Approximation Algorithms

Lecture 8: Approximation Schemes and the КNAPSACK Problem

Part I: KNAPSACK

Joachim Spoerhase

KNAPSACK

Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a **Profit** profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose **total size** is at most *B* and whose **total profit** is maximum.

Approximation Algorithms Lecture 8: **Approximation Schemes and** the KNAPSACK Problem Part II: Pseudo-Polynomial Algorithms and Strong NP-Hardness

Joachim Spoerhase

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

|I|: The size of an instance *I* ∈ *D*_Π, where all numbers in *I* are encoded in **binary**. (5 \doteq 101 \Rightarrow |I| = 3)

 $|I|_{u}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in **unary**. $(5 \doteq 11111 \Rightarrow |I|_{u} = 5)$

The running time of a polynomial algorithm for Π is polynomial in |I|.

The running time of a **pseudo-polynomial algorithm** is polynomial in $|I|_u$.

The running time of a pseudo-polynomial algorithm may not be polynomial in |I|.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

An optimization problem is called **weakly NP-hard** if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Approximation Algorithms Lecture 8: **Approximation Schemes and** the KNAPSACK Problem Part III: Pseudo-Polynomial Algorithm for KNAPSACK

Joachim Spoerhase

Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \operatorname{profit}(a_i) \implies P \le \operatorname{OPT} \le nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of set $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

If all A[i, p] are known, then we can compute OPT = max{ $p \mid A[n, p] \leq B$ }.

Pseudo-Polynomial Alg. for КNAPSACK

A[1, p] can be computed for all $p \in \{0, \ldots, nP\}$.

Set $A[i, p] := \infty$ for p < 0

 $A[i+1, p] = \min\{A[i, p], \text{size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$

- ⇒ All values A[i, p] can be computed in total time $O(n^2 P)$.
- ⇒ OPT can be computed in $O(n^2 P)$ time.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2 P)$.

Corollary. KNAPSACK is weakly NP-hard.

Pseudo-Polynomial Alg. for КNAPSACK

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2 P)$.

Examples. $P = n^5$ \Rightarrow running time $O(n^7)$ (Bin.) instance size $|I| \ge n \log P = \Omega(n \log n)$ $\Rightarrow n \in O(|I|/\log |I|)$ \Rightarrow running time $O(|I|^7/\log^7 |I|) = \text{poly}(|I|)$ \Rightarrow running time $O(n^2 2^n)$ $P = 2^{n}$ (Bin.) instance size $|I| \le n \log P = O(n^2)$ \Rightarrow running time $O(|I|2^{\sqrt{|I|}}) \neq \text{poly}(|I|)$ (Un.) instance size $|I|_u \le nP = O(n2^n)$ $\Rightarrow n \in O(\log |I|_u - \log \log |I|_u)$ \Rightarrow running time $O(|I|_u \log |I|_u) = poly(|I|_u)$ Running time $O(n^2 P)$ poly in *n* if *P* poly in *n*. **Observe**.

Approximation Algorithms Lecture 8: **Approximation Schemes and** the KNAPSACK Problem Part IV: **Approximation Schemes**

Joachim Spoerhase

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,
- $\operatorname{obj}_{\Pi}(I,s) \ge (1-\varepsilon) \cdot \operatorname{OPT}$, if Π max problem.

The runtime of \mathcal{A} is polynomial in |I| for every fixed $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\epsilon$.

Example running times

- $O(n^{1/\epsilon}) \sim \text{PTAS}$ • $O(2^{1/\epsilon}n^4) \sim \text{PTAS}$
- $O(n^3/\epsilon^2) \rightarrow \text{FPTAS}$

Approximation Algorithms Lecture 8: **Approximation Schemes and** the KNAPSACK Problem Part V: FPTAS for KNAPSACK

Joachim Spoerhase

FPTAS for KNAPSACK via Scaling

KnapsackScaling (*Ι*, ε)

 $K \leftarrow \varepsilon P/n \qquad // \text{ scaling factor} \\ \text{profit}'(a_i) \coloneqq [\text{profit}(a_i)/K] \\ \text{Compute optimal solution } S' \text{ for } I \text{ w.r.t. profit}'(\cdot) \\ \text{return } S' \end{cases}$

Lemma. profit(S') $\geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $OPT = \{o_1, ..., o_k\}$.

Obs. 1. For i = 1, ..., k, $\operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)$ $\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P$ **Obs. 2.** $\operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_i \operatorname{profit}'(o_i)$ $\Rightarrow \operatorname{profit}(S') \geq \operatorname{OPT} - \varepsilon P \geq \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT}$

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with running time $O(n^3/\epsilon) = O\left(n^2 \cdot \frac{P}{\epsilon P/n}\right)$.

Approximation Algorithms

Lecture 8: Approximation Schemes and the КNAPSACK Problem

Part VI: Connections

Joachim Spoerhase

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let *p* be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances *I* of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time). Set $\epsilon = 1/p(|I|_u)$. $\Rightarrow ALG \le (1 + \epsilon)OPT < OPT + \epsilon p(|I|_u) = OPT + 1.$ $\Rightarrow ALG = OPT.$

Running time: $q(|I|, p(|I|_u))$, so $poly(|I|_u)$.

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Theorem. Let *p* be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances *I* of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Corollary. Let Π be an NP-hard optimization problem that fulfils the restrictions above. If Π is strongly NP-hard, then there is no FPTAS for Π (unless P = NP).