $O(n^4)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

executing f(n) iterations would exceed this lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change? decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} = 3^{-n}$

Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \text{OPT} + \lceil \log_b n \rceil$.

Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \mathsf{OPT} + \lceil \log_b n \rceil$.

Proof. Similar to previous pages.

Homework

Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \text{OPT} + \lceil \log_b n \rceil$.

Proof. Similar to previous pages. Homework

Theorem. There is a local search algorithm that runs in $O(EV\alpha(E, V) \log V)$ time and produces a spanning tree T with $\Delta(T) \leq OPT + 1$.