Lecture 7:

Scheduling Jobs on Parallel Machines

Part I:

ILP & Parametric Pruning

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs,

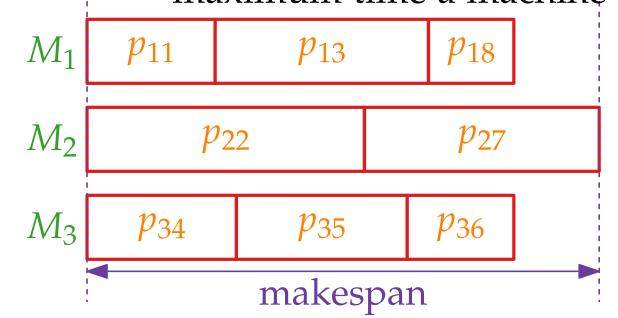
a set \mathcal{M} of machines, and

for each $M_i \in \mathcal{M}$ and $J_i \in \mathcal{J}$ the processing

time $p_{ij} \in \mathbb{N}^+$ of J_i on M_i .

Task:

A **schedule** $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (**makespan**), i.e., minimizes the maximum time a machine is in use.



$$\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$$

$$\mathcal{M} = \{M_1, M_2, M_3\}$$

$$(p_{ij})_{M_i \in M, J_j \in J}$$

Formulation as ILP

$$\begin{array}{ll} \textbf{minimize} & t \\ \textbf{subject to} & \sum_{M_i \in \mathcal{M}} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \sum_{M_i \in \mathcal{M}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M} \\ & x_{ij} \in \{0,1\}, \qquad M_i \in \mathcal{M}, J_j \in \mathcal{J} \end{array}$$

Task: Prove that the integrality gap is unbounded!

Solution: *m* machines and one job with processing time *m*

$$\Rightarrow$$
 OPT = m and OPT_{frac} = 1.

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Define the "pruned" relaxation LP(T):

$$\sum_{\substack{(i,j) \in S_T \\ \sum x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M} \\ (i,j) \in S_T \\ x_{ij} \geq 0,} J_j \in \mathcal{J}$$

LP(*T*) has no objective function; we just need to determine if a feasible solution exists.

But why does this LP give a good integrality gap?

Lecture 7:

Scheduling Jobs on Parallel Machines

Part II:

Properties of Extreme Point Solutions

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

What are the bounds for our search?

Observe: $T^* \leq OPT$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule whose makespan is $\leq 2T^*$

LP(T)

$$\sum_{\substack{(i,j)\in S_T \ \sum_{(i,j)\in S_T} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M} \ (i,j)\in S_T \ x_{ij} \geq 0,}} J_j \in \mathcal{J}$$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Lemma 1

$$\sum_{\substack{(i,j)\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
 $\sum_{\substack{(i,j)\in S_T}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$
 $(i,j)\in S_T$
 $x_{ij} \geq 0, \qquad (i,j)\in S_T$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

Proof. L(T): $|S_T|$ variables extreme point sol.: $|S_T|$ inequalities tight

- lacksquare max. $|\mathcal{J}|$
 - max. $|\mathcal{M}|$
 - \Rightarrow min. $|S_T| |\mathcal{J}| |\mathcal{M}| \blacktriangleleft$
 - \Rightarrow max. $|\mathcal{M}| + |\mathcal{J}|$ not night

Lemma 2

$$\sum_{\substack{(i,j)\in S_T \ \sum_{(i,j)\in S_T} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M} \ (i,j)\in S_T \ x_{ij} \geq 0,}} J_j \in \mathcal{J}$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be extreme point solution for L(T). Assume α jobs integral und β jobs fractional in x. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Fractional jobs: ≥ 2 machines

$$\Rightarrow \geq 2 \text{ variables} > 0$$

\Rightarrow \alpha + 2\beta \leq |\mathcal{J}| + |\mathcal{M}| \tag{Lemma 1}

$$\Rightarrow \beta \leq |\mathcal{M}| \Rightarrow \alpha \geq |\mathcal{J}| - |\mathcal{M}|$$

Lecture 7:

Scheduling Jobs on Parallel Machines

Part III: An Algorithm

Extreme Point Solutions of LP(T)

Definition: Bipartite Gr

Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$

with $(i,j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned integrally or fractionally.

$$(\exists M_i \in \mathcal{M} \colon 0 < x_{ij} < 1)$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe:

(i,j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect if it matches every vertex in F.

Main step:

Show that *H* always has an *F*-perfect matching.

Why is that useful ...?

Algorithm

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

By a binary search in the interval $[\frac{\tau}{|\mathcal{M}|}, \tau]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution. Let T^* be this value.

Find an extreme point solution x for LP(T^*).

Assign all integrally set jobs to machines as in x.

Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assg. jobs)

Assign the fractional jobs to machines using *P*.

Theorem. This algorithm is a factor-2-approximation (assuming that we have an F-perfect matching).

Approximation Factor

$$\sum_{\substack{(i,j) \in S_{T^*}}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
 $\sum_{\substack{(i,j) \in S_{T^*}}} x_{ij} p_{ij} \leq T^*, \qquad M_i \in \mathcal{M}$
 $(i,j) \in S_{T^*}$
 $x_{ij} \geq 0, \qquad (i,j) \in S$

Theorem. This algorithm is a factor-2-approximation (assuming that we have an F-perfect matching).

Proof. $T^* \leq OPT$

Let x be an extreme point solution for $LP(T^*)$

► Fractional solution: makespan $\leq T^*$.

 \Rightarrow Restriction to integral jobs has makespan $\leq T^*$.

For each edge $(i,j) \in S_{T^*}$: $p_{ij} \leq T^*$

Matching: ≤ 1 extra jobs per maschine

 \Rightarrow total makespan $\leq 2T^* \leq 2OPT$

Lecture 7:

Scheduling Jobs on Parallel Machines

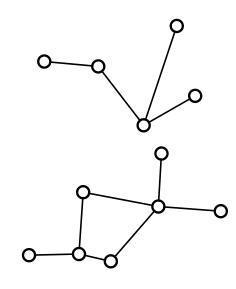
Part IV:

Pseudo-Trees and -Forests

Pseudo-Trees and -Forests

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge.



Pseudo-Forest: Collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1). Each component of G corresponds to an extreme point solution.

Lemma 4.

The graph *H* has an *F*-perfect matching.

H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \setminus F$ Vertices in F have min. degree 2. \Rightarrow The leaves in H are machines. After iteratively picking all leaves, only even cycles remain.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

```
Tight? Yes!
```

Instance I_m :

m machines and $m^2 - m + 1$ jobs Job J_1 jas processing time m on all machines, all other jobs have processing time 1 on each machine.

Optimum: one machine with J_1 , and all others spread evenly. Algorithm:

LP(T) has no feasible solutions for any T < m. Extreme point solution: Assign 1/m of J_1 and m-1 other jobs to each machine.

 \Rightarrow Makespan 2m-1.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP) [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ -approximation algorithm. [Horowitz & Sahni '76]

For uniform machines, for every $\varepsilon > 0$ there is a factor- $(1+\varepsilon)$ -approximation algorithm. [Hochbaum & Shmoys '87] (Machines have different speed, but process jobs uniformly.)