Approximation Algorithms
Lecture 8:
Approximation Schemes and the Knapsack Problem

Part I:<br>Knapsack

## Knapsack

Given: $\quad$ A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.


Knapsack
Given:
■ A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.
■ For every object $a_{i}$ a size $\operatorname{size}\left(a_{i}\right) \in \mathbb{N}^{+}$


Knapsack
Given:

- A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.
- For every object $a_{i}$ a size $\operatorname{size}\left(a_{i}\right) \in \mathbb{N}^{+}$

■ For every object $a_{i}$ a Profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$


Knapsack
Given:

- A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.
- For every object $a_{i}$ a size $\operatorname{size}\left(a_{i}\right) \in \mathbb{N}^{+}$
- For every object $a_{i}$ a Profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$
- A knapsack capacity $B \in \mathbb{N}^{+}$


Knapsack
Given:

- A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.
- For every object $a_{i}$ a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$
- For every object $a_{i}$ a Profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$
- A knapsack capacity $B \in \mathbb{N}^{+}$

Task:
Find a subset of objects whose total size is at most $B$ and whose total profit is maximum.


Knapsack
Given:

- A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.
- For every object $a_{i}$ a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$
- For every object $a_{i}$ a Profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$
- A knapsack capacity $B \in \mathbb{N}^{+}$

Task:
Find a subset of objects whose total size is at most $B$ and whose total profit is maximum.


Knapsack
Given:

- A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.
- For every object $a_{i}$ a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$
- For every object $a_{i}$ a Profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$
- A knapsack capacity $B \in \mathbb{N}^{+}$

Task:
Find a subset of objects whose total size is at most $B$ and whose total profit is maximum.

NP-hard


Approximation Algorithms
Lecture 8:
Approximation Schemes and the Knapsack Problem

Part II:
Pseudo-Polynomial Algorithms and Strong NP-Hardness

Joachim Spoerhase
Winter 2021/22

## Pseudo-Polynomial Algorithms

Let $\Pi$ be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).


## Pseudo-Polynomial Algorithms

Let $\Pi$ be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
$|I|$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in binary.


## Pseudo-Polynomial Algorithms

Let $\Pi$ be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
$|I|$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in binary. $(5 \wedge 101 \Rightarrow|I|=3)$


## Pseudo-Polynomial Algorithms

Let $\Pi$ be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
$|I|$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in binary. $(5 \wedge 101 \Rightarrow|I|=3)$ $|I|_{\mathrm{u}}$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in unary.


## Pseudo-Polynomial Algorithms

Let $\Pi$ be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
$|I|$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in binary. $(5 \triangleq 101 \Rightarrow|I|=3)$ $|I|_{\mathrm{u}}$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in unary. $\left(5 \hat{=} 11111 \Rightarrow|I|_{\mathrm{u}}=5\right)$

## Pseudo-Polynomial Algorithms

Let $\Pi$ be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
$|I|$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in binary. $(5 \xlongequal[=]{ } 101 \Rightarrow|I|=3)$
$|I|_{\mathrm{u}}$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in unary. $\quad\left(5 \hat{=} 11111 \Rightarrow|I|_{\mathrm{u}}=5\right)$

The running time of a polynomial algorithm for $\Pi$ is polynomial in $|I|$.

## Pseudo-Polynomial Algorithms

Let $\Pi$ be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
$|I|$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in binary. $\quad(5 \hat{=} 101 \Rightarrow|I|=3)$
$|I|_{\mathrm{u}}$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in unary. $\quad\left(5 \hat{=} 11111 \Rightarrow|I|_{\mathrm{u}}=5\right)$

The running time of a polynomial algorithm for $\Pi$ is polynomial in $|I|$.
The running time of a pseudo-polynomial algorithm is polynomial in $|I|_{\mathrm{u}}$.

## Pseudo-Polynomial Algorithms

Let $\Pi$ be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
$|I|$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in binary. $(5 \triangleq 101 \Rightarrow|I|=3)$
$|I|_{\mathrm{u}}$ : The size of an instance $I \in D_{\Pi}$, where all numbers in $I$ are encoded in unary. $\quad\left(5 \hat{=} 11111 \Rightarrow|I|_{\mathrm{u}}=5\right)$

The running time of a polynomial algorithm for $\Pi$ is polynomial in $|I|$.
The running time of a pseudo-polynomial algorithm is polynomial in $|I|_{\mathrm{u}}$.
The running time of a pseudo-polynomial algorithm may not be polynomial in $|I|$.

## Strong NP-Hardness

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

## Strong NP-Hardness

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

## Strong NP-Hardness

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $\mathrm{P}=\mathrm{NP}$.

Approximation Algorithms Lecture 8:
Approximation Schemes and the Knapsack Problem

## Part III:

Pseudo-Polynomial Algorithm for Knapsack

Pseudo-Polynomial Alg. for Knapsack Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right)$


Pseudo-Polynomial Alg. for Knapsack Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right)$


Pseudo-Polynomial Alg. for Knapsack Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad \leq \mathrm{OPT} \leq$


Pseudo-Polynomial Alg. for Knapsack Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$


Pseudo-Polynomial Alg. for Knapsack
Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$,


## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$


## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$


## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$ and whose total size is minimum among all subsets with these properties.


## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$ and whose total size is minimum among all subsets with these properties.


## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$ and whose total size is minimum among all subsets with these properties. Such a set may not exist.


## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$ and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of set $S_{i, p}($ set $A[i, p]=\infty$ if no such set exists).


## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$ and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of set $S_{i, p}($ set $A[i, p]=\infty$ if no such set exists).


## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$ and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of set $S_{i, p}$ (set $A[i, p]=\infty$ if no such set exists).

If all $A[i, p]$ are known, then we
 can compute
$\mathrm{OPT}=$

## Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely $p$ and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of set


If all $A[i, p]$ are known, then we can compute
OPT $=\max \{p \mid A[n, p] \leq B\}$.

Pseudo-Polynomial Alg. for Knapsack
$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.


Pseudo-Polynomial Alg. for Knapsack $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$


Pseudo-Polynomial Alg. for Knapsack
$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$
$A[i+1, p]=$


Pseudo-Polynomial Alg. for Knapsack $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$ $A[i+1, p]=\min \{$


Pseudo-Polynomial Alg. for Knapsack $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$ $A[i+1, p]=\min \{A[i, p]$,


Pseudo-Polynomial Alg. for Knapsack
$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$
$A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+\right.$


Pseudo-Polynomial Alg. for Knapsack $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$ $A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$


Pseudo-Polynomial Alg. for Knapsack $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$ $A[i+1, p]=\min \left\{A[i, p]\right.$, size $\left.\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$ $\Rightarrow$ All values $A[i, p]$ can be computed in total time $O\left(n^{2} P\right)$.


## Pseudo-Polynomial Alg. for Knapsack

 $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$ $A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$ $\Rightarrow$ All values $A[i, p]$ can be computed in total time $O\left(n^{2} P\right)$.$\Rightarrow$ OPT can be computed in $O\left(n^{2} P\right)$ time.


Pseudo-Polynomial Alg. for Knapsack $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$ $A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$ $\Rightarrow$ All values $A[i, p]$ can be computed in total time $O\left(n^{2} P\right)$.
$\Rightarrow$ OPT can be computed in $O\left(n^{2} P\right)$ time.

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.


## Pseudo-Polynomial Alg. for Knapsack

 $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$ $A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$ $\Rightarrow$ All values $A[i, p]$ can be computed in total time $O\left(n^{2} P\right)$.$\Rightarrow$ OPT can be computed in $O\left(n^{2} P\right)$ time.

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.

Corollary. Knapsack is weakly NP-hard.

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.


## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5}$


## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$


## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$


## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$
$\Rightarrow n \in O(|I| / \log |I|)$


## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$

$$
\begin{aligned}
& \text { (Bin.) instance size }|I| \geq n \log P=\Omega(n \log n) \\
& \Rightarrow n \in O(|I| / \log |I|) \\
& \Rightarrow \text { running time } O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)
\end{aligned}
$$

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$

$$
\begin{aligned}
& \text { (Bin.) instance size }|I| \geq n \log P=\Omega(n \log n) \\
& \Rightarrow n \in O(|I| / \log |I|) \\
& \Rightarrow \text { running time } O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)
\end{aligned}
$$

$$
P=2^{n}
$$

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$
$\Rightarrow n \in O(|I| / \log |I|)$
$\Rightarrow$ running time $O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)$
$P=2^{n} \quad \Rightarrow$ running time $O\left(n^{2} 2^{n}\right)$

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$
$\Rightarrow n \in O(|I| / \log |I|)$
$\Rightarrow$ running time $O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)$
$P=2^{n} \quad \Rightarrow$ running time $O\left(n^{2} 2^{n}\right)$
(Bin.) instance size $|I| \leq n \log P=O\left(n^{2}\right)$

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$
$\Rightarrow n \in O(|I| / \log |I|)$
$\Rightarrow$ running time $O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)$
$P=2^{n} \quad \Rightarrow$ running time $O\left(n^{2} 2^{n}\right)$
(Bin.) instance size $|I| \leq n \log P=O\left(n^{2}\right)$
$\Rightarrow$ running time $O\left(|I| 2^{\sqrt{I I I}}\right) \neq \operatorname{poly}(| | I \mid)$

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$
$\Rightarrow n \in O(|I| / \log |I|)$
$\Rightarrow$ running time $O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)$
$P=2^{n} \quad \Rightarrow$ running time $O\left(n^{2} 2^{n}\right)$
(Bin.) instance size $|I| \leq n \log P=O\left(n^{2}\right)$
$\Rightarrow$ running time $O\left(|I| 2^{\sqrt{I I I}}\right) \neq \operatorname{poly}(| | I \mid)$
(Un.) instance size $|I|_{u} \leq n P=O\left(n 2^{n}\right)$

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$
$\Rightarrow n \in O(|I| / \log |I|)$
$\Rightarrow$ running time $O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)$
$P=2^{n} \quad \Rightarrow$ running time $O\left(n^{2} 2^{n}\right)$
(Bin.) instance size $|I| \leq n \log P=O\left(n^{2}\right)$
$\Rightarrow$ running time $O\left(|I| 2^{\sqrt{I I I}}\right) \neq \operatorname{poly}(| | I \mid)$
(Un.) instance size $|I|_{u} \leq n P=O\left(n 2^{n}\right)$
$\Rightarrow n \in O\left(\log |I|_{u}-\log \log |I|_{\mathrm{u}}\right)$

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$
$\Rightarrow n \in O(|I| / \log |I|)$
$\Rightarrow$ running time $O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)$
$P=2^{n} \quad \Rightarrow$ running time $O\left(n^{2} 2^{n}\right)$
(Bin.) instance size $|I| \leq n \log P=O\left(n^{2}\right)$
$\Rightarrow$ running time $O\left(|I| 2^{\sqrt{I I I}}\right) \neq \operatorname{poly}(| | I \mid)$
(Un.) instance size $|I|_{\mathrm{u}} \leq n P=O\left(n 2^{n}\right)$
$\Rightarrow n \in O\left(\log |I|_{\mathrm{u}}-\log \log |I|_{\mathrm{u}}\right)$
$\Rightarrow$ running time $O\left(|I|_{\mathrm{u}} \log |I|_{\mathrm{u}}\right)=\operatorname{poly}\left(|I|_{\mathrm{u}}\right)$

## Pseudo-Polynomial Alg. for Knapsack

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.
Examples. $P=n^{5} \quad \Rightarrow$ running time $O\left(n^{7}\right)$
(Bin.) instance size $|I| \geq n \log P=\Omega(n \log n)$
$\Rightarrow n \in O(|I| / \log |I|)$
$\Rightarrow$ running time $O\left(|I|^{7} / \log ^{7}|I|\right)=\operatorname{poly}(|I|)$
$P=2^{n} \quad \Rightarrow$ running time $O\left(n^{2} 2^{n}\right)$
(Bin.) instance size $|I| \leq n \log P=O\left(n^{2}\right)$
$\Rightarrow$ running time $O\left(|I| 2^{\sqrt{I I I}}\right) \neq \operatorname{poly}(|I|)$
(Un.) instance size $|I|_{u} \leq n P=O\left(n 2^{n}\right)$
$\Rightarrow n \in O\left(\log |I|_{\mathrm{u}}-\log \log |I|_{\mathrm{u}}\right)$
$\Rightarrow$ running time $O\left(|I|_{\mathrm{u}} \log |I|_{\mathrm{u}}\right)=\operatorname{poly}\left(|I|_{\mathrm{u}}\right)$
Observe. Running time $O\left(n^{2} P\right)$ poly in $n$ if $P$ poly in $n$.

Approximation Algorithms
Lecture 8:
Approximation Schemes and the Knapsack Problem

Part IV:<br>Approximation Schemes

## Approximation Schemes

Let $\Pi$ be an optimization problem.

## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:
■ $\mathrm{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot \mathrm{OPT}$, if $\Pi$ min problem,

## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT, if $\Pi$ min problem,
- $\operatorname{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT, if $\Pi$ max problem.


## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT, if $\Pi$ min problem, - obj$j_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT, if $\Pi$ max problem.

The runtime of $\mathcal{A}$ is polynomial in $|I|$ for every fixed $\varepsilon>0$.

## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT, if $\Pi$ min problem, - $\operatorname{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT, if $\Pi$ max problem.

The runtime of $\mathcal{A}$ is polynomial in $|I|$ for every fixed $\varepsilon>0$.
$\mathcal{A}$ is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|I|$ and $1 / \varepsilon$.

## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT, if $\Pi$ min problem, - $\operatorname{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT, if $\Pi$ max problem.

The runtime of $\mathcal{A}$ is polynomial in $|I|$ for every fixed $\varepsilon>0$.
$\mathcal{A}$ is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|I|$ and $1 / \varepsilon$.

Example running times

- $O\left(n^{1 / \varepsilon}\right) \leadsto$
- $O\left(2^{1 / \varepsilon} n^{4}\right) \leadsto$
- $O\left(n^{3} / \varepsilon^{2}\right) \leadsto$


## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT, if $\Pi$ min problem, - $\operatorname{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT, if $\Pi$ max problem.

The runtime of $\mathcal{A}$ is polynomial in $|I|$ for every fixed $\varepsilon>0$.
$\mathcal{A}$ is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|I|$ and $1 / \varepsilon$.

Example running times

- $O\left(n^{1 / \varepsilon}\right) \leadsto$ PTAS
- $O\left(2^{1 / \varepsilon} n^{4}\right) \leadsto$
- $O\left(n^{3} / \varepsilon^{2}\right) \leadsto$


## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT, if $\Pi$ min problem, - obj$j_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT, if $\Pi$ max problem.

The runtime of $\mathcal{A}$ is polynomial in $|I|$ for every fixed $\varepsilon>0$.
$\mathcal{A}$ is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|I|$ and $1 / \varepsilon$.

Example running times

- $O\left(n^{1 / \varepsilon}\right) \leadsto$ PTAS
- $O\left(2^{1 / \varepsilon} n^{4}\right) \leadsto$ PTAS
- $O\left(n^{3} / \varepsilon^{2}\right) \leadsto$


## Approximation Schemes

Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a polynomial-time approximation scheme (PTAS), if it outputs for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon>0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT, if $\Pi$ min problem, - $\operatorname{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT, if $\Pi$ max problem.

The runtime of $\mathcal{A}$ is polynomial in $|I|$ for every fixed $\varepsilon>0$.
$\mathcal{A}$ is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|I|$ and $1 / \varepsilon$.

Example running times

- $O\left(n^{1 / \varepsilon}\right) \leadsto$ PTAS
- $O\left(2^{1 / \varepsilon} n^{4}\right) \leadsto$ PTAS
- $O\left(n^{3} / \varepsilon^{2}\right) \leadsto$ FPTAS

Approximation Algorithms
Lecture 8:
Approximation Schemes and the Knapsack Problem

Part V:<br>FPTAS for KnAPsACK

## FPTAS for Knapsack via Scaling

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

FPTAS for Knapsack via Scaling KnapsackScaling ( $I, \varepsilon$ )

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $(\bar{I}, \varepsilon)$

$$
K \leftarrow \varepsilon P / n
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $(1, \varepsilon)$

$$
K \leftarrow \varepsilon P / n \quad / / \text { scaling factor }
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $(1, \varepsilon)$
$K \leftarrow \varepsilon P / n$
/ / scaling factor
profit' $\left(a_{i}\right):=$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $(1, \varepsilon)$

$$
\begin{aligned}
& K \leftarrow \varepsilon P / n \quad / / \text { scaling factor } \\
& \operatorname{profit}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor
\end{aligned}
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $(1, \varepsilon)$

$$
\begin{aligned}
& K \leftarrow \varepsilon P / n \quad / / \text { scaling factor } \\
& \text { profit' }\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor
\end{aligned}
$$

Compute optimal solution $S^{\prime}$ for I w.r.t. profit' (.)

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $(1, \varepsilon)$
$K \leftarrow \varepsilon P / n \quad / /$ scaling factor
profit' $\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for $I$ w.r.t. profit' (.) return $S^{\prime}$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n \quad / /$ scaling factor
profit' $\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for $I$ w.r.t. profit' (.) return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n \quad / /$ scaling factor
profit' $\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. profit ${ }^{\prime}(\cdot)$ return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $1, \varepsilon$ )
$K \leftarrow \varepsilon P / n \quad / /$ scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. profit' (.) return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k, \quad \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $1, \varepsilon$ )
$K \leftarrow \varepsilon P / n \quad / /$ scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. profit' (.) return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k, \quad \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n \quad / /$ scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. profit' (.) return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $1, \varepsilon$ )
$K \leftarrow \varepsilon P / n \quad / /$ scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. profit' (.) return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $1, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
profit' $\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. profit' (.) return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \text { OPT }-k K \geq
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
scaling factor
profit' $\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. profit' (.) return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
profit' $\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. profit' (.) return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}{ }^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2.

$$
\geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2.

$$
\geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2. $\operatorname{profit}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2. $\operatorname{profit}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$
$\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq$
FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2. $\operatorname{profit}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$

$$
\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2. profit $\left(\mathcal{S}^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$

$$
\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq \mathrm{OPT}-\varepsilon \mathrm{OPT}
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}{ }^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2. $\operatorname{profit}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$

$$
\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq \mathrm{OPT}-\varepsilon \mathrm{OPT}=(1-\varepsilon) \cdot \mathrm{OPT}
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $I, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}{ }^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2. $\operatorname{profit}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$
$\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq \mathrm{OPT}-\varepsilon \mathrm{OPT}=(1-\varepsilon) \cdot \mathrm{OPT} \quad \square$
FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon$ )...

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $1, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2. $\quad \operatorname{profit}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$
$\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq \mathrm{OPT}-\varepsilon \mathrm{OPT}=(1-\varepsilon) \cdot \mathrm{OPT} \quad \square$
Theorem. KnapsackScaling is an FPTAS for Knapsack with running time $O(\ldots$,

## FPTAS for Knapsack via Scaling

KnapsackScaling ( $1, \varepsilon$ )
$K \leftarrow \varepsilon P / n$
/ / scaling factor
$\operatorname{profit}\left(a_{i}\right):=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution $S^{\prime}$ for I w.r.t. return $S^{\prime}$

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{0_{1}, \ldots, o_{k}\right\}$.
Obs. 1. For $i=1, \ldots, k$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-k K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P
$$

Obs. 2. $\quad \operatorname{profit}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(\mathcal{S}^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$
$\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq \mathrm{OPT}-\varepsilon \mathrm{OPT}=(1-\varepsilon) \cdot \mathrm{OPT} \quad \square$
Theorem. KnapsackScaling is an FPTAS for Knapsack with running time $O\left(n^{3} / \varepsilon\right)$

Approximation Algorithms
Lecture 8:
Approximation Schemes and the Knapsack Problem

Part VI:<br>Connections

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$.

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS,

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=$

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<$

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|I|_{\mathrm{u}}\right)=$

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|I|_{\mathrm{u}}\right)=\mathrm{OPT}+1$.

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|I|_{\mathrm{u}}\right)=\mathrm{OPT}+1$.
$\Rightarrow \mathrm{ALG}=\mathrm{OPT}$.

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|I|_{\mathrm{u}}\right)=\mathrm{OPT}+1$.
$\Rightarrow \mathrm{ALG}=\mathrm{OPT}$.
Running time:

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|I|_{\mathrm{u}}\right)=\mathrm{OPT}+1$.
$\Rightarrow \mathrm{ALG}=\mathrm{OPT}$.
Running time: $q\left(|I|, p\left(|I|_{u}\right)\right)$

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|I|_{\mathrm{u}}\right)=\mathrm{OPT}+1$.
$\Rightarrow \mathrm{ALG}=\mathrm{OPT}$.
Running time: $q\left(|I|, p\left(|I|_{\mathrm{u}}\right)\right)$, so

## FPTAS and Pseudo-Poly. Algorithms

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## Proof.

Assuming there is an FPTAS for $\Pi$ (in $q(|I|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|I|_{\mathrm{u}}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|I|_{\mathrm{u}}\right)=\mathrm{OPT}+1$.
$\Rightarrow \mathrm{ALG}=\mathrm{OPT}$.
Running time: $q\left(|I|, p\left(|I|_{\mathrm{u}}\right)\right)$, so $\operatorname{poly}\left(|I|_{\mathrm{u}}\right)$.

## FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $\mathrm{P}=\mathrm{NP}$.

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $\operatorname{OPT}(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

## FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $\mathrm{P}=\mathrm{NP}$.

Theorem. Let $p$ be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(|I|_{\mathrm{u}}\right)$ for all instances $I$ of $\Pi$. If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$.

Corollary. Let $\Pi$ be an NP-hard optimization problem that fulfils the restrictions above. If $\Pi$ is strongly NP-hard, then there is no FPTAS for $\Pi$ (unless P = NP).

