Approximation Algorithms Lecture 7: Scheduling Jobs on Parallel Machines

Part I: ILP & Parametric Pruning

Joachim Spoerhase

Winter 2020/21

Given: A set \mathcal{J} of **jobs**,

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and

$$\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

$$\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

 $(p_{ij})_{M_i \in M, J_j \in J}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i . **Task:** A **schedule** $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines which minimizes the total time to

completion (makespan), i.e., minimizes the maximum time a machine is in use.

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

 $(p_{ij})_{M_i \in M, J_j \in J}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i . **Task:** A **schedule** $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines which minimizes the total time to

completion (makespan), i.e., minimizes the maximum time a machine is in use.

 M_1

 M_2

 M_3

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

 $(p_{ij})_{M_i \in M, J_j \in J}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i . **Task:** A **schedule** $\sigma \colon \mathcal{J} \to \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (**makespan**), i.e., minimizes the maximum time a machine is in use.

*M*₁ *p*₁₁ *p*₁₃ *p*₁₈

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

$$(p_{ij})_{M_i \in M, J_j \in J}$$

 M_3

 M_2

- **Given:** A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i . **Task:** A **schedule** $\sigma : \mathcal{J} \to \mathcal{M}$ of the jobs on the
- **Task:** A schedule $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

- **Given:** A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .
- **Task:** A **schedule** σ : $\mathcal{J} \to \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (**makespan**), i.e., minimizes the maximum time a machine is in use.

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of machines, and for each $M_i \in \mathcal{M}$ and $J_i \in \mathcal{J}$ the **processing** time $p_{ij} \in \mathbb{N}^+$ of J_j on M_i . A schedule $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the Task: machines which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use. p_{11} p_{13} p_{18}

$$\mathcal{J} = \{J_1, J_2, \dots, J_8\}$$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

$$(p_{ij})_{M_i \in M, J_j \in J}$$

minimize t

subject to

minimize t subject to

$x_{ij} \in \{0,1\}, \qquad M_i \in \mathcal{M}, J_j \in \mathcal{J}$

Task: Prove that the integrality gap is unbounded!

Task: Prove that the integrality gap is unbounded!

Solution: *m* machines and one job with processing time *m*

Task: Prove that the integrality gap is unbounded!

Solution: *m* machines and one job with processing time *m*

 \Rightarrow OPT = *m* and OPT_{frac} = 1.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define $S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define
$$S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

$$\sum_{\substack{(i,j)\in S_T\\ \sum x_{ij} \neq j}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\ x_{ij} \geq 0}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define $S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$

Define the "pruned" relaxation LP(T):

$$\sum_{\substack{(i,j)\in S_T\\ \sum\\(i,j)\in S_T\\ x_{ij} \geq 0,}} x_{ij} p_{ij} \leq 1, \quad J_j \in \mathcal{J}$$

$$M_i \in \mathcal{M}$$

$$M_i \in \mathcal{M}$$

$$(i,j) \in S_T$$

LP(**T**) has no objective function; we just need to determine if a feasible solution exists.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Define $S_T := \{ (i, j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$

Define the "pruned" relaxation LP(T):

$$\sum_{\substack{(i,j)\in S_T\\ \sum x_{ij} p_{ij} \leq T, \\ (i,j)\in S_T\\ x_{ij} \geq 0, \end{cases}} J_j \in \mathcal{J}$$

$$J_j \in \mathcal{J}$$

$$M_i \in \mathcal{M}$$

$$(i,j) \in S_T$$

LP(**T**) has no objective function; we just need to determine if a feasible solution exists.

But why does this LP give a good integrality gap?

Approximation Algorithms Lecture 7:

Scheduling Jobs on Parallel Machines

Part II: Properties of Extreme Point Solutions

Joachim Spoerhase

Winter 2020/21

Use binary search to find the smallest T so that LP(T) has a solution.

$$LP(T)$$

$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T\\(i,j)\in S_T\\x_{ij}\geq 0,}} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

Use binary search to find the smallest *T* so that LP(T) has a solution. Let T^* be this value of *T*.

Use binary search to find the smallest *T* so that LP(T) has a solution. Let T^* be this value of *T*. What are the bounds for our search?

Use binary search to find the smallest *T* so that LP(T) has a solution. Let T^* be this value of *T*. What are the bounds for our search? Observe: $T^* \leq OPT$

$$LP(T)$$

$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T\\(i,j)\in S_T\\x_{ij}\geq 0,}} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$(i,j)\in S_T$$

$$(i,j)\in S_T$$

Properties of Extreme Point Solutions

Use binary search to find the smallest *T* so that LP(T) has a solution. Let T^* be this value of *T*.

What are the bounds for our search?

Observe: $T^* \leq OPT$

Idea:Round an extreme-point solution of $LP(T^*)$ to aschedule whose makespan is $\leq 2T^*$

$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T\\(i,j)\in S_T\\x_{ij}\geq 0,}} x_{ij} p_{ij} \leq I, \quad J_j \in \mathcal{J}$$

 $\mathbf{T} \mathbf{D} (\mathbf{T})$

Properties of Extreme Point Solutions

Use binary search to find the smallest *T* so that LP(T) has a solution. Let T^* be this value of *T*.

What are the bounds for our search?

Observe: $T^* \leq OPT$

Idea:Round an extreme-point solution of $LP(T^*)$ to a
schedule whose makespan is $\leq 2T^*$

$$LP(T)$$

$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T\\x_{ij}\in S_T}} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$\sum_{\substack{(i,j)\in S_T\\x_{ij}\geq 0}} x_{ij}p_{ij} \leq T, \quad (i,j)\in S_T$$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

Properties of Extreme Point Solutions

Use binary search to find the smallest *T* so that LP(T) has a solution. Let T^* be this value of *T*.

What are the bounds for our search?

Observe: $T^* \leq OPT$

Idea:Round an extreme-point solution of $LP(T^*)$ to a
schedule whose makespan is $\leq 2T^*$

$$LP(T)$$

$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T}} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T}} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$(i,j)\in S_T$$

$$(i,j)\in S_T$$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

Lemma 2.

Any extreme point solution for LP(*T*) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T\\(i,j)\in S_T\\x_{ij}\geq 0,}} x_{ij} p_{ij} \leq 1, \quad J_j \in \mathcal{J}$$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

$$\sum_{\substack{(i,j)\in S_T\\ \sum x_{ij} \in S_T}} x_{ij} p_{ij} \leq 1, \quad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\ x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

Proof. L(T): $|S_T|$ variables

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

Proof. L(T): $|S_T|$ variables extreme point sol.: $|S_T|$ inequalities tight

$$\sum_{\substack{(i,j)\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij}p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

Proof. $L(T): |S_T|$ variables extreme point sol.: $|S_T|$ inequalities tight max. $|\mathcal{J}|$

$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 1.

Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$ pos. variables.

Proof. $L(T): |S_T|$ variables extreme point sol.: $|S_T|$ inequalities tight $max. |\mathcal{J}|$ $max. |\mathcal{M}|$

$$\sum_{\substack{(i,j)\in S_T\\ i_ij)\in S_T\\ x_{ij} \geq T, \quad M_i \in \mathcal{M}\\ x_{ij} \geq 0, \quad (i,j) \in S_T\\ x_{ij} \geq 0, \quad (i,j) \in S_T\\ \textbf{Lemma 1.}\\ \text{Each extreme point solution for LP(T) has } \leq |\mathcal{M}| + |\mathcal{J}|\\ \text{pos. variables.}\\ \textbf{Proof.} \quad L(T): |S_T| \text{ variables}\\ \text{extreme point sol.: } |S_T| \text{ inequalities tight}\\ \textbf{max.} |\mathcal{J}|\\ \textbf{max.} |\mathcal{M}| \\ \textbf{M} \end{bmatrix}$$

 \Rightarrow min. $|S_T| - |\mathcal{J}| - |\mathcal{M}| \blacktriangleleft$

$$\sum_{\substack{(i,j)\in S_T\\ x_{ij} \in J}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$

$$\sum_{\substack{(i,j)\in S_T\\ x_{ij} \geq 0, \qquad (i,j)\in S_T}} x_{ij}p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$

$$x_{ij} \geq 0, \qquad (i,j)\in S_T$$
Lemma 1.
Each extreme point solution for LP(T) has $\leq |\mathcal{M}| + |\mathcal{J}|$
pos. variables.
Proof. $L(T): |S_T|$ variables
extreme point sol.: $|S_T|$ inequalities tight
max. $|\mathcal{J}|$
max. $|\mathcal{M}|$
 \Rightarrow min. $|S_T| - |\mathcal{J}| - |\mathcal{M}|$
 \Rightarrow max. $|\mathcal{M}| + |\mathcal{J}|$ not night

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2. Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let *x* be extreme point solution for L(T).

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let *x* be extreme point solution for L(T). Assume α jobs integral und β jobs fractional in *x*.

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let *x* be extreme point solution for L(T). Assume α jobs integral und β jobs fractional in *x*. $\Rightarrow \alpha + \beta = |\mathcal{J}|$

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let *x* be extreme point solution for L(T). Assume α jobs integral und β jobs fractional in *x*. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Fractional jobs: ≥ 2 machines

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let *x* be extreme point solution for L(T). Assume α jobs integral und β jobs fractional in *x*. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Fractional jobs: ≥ 2 machines $\Rightarrow \geq 2$ variables > 0

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let *x* be extreme point solution for L(T). Assume α jobs integral und β jobs fractional in *x*. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Fractional jobs: ≥ 2 machines $\Rightarrow \geq 2$ variables > 0 $\Rightarrow \alpha + 2\beta \leq |\mathcal{J}| + |\mathcal{M}|$ (Lemma 1)

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let *x* be extreme point solution for L(T). Assume α jobs integral und β jobs fractional in *x*. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Fractional jobs: ≥ 2 machines $\Rightarrow \geq 2$ variables > 0 $\Rightarrow \alpha + 2\beta \leq |\mathcal{J}| + |\mathcal{M}|$ (Lemma 1) $\Rightarrow \beta \leq |\mathcal{M}|$

$$\sum_{\substack{(i,j)\in S_T\\j\in S_T}} x_{ij} = 1, \qquad J_j \in \mathcal{J}$$
$$\sum_{\substack{(i,j)\in S_T\\x_{ij} \geq 0,}} x_{ij} p_{ij} \leq T, \qquad M_i \in \mathcal{M}$$
$$(i,j) \in S_T$$

Lemma 2.

Any extreme point solution for LP(T) must set $\geq |\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let *x* be extreme point solution for L(T). Assume α jobs integral und β jobs fractional in *x*. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Fractional jobs: ≥ 2 machines $\Rightarrow \geq 2$ variables > 0 $\Rightarrow \alpha + 2\beta \leq |\mathcal{J}| + |\mathcal{M}|$ (Lemma 1) $\Rightarrow \beta \leq |\mathcal{M}| \Rightarrow \alpha \geq |\mathcal{J}| - |\mathcal{M}|$

Approximation Algorithms

Lecture 7: Scheduling Jobs on Parallel Machines

Part III: An Algorithm

Joachim Spoerhase

Winter 2020/21

Definition:

Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Definition: Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned *integrally* or *fractionally*.

Definition: Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Definition: Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Definition: Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Definition: Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

Definition: Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in *H* is called *F*-perfect if it matches every vertex in F.

Definition: Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$ A matching in H is called *F*-perfect if it matches every vertex in *F*.

Main step: Show that *H* always has an *F*-perfect matching.

Definition: Bipartite Graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$.

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$ A matching in H is called *F*-perfect if it matches every vertex in *F*.

Main step: Show that *H* always has an *F*-perfect matching.

Why is that useful ...?

Assign job J_i to machine M_i that minimizes p_{ij} .

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

11 - 2

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

By a binary search in the interval $[\frac{\tau}{|\mathcal{M}|}, \tau]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution. Let T^* be this value.

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

By a binary search in the interval $[\frac{\tau}{|\mathcal{M}|}, \tau]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution. Let T^* be this value.

Find an extreme point solution x for LP(T^*).

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule. By a binary search in the interval $[\frac{\tau}{|\mathcal{M}|}, \tau]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution. Let T^* be this value. Find an extreme point solution x for LP(T^*).

Assign all integrally set jobs to machines as in x.

Assign job J_i to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule. By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution. Let T^* be this value. Find an extreme point solution x for LP(T^*). Assign all integrally set jobs to machines as in x. Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, *F* is set of fractionally assg. jobs)

Assign job J_i to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule. By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution. Let T^* be this value. Find an extreme point solution x for LP(T^*). Assign all integrally set jobs to machines as in x. Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assg. jobs) Assign the fractional jobs to machines using *P*.

Algorithm

Assign job J_i to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule. By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution. Let T^* be this value. Find an extreme point solution x for LP(T^*). Assign all integrally set jobs to machines as in x. Construct the graph *H* and find an *F*-perfect matching *P* in it (see Lemma 4 later, *F* is set of fractionally assg. jobs) Assign the fractional jobs to machines using *P*.

Theorem. This algorithm is a factor-2-approximation (assuming that we have an *F*-perfect matching).

Approximation Factor

$$\sum_{\substack{(i,j)\in S_{T^*}\\\sum_{(i,j)\in S_{T^*}}x_{ij}p_{ij}\leq T^*,} J_j\in\mathcal{J}$$

$$\sum_{\substack{(i,j)\in S_{T^*}\\x_{ij}\geq 0,}}x_{ij}p_{ij}\leq T^*, M_i\in\mathcal{M}$$

Theorem. This algorithm is a factor-2-approximation (assuming that we have an *F*-perfect matching).

Proof. $T^* \leq OPT$

Approximation Factor

$$\sum_{\substack{(i,j)\in S_{T^*}\\\sum_{(i,j)\in S_{T^*}}x_{ij}p_{ij}\leq T^*, \quad M_i\in\mathcal{M}\\x_{ij}\geq 0, \quad (i,j)\in S}$$

Theorem. This algorithm is a factor-2-approximation (assuming that we have an *F*-perfect matching).

Proof. $T^* \leq OPT$ Let *x* be an extreme point solution for $LP(T^*)$

Approximation Algorithms

Lecture 7: Scheduling Jobs on Parallel Machines

Part IV: Pseudo-Trees and -Forests

Joachim Spoerhase

Winter 2020/21

Pseudo-Tree:

A connected graph G = (V, E)with at most |V| edges.

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree

14 - 2

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. ~ Pseudo-Forest: Collection of disjoint pseudo-trees.

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. Pseudo-Forest: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. **Pseudo-Forest**: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1).

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. **Pseudo-Forest**: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1). Each component of *G* corresponds to an extreme point solution.

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. **Pseudo-Forest**: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1). Each component of *G* corresponds to an extreme point solution.

Lemma 4. The graph *H* has an *F*-perfect matching.

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. — **Pseudo-Forest**: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1). Each component of *G* corresponds to an extreme point solution.

Lemma 4. The graph *H* has an *F*-perfect matching.

H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \setminus F$

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. **Pseudo-Forest**: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1). Each component of *G* corresponds to an extreme point solution.

Lemma 4. The graph *H* has an *F*-perfect matching.

H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \setminus F$ Vertices in *F* have min. degree 2.

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. **Pseudo-Forest**: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1). Each component of *G* corresponds to an extreme point solution.

Lemma 4. The graph *H* has an *F*-perfect matching.

H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \setminus F$ Vertices in *F* have min. degree 2. \Rightarrow The leaves in *H* are machines.

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. **Pseudo-Forest**: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1). Each component of *G* corresponds to an extreme point solution.

Lemma 4.

The graph *H* has an *F*-perfect matching.

H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \setminus F$ Vertices in *F* have min. degree 2. \Rightarrow The leaves in *H* are machines. After iteratively picking all leaves,

Pseudo-Tree: A connected graph G = (V, E) with at most |V| edges.

A pseudo-tree is either a tree or a tree plus a single edge. **Pseudo-Forest**: Collection of disjoint pseudo-trees.

Lemma 3. The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ variables > 0 (L1). Each component of *G* corresponds to an extreme point solution.

Lemma 4.

The graph *H* has an *F*-perfect matching.

H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \setminus F$ Vertices in *F* have min. degree 2. \Rightarrow The leaves in *H* are machines. After iteratively picking all leaves, only even cycles remain.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobs

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 jas processing time m on all machines,

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 jas processing time m on all machines,all other jobs have processing time 1 on each machine.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 jas processing time m on all machines,all other jobs have processing time 1 on each machine.Optimum: one machine with J_1 , and all others spread evenly.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 jas processing time m on all machines,all other jobs have processing time 1 on each machine.Optimum: one machine with J_1 , and all others spread evenly.Algorithm:

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes! Instance I_m : *m* machines and $m^2 - m + 1$ jobs Job J_1 jas processing time *m* on all machines, all other jobs have processing time 1 on each machine. Optimum: one machine with J_1 , and all others spread evenly. Algorithm: LP(*T*) has no feasible solutions for any *T* < *m*.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 jas processing time m on all machines,all other jobs have processing time 1 on each machine.

Optimum: one machine with J_1 , and all others spread evenly. Algorithm:

LP(T) has no feasible solutions for any T < m.

Extreme point solution: Assign 1/m of J_1 and m - 1 other jobs to each machine.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 jas processing time m on all machines,

all other jobs have processing time 1 on each machine.

Optimum: one machine with J_1 , and all others spread evenly. Algorithm:

LP(T) has no feasible solutions for any T < m.

Extreme point solution: Assign 1/m of J_1 and m - 1 other jobs to each machine.

 \Rightarrow Makespan 2m - 1.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2(unless P=NP) [Lenstra, Shmoys & Tardos '90]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2(unless P=NP) [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ -approximation algorithm. [Horowitz & Sahni '76]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2(unless P=NP) [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ -approximation algorithm. [Horowitz & Sahni '76]

For uniform machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ -approximation algorithm. [Hochbaum & Shmoys '87]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2(unless P=NP) [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ -approximation algorithm. [Horowitz & Sahni '76]

For uniform machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ -approximation algorithm. [Hochbaum & Shmoys '87] (Machines have different speed, but process jobs uniformly.)