Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part I:
ILP \& Parametric Pruning

Joachim Spoerhase
Winter 2020/21

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs,

$$
\mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs,
a set \mathcal{M} of machines, and

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{aligned}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs,
a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\} \\
& \left(p_{i j}\right)_{M_{i} \in M, J_{j} \in J}
\end{aligned}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: \quad A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\} \\
& \left(p_{i j}\right)_{M_{i} \in M, J_{j} \in J}
\end{aligned}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: \quad A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.
M_{1}

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{aligned}
$$

M_{2}
M_{3}

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: \quad A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{aligned}
$$

M_{2}
M_{3}

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: \quad A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{aligned}
$$

M_{3}

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: \quad A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: \quad A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

Formulation as ILP

minimize $\quad t$

subject to

Formulation as ILP

minimize $\quad t$
subject to

$$
x_{i j} \in\{0,1\}, \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
$$

Formulation as ILP

minimize $\quad t$

subject to

$$
J_{j} \in \mathcal{J}
$$

$M_{i} \in \mathcal{M}$

$$
x_{i j} \in\{0,1\}, \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
$$

Formulation as ILP

minimize $\quad t$
subject to $\quad \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$M_{i} \in \mathcal{M}$
$x_{i j} \in\{0,1\}, \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}$

Formulation as ILP

minimize $\quad t$
subject to $\quad \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J}$

$$
\begin{array}{ll}
\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, & M_{i} \in \mathcal{M} \\
x_{i j} \in\{0,1\}, & M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{array}
$$

Formulation as ILP

minimize $\quad t$
subject to $\quad \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J}$

$$
\begin{array}{ll}
\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, & M_{i} \in \mathcal{M} \\
x_{i j} \in\{0,1\}, & M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{array}
$$

Task: Prove that the integrality gap is unbounded!

Formulation as ILP

minimize $\quad t$
subject to $\quad \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J}$

$$
\begin{array}{ll}
\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, & M_{i} \in \mathcal{M} \\
x_{i j} \in\{0,1\}, & M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{array}
$$

Task: Prove that the integrality gap is unbounded!
Solution: m machines and one job with processing time m

Formulation as ILP

minimize $\quad t$
subject to $\quad \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J}$

$$
\begin{array}{ll}
\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, & M_{i} \in \mathcal{M} \\
x_{i j} \in\{0,1\}, & M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{array}
$$

Task: Prove that the integrality gap is unbounded!
Solution: m machines and one job with processing time m
$\Rightarrow \mathrm{OPT}=m$ and $\mathrm{OPT}_{\text {frac }}=1$.

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{i j}>t$, then set $x_{i j}=0$.

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

minimize t

subject to

$$
\begin{array}{ll}
\sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, & M_{i} \in \mathcal{M} \\
x_{i j} \in\{0,1\}, & M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{array}
$$

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

minimize t

subject to

$$
\begin{aligned}
& \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
& \sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M} \\
& x_{i j} €\left\{\mathbb{T}, \underline{1} \geq 0 \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}\right.
\end{aligned}
$$

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

minimize t

subject to

$$
\begin{aligned}
& \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
& \sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M} \\
& x_{i j} \in \mathbb{Y}, \geq 0 \quad(i, j) \in S_{T}
\end{aligned}
$$

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

minimize t

subject to $\quad \sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$ $(i, j) \in S_{T}$
$\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M}$

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

minimize $\quad t$

subject to $\quad \sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$

$$
(i, j) \in S_{T} \sum_{i j} x_{i j} \leq t, \quad M_{i} \in \mathcal{M}
$$

$$
x_{i j} \Subset \hat{L}_{1,1} K_{2} \geq 0 \text { M, }(i, j) \in S_{T}
$$

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

minimize $\quad t$

subject to $\quad \sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$

$$
(i, j) \in S_{T}
$$

$$
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq \underline{y} \text { T } M_{i} \in \mathcal{M}
$$

$$
x_{i j} \xlongequal[1, I_{k}]{ } \geq 0 \text { M, }(i, j) \in S_{T}
$$

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

minimize I

subject to $\quad \sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$ $(i, j) \in S_{T}$

$$
\begin{aligned}
& \sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq \text { 坹 } T M_{i} \in \mathcal{M} \\
& x_{i j} \notin \hat{Q}_{0,1} \xi_{k} \geq 0 \text { MT,T }(i, j) \in S_{T}
\end{aligned}
$$

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

$\operatorname{LP}(T)$ has no objective function; we just need to determine if a feasible solution exists.

Paremetric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ to estimate a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\mathrm{LP}(T)$:

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

$\operatorname{LP}(T)$ has no objective function; we just need to determine if a feasible solution exists.

But why does this LP give a good integrality gap?

Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part II:

Properties of Extreme Point Solutions

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution.
$\mathrm{LP}(T)$

$\sum_{(i, j) \in S_{T}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S_{T}$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.
$\mathrm{LP}(T)$

$$
\begin{array}{|ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T} \\
\hline
\end{array}
$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.

What are the bounds for our search?
$\operatorname{LP}(T)$

$\sum_{(i, j) \in S_{T}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S_{T}$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.

What are the bounds for our search?
Observe: $\quad T^{*} \leq \mathrm{OPT}$
$\mathrm{LP}(T)$

$\sum_{(i, j) \in S_{T}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S_{T}$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.

What are the bounds for our search?
Observe: $\quad T^{*} \leq \mathrm{OPT}$
Idea: \quad Round an extreme-point solution of $\operatorname{LP}\left(T^{*}\right)$ to a schedule whose makespan is $\leq 2 T^{*}$
$\mathrm{LP}(T)$

$$
\begin{array}{|ll|}
\hline \sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T} \\
\hline
\end{array}
$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.

What are the bounds for our search?
Observe: $\quad T^{*} \leq$ OPT
Idea: \quad Round an extreme-point solution of $\operatorname{LP}\left(T^{*}\right)$ to a schedule whose makespan is $\leq 2 T^{*}$
$\mathrm{LP}(T)$

$$
\begin{array}{|ll|}
\hline \sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T} \\
\hline
\end{array}
$$

Lemma 1.
Each extreme point solution for $\operatorname{LP}(T)$ has
$\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.

What are the bounds for our search?
Observe: $\quad T^{*} \leq$ OPT
Idea: Round an extreme-point solution of $\operatorname{LP}\left(T^{*}\right)$ to a schedule whose makespan is $\leq 2 T^{*}$
$\mathrm{LP}(T)$

$$
\begin{array}{|ll|}
\hline \sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T} \\
\hline
\end{array}
$$

Lemma 1.
Each extreme point solution for LP (T) has
$\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Lemma 2.

Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.

Lemma 1

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 1.

Each extreme point solution for $\operatorname{LP}(T)$ has $\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Lemma 1

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 1.
Each extreme point solution for $\operatorname{LP}(T)$ has $\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Proof. $L(T):\left|S_{T}\right|$ variables

Lemma 1

$$
\begin{array}{|ll|}
\sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T} \\
\hline
\end{array}
$$

Lemma 1.
Each extreme point solution for $\operatorname{LP}(T)$ has $\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Proof. $L(T):\left|S_{T}\right|$ variables
extreme point sol.: $\left|S_{T}\right|$ inequalities tight

Lemma 1

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{\substack{(i, j) \in S_{T}}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T} \\
\hline
\end{array}
$$

Lemma 1.

Each extreme point solution for $\operatorname{LP}(T)$ has $\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Proof. $L(T):\left|S_{T}\right|$ variables
extreme point sol.: $\left|S_{T}\right|$ inequalities tight $\max .|\mathcal{J}|$

Lemma 1

$\sum_{(i, j) \in S_{T}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S_{T}$

Lemma 1.
Each extreme point solution for $\operatorname{LP}(T)$ has $\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Proof. $L(T):\left|S_{T}\right|$ variables
extreme point sol.: $\left|S_{T}\right|$ inequalities tight max. $|\mathcal{J}|$
$\max .|\mathcal{M}|$

Lemma 1

$\sum_{(i, j) \in S_{T}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S_{T}$

Lemma 1.

Each extreme point solution for $\operatorname{LP}(T)$ has $\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Proof. $L(T):\left|S_{T}\right|$ variables
extreme point sol.: $\left|S_{T}\right|$ inequalities tight
$\max .|\mathcal{J}|$
$\max .|\mathcal{M}|$
$\Rightarrow \min .\left|S_{T}\right|-|\mathcal{J}|-|\mathcal{M}|$

Lemma 1

$\sum_{(i, j) \in S_{T}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S_{T}$

Lemma 1.

Each extreme point solution for $\operatorname{LP}(T)$ has $\leq|\mathcal{M}|+|\mathcal{J}|$ pos. variables.

Proof. $L(T):\left|S_{T}\right|$ variables
extreme point sol.: $\left|S_{T}\right|$ inequalities tight
max. $|\mathcal{J}|$
$\max .|\mathcal{M}|$
$\Rightarrow \min .\left|S_{T}\right|-|\mathcal{J}|-|\mathcal{M}|$
$\Rightarrow \max .|\mathcal{M}|+|\mathcal{J}|$ not night

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T} \\
\hline
\end{array}
$$

Lemma 2.

Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 2.

Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be extreme point solution for $L(T)$.

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 2.
Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be extreme point solution for $L(T)$. Assume α jobs integral und β jobs fractional in x.

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 2.
Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be extreme point solution for $L(T)$. Assume α jobs integral und β jobs fractional in x.

$$
\Rightarrow \alpha+\beta=|\mathcal{J}|
$$

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 2.
Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be extreme point solution for $L(T)$. Assume α jobs integral und β jobs fractional in x. $\Rightarrow \alpha+\beta=|\mathcal{J}|$
Fractional jobs: ≥ 2 machines

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 2.
Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be extreme point solution for $L(T)$. Assume α jobs integral und β jobs fractional in x. $\Rightarrow \alpha+\beta=|\mathcal{J}|$
Fractional jobs: ≥ 2 machines
$\Rightarrow \geq 2$ variables >0

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad & J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 2.
Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be extreme point solution for $L(T)$. Assume α jobs integral und β jobs fractional in x.
$\Rightarrow \alpha+\beta=|\mathcal{J}|$
Fractional jobs: ≥ 2 machines
$\Rightarrow \geq 2$ variables >0
$\Rightarrow \bar{\alpha}+2 \beta \leq|\mathcal{J}|+|\mathcal{M}| \quad($ Lemma 1)

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 2.
Any extreme point solution for $\operatorname{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be extreme point solution for $L(T)$. Assume α jobs integral und β jobs fractional in x.
$\Rightarrow \alpha+\beta=|\mathcal{J}|$
Fractional jobs: ≥ 2 machines
$\Rightarrow \geq 2$ variables >0
$\Rightarrow \bar{\alpha}+2 \beta \leq|\mathcal{J}|+|\mathcal{M}| \quad$ (Lemma 1)
$\Rightarrow \beta \leq|\mathcal{M}|$

Lemma 2

$$
\begin{array}{ll}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{array}
$$

Lemma 2.
Any extreme point solution for $\mathrm{LP}(T)$ must set
$\geq|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be extreme point solution for $L(T)$. Assume α jobs integral und β jobs fractional in x. $\Rightarrow \alpha+\beta=|\mathcal{J}|$
Fractional jobs: ≥ 2 machines
$\Rightarrow \geq 2$ variables >0
$\Rightarrow \bar{\alpha}+2 \beta \leq|\mathcal{J}|+|\mathcal{M}| \quad$ (Lemma 1)
$\Rightarrow \beta \leq|\mathcal{M}| \quad \Rightarrow \alpha \geq|\mathcal{J}|-|\mathcal{M}|$

Lecture 7:
Scheduling Jobs on Parallel Machines

Part III:
An Algorithm

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$
with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.
Jobs can be assigned integrally or fractionally.

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$
with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.
Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$
with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.
Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$
with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.
Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.

Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.
Observe:
(i, j) is an edge in $H \Leftrightarrow 0<x_{i j}<1$

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.

Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.
Observe: $\quad(i, j)$ is an edge in $H \Leftrightarrow 0<x_{i j}<1$
A matching in H is called F-perfect if it matches every vertex in F.

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$
with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.
Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.
Observe: $\quad(i, j)$ is an edge in $H \Leftrightarrow 0<x_{i j}<1$
A matching in H is called F-perfect if it matches every vertex in F.

Main step: \quad Show that H always has an F-perfect matching.

Extreme Point Solutions of LP (T)

Definition: Bipartite Graph $G=(\mathcal{M} \cup \mathcal{J}, E)$
with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$.
Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.
Observe: $\quad(i, j)$ is an edge in $H \Leftrightarrow 0<x_{i j}<1$
A matching in H is called F-perfect if it matches every vertex in F.

Main step: \quad Show that H always has an F-perfect matching.

Why is that useful ...?

Algorithm
Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.
By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^{+}$for which $\operatorname{LP}(T)$ has a feasible solution. Let T^{*} be this value.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.
By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^{+}$for which $\operatorname{LP}(T)$ has a feasible solution. Let T^{*} be this value.
Find an extreme point solution x for $\operatorname{LP}\left(T^{*}\right)$.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.
By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^{+}$for which $\operatorname{LP}(T)$ has a feasible solution. Let T^{*} be this value.
Find an extreme point solution x for $\operatorname{LP}\left(T^{*}\right)$.
Assign all integrally set jobs to machines as in x.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.
By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^{+}$for which $\operatorname{LP}(T)$ has a feasible solution.
Let T^{*} be this value.
Find an extreme point solution x for $\operatorname{LP}\left(T^{*}\right)$.
Assign all integrally set jobs to machines as in x.
Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assg. jobs)

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.
By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^{+}$for which $\operatorname{LP}(T)$ has a feasible solution.
Let T^{*} be this value.
Find an extreme point solution x for $\operatorname{LP}\left(T^{*}\right)$.
Assign all integrally set jobs to machines as in x.
Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assg. jobs)
Assign the fractional jobs to machines using P.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.
By a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$, find the smallest value of $T \in \mathbb{Z}^{+}$for which $\operatorname{LP}(T)$ has a feasible solution.
Let T^{*} be this value.
Find an extreme point solution x for $\operatorname{LP}\left(T^{*}\right)$.
Assign all integrally set jobs to machines as in x.
Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assg. jobs)
Assign the fractional jobs to machines using P.
Theorem. This algorithm is a factor- -approximation (assuming that we have an F-perfect matching).

Approximation Factor

$$
\begin{array}{|ll}
\sum_{(i, j) \in S_{T^{*}}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{T^{*}} x_{i j} p_{i j} \leq T^{*}, & M_{i} \in \mathcal{M} \\
\left(\begin{array}{l}
i, j) \in S_{T^{*}}, \\
x_{i j} \geq 0,
\end{array}\right. & (i, j) \in S
\end{array}
$$

Theorem. This algorithm is a factor-2-approximation (assuming that we have an F-perfect matching).
Proof. $\quad T^{*} \leq \mathrm{OPT}$

Approximation Factor

$$
\begin{array}{|ll}
\sum_{(i, j) \in S_{T^{*}}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{T^{*}} x_{i j} p_{i j} \leq T^{*}, & M_{i} \in \mathcal{M} \\
\left.i_{i j}\right) \in S_{T^{* *}}, & (i, j) \in S \\
x_{i j} \geq 0, &
\end{array}
$$

Theorem. This algorithm is a factor--approximation (assuming that we have an F-perfect matching).
Proof. $\quad T^{*} \leq$ OPT
Let x be an extreme point solution for $L P\left(T^{*}\right)$

Approximation Factor

$$
\sum x_{i j}=1, \quad J_{j} \in \mathcal{J}
$$

$$
\stackrel{(i, j) \in S_{T^{*}}}{\Gamma}
$$

$$
x_{i j} p_{i j} \leq T^{*}, \quad M_{i} \in \mathcal{M}
$$

$$
x_{i j} \geq 0,
$$

$$
(i, j) \in S
$$

Theorem. This algorithm is a factor-2-approximation (assuming that we have an F-perfect matching).

Proof. $\quad T^{*} \leq \mathrm{OPT}$

Let x be an extreme point solution for $L P\left(T^{*}\right)$
\rightarrow Fractional solution: makespan $\leq T^{*}$.

Approximation Factor

$$
\sum x_{i j}=1, \quad J_{j} \in \mathcal{J}
$$

$$
(i, j) \in S_{T^{*}}
$$

$$
x_{i j} p_{i j} \leq T^{*}, \quad M_{i} \in \mathcal{M}
$$

$$
x_{i j} \geq 0, \quad(i, j) \in S
$$

Theorem. This algorithm is a factor-2-approximation (assuming that we have an F-perfect matching).

Proof. $\quad T^{*} \leq \mathrm{OPT}$

Let x be an extreme point solution for $L P\left(T^{*}\right)$
Fractional solution: makespan $\leq T^{*}$.
\Rightarrow Restriction to integral jobs has makespan $\leq T^{*}$.

Approximation Factor

$\sum_{(i, j) \in S_{T^{*}}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{T^{2}} x_{i j} p_{i j} \leq T^{*}$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S$

Theorem. This algorithm is a factor---approximation (assuming that we have an F-perfect matching).

Proof. $\quad T^{*} \leq$ OPT

Let x be an extreme point solution for $L P\left(T^{*}\right)$
Fractional solution: makespan $\leq T^{*}$.
\Rightarrow Restriction to integral jobs has makespan $\leq T^{*}$. For each edge $(i, j) \in S_{T^{*}}: p_{i j} \leq T^{*}$

Approximation Factor

$\sum_{(i, j) \in S_{T^{*}}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{i, j) \in S_{T^{*}}} x_{i j} p_{i j} \leq T^{*}$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S$

Theorem. This algorithm is a factor---approximation (assuming that we have an F-perfect matching).

Proof. $\quad T^{*} \leq$ OPT

Let x be an extreme point solution for $L P\left(T^{*}\right)$
Fractional solution: makespan $\leq T^{*}$.
\Rightarrow Restriction to integral jobs has makespan $\leq T^{*}$.
For each edge $(i, j) \in S_{T^{*}}: p_{i j} \leq T^{*}$
Matching: ≤ 1 extra jobs per maschine

Approximation Factor

$\sum_{(i, j) \in S_{T^{*}}} x_{i j}=1$,	$J_{j} \in \mathcal{J}$
$\sum_{T^{*}} x_{i j} p_{i j} \leq T^{*}$,	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S$

Theorem. This algorithm is a factor---approximation (assuming that we have an F-perfect matching).

Proof. $\quad T^{*} \leq \mathrm{OPT}$

Let x be an extreme point solution for $L P\left(T^{*}\right)$
Fractional solution: makespan $\leq T^{*}$.
\Rightarrow Restriction to integral jobs has makespan $\leq T^{*}$.
For each edge $(i, j) \in S_{T^{*}}: p_{i j} \leq T^{*}$
Matching: ≤ 1 extra jobs per maschine
\Rightarrow total makespan $\leq 2 T^{*} \leq 2 \mathrm{OPT}$ \square

Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part IV:
Pseudo-Trees and -Forests

Joachim Spoerhase
Winter 2020/21

Pseudo-Trees and -Forests

Pseudo-Tree: \quad A connected graph $G=(V, E)$ with at most $|V|$ edges.

Pseudo-Trees and -Forests
Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree

Pseudo-Trees and -Forests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Trees and -Forests

Pseudo-Tree: \quad A connected graph $G=(V, E)$ with at most $|V|$ edges.
A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.

DSeudar-riees ano - Hotests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or
a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

DSeuraorrtees ano -romests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or
a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ variables >0 (L1).

DSeurao-rtees ano - Tomests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or
a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ variables >0 (L1). Each component of G corresponds to an extreme point solution.

DSeurao-rtees ano - Tomests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ variables >0 (L1). Each component of G corresponds to an extreme point solution.

Lemma 4.
The graph H has an F-perfect matching.

Pseudo-Trees and -Forests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ variables >0 (L1). Each component of G corresponds to an extreme point solution.
Lemma 4.
The graph H has an F-perfect matching.
H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \backslash F$

Pseudo-Trees and -Forests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ variables >0 (L1). Each component of G corresponds to an extreme point solution.
Lemma 4.
The graph H has an F-perfect matching.
H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \backslash F$ Vertices in F have min. degree 2.

Pseudo-Trees and -Forests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ variables >0 (L1). Each component of G corresponds to an extreme point solution.

Lemma 4.
The graph H has an F-perfect matching.
H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \backslash F$ Vertices in F have min. degree $2 . \Rightarrow$ The leaves in H are machines.

Pseudo-Trees and -Forests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ variables >0 (L1). Each component of G corresponds to an extreme point solution.

Lemma 4.

The graph H has an F-perfect matching.
H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \backslash F$ Vertices in F have min. degree $2 . \Rightarrow$ The leaves in H are machines. After iteratively picking all leaves,

Pseudo-Trees and -Forests

Pseudo-Tree: \quad A connected graph $G=(V, E)$
 with at most $|V|$ edges.
A pseudo-tree is either a tree or a tree plus a single edge.

Pseudo-Forest: Collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ variables >0 (L1). Each component of G corresponds to an extreme point solution.

Lemma 4.

The graph H has an F-perfect matching.
H is also a pseudo-forest: remove 1 edge per $v \in \mathcal{J} \backslash F$ Vertices in F have min. degree $2 . \Rightarrow$ The leaves in H are machines. After iteratively picking all leaves, only even cycles remain.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.
Tight?

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
 Yes!

Instance I_{m} :

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes!

Instance I_{m} :
m machines and $m^{2}-m+1$ jobs

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
 Yes!

Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} jas processing time m on all machines,

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
 Yes!

Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} jas processing time m on all machines, all other jobs have processing time 1 on each machine.

Scheduling on Parallel Machines

Theorem. There is an LP-based -approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
 Yes!

Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} jas processing time m on all machines, all other jobs have processing time 1 on each machine.
Optimum: one machine with J_{1}, and all others spread evenly.

Scheduling on Parallel Machines

Theorem. There is an LP-based -approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
 Yes!

Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} jas processing time m on all machines, all other jobs have processing time 1 on each machine.
Optimum: one machine with J_{1}, and all others spread evenly. Algorithm:

Scheduling on Parallel Machines

Theorem. There is an LP-based -approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
 Yes!

Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} jas processing time m on all machines, all other jobs have processing time 1 on each machine.
Optimum: one machine with J_{1}, and all others spread evenly. Algorithm:
$\mathrm{LP}(T)$ has no feasible solutions for any $T<m$.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
 Yes!

Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} jas processing time m on all machines, all other jobs have processing time 1 on each machine.
Optimum: one machine with J_{1}, and all others spread evenly.
Algorithm:
$\mathrm{LP}(T)$ has no feasible solutions for any $T<m$. Extreme point solution: Assign $1 / m$ of J_{1} and $m-1$ other jobs to each machine.

Scheduling on Parallel Machines

Theorem. There is an LP-based -approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
 Yes!

Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} jas processing time m on all machines, all other jobs have processing time 1 on each machine.
Optimum: one machine with J_{1}, and all others spread evenly. Algorithm:
$\mathrm{LP}(T)$ has no feasible solutions for any $T<m$.
Extreme point solution: Assign $1 / m$ of J_{1} and $m-1$ other jobs to each machine.
\Rightarrow Makespan $2 m-1$.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.
Better?
No better approximation algorithm is known.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.
The problem cannot be approximated within factor $<3 / 2$ (unless $\mathrm{P}=\mathrm{NP}$)

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.
The problem cannot be approximated within factor $<3 / 2$ (unless $\mathrm{P}=\mathrm{NP}$)
[Lenstra, Shmoys \& Tardos '90]
For a constant number of machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$-approximation algorithm. [Horowitz \& Sahni '76]

Scheduling on Parallel Machines

Theorem. There is an LP-based -approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.
The problem cannot be approximated within factor $<3 / 2$ (unless $\mathrm{P}=\mathrm{NP}$)
[Lenstra, Shmoys \& Tardos '90]
For a constant number of machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$-approximation algorithm. [Horowitz \& Sahni '76]

For uniform machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$-approximation algorithm. [Hochbaum \& Shmoys '87]

Scheduling on Parallel Machines

Theorem. There is an LP-based -approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Better?

No better approximation algorithm is known.
The problem cannot be approximated within factor $<3 / 2$ (unless $\mathrm{P}=\mathrm{NP}$)
[Lenstra, Shmoys \& Tardos '90]
For a constant number of machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$-approximation algorithm. [Horowitz \& Sahni '76]

For uniform machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$-approximation algorithm. [Hochbaum \& Shmoys $\left.{ }^{\prime} 87\right]$
(Machines have different speed, but process jobs uniformly.)

