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Given: A complete graph G = (V, E) with edge costs c: E — O
satistying the triangle inequality

For each vertex set S C V, c(v, 5) is the cost of the cheapest edge
from v to a vertex in S.
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...try each G;.

Def. A vertex set D of a graph H is dominating it
each vertex is either in D or adjacent to a vertex
in D. The cardinality of a smallest dominating
set in H is denoted by dom(H).
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..but computing dom(H) is NP-hard. \ Q
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Square of a Graph

Idea:

Def.

Find a small dominating set in a “coarsened” G;

The square H” of a graph H has the same vertex
set as H. Additionally, two vertices u # v are
adjacent in H~ iff they are within distance at
most two in H.

\¥

Obs. A dominating set in :

G]2 with < k G2
elements is already U
a 2-approximation.

Why7 maxeeE(G],) C(E) — OPT !
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Independent Sets

Detf. A vertex set [ in a graph is called independent
(or stable), if no pair of vertices in [ form an
edge. An independent set is called maximal
when no superset of it is an independent set.

'Obs. Maximal
independent sets are
dominating sets :-)

. J
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Metric-k-CENTER(G = (V, E; ), k)

Sort the edges of G by cost: <...<
forj=1,...,mdo
Construct G]Z

Find a maximal independent set [; in GJZ
if ‘I]’ S k then
| return [

______________________________________________________________________________

Lemma. For j provided by the algorithm, we have
< OPT.

.

algorithm for METRIC-k-CENTER problem.

.

‘Theorem. The above algorithm is a factor- -approximation |

J
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What about a tight example?

‘Theorem. Assuming P # NP, there is no factor-(2 — ¢)

approximation algorithm for the metric
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N
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Proof.

Reduce from dominating set to metric k-CENTER.

Given.: G = (V,E), k
Constr. complete graph G’ = (V,EUE’)

. 1, ifecE
with cle) = { 2, ifeel!
A‘\—inequality holds

S: metric k-Center
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If dom(G) > k, then cost(S) = 2
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MEeTRIC-k-CENTER

Given: A complete graph G = (V, E) with metric edge costs
and a natural number k < |V/|.

For each vertex set S C V, is the cost of the cheapest edge
from v to the a vertex in S.

Find: A k-element vertex set S, such that
cost(S) := max,cy ¢(v,S) is minimized.
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Given: A complete graph G = (V, E) with metric edge costs
and a natural number k < |V/|.

For each vertex set S C V, is the cost of the cheapest edge
from v to the a vertex in S.

Find: A k-element vertex set S, such that
cost(S) := max,cy c(v,S) is minimized.
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Given: A complete graph G = (V, E) with metric edge costs

and .a-pataratromber k< (V] , vertex weights
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WEIGHTED

Given: A complete graph G = (V, E) with metric edge costs

c: E— O and.apataratrromber k< [V, vertex weights

w:V — Q-pand abudget W € O

For each vertex set S C V, c(v, 5) is the cost of the cheapest edge
from v to the a vertex in S.

vertex set S of weight at most IV
Find: A k-elementvertex—set-5such that

cost(S) := maxycy ¢(v,S) is minimized.



Algorithm for the Weighted Version




Algorithm for the Weighted Version




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ

VAN
VAN

. what about the weig:hts?
if |[;| <k then |

L return / j




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ

VAN
VAN

what about the weights?

if ‘I]’ S k then
| return J = %,




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ

VAN
VAN

what about the weights?

if ‘I]’ S k then
| return J = %,




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ

VAN
VAN

what about the weights?

if ‘I]’ S k then
L return /; = %‘sj(u)




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ
Compute S; := {s;(u) |u € I; }

if ‘I]’ S k then
L return I] u e %‘S](u)

VAN
VAN




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ
Compute S; := {s;(u) |u € I }

i L return I] u e %‘S](u)

VAN
VAN




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ
Compute S; := {s;(u) |u € I }

i return 4/ S; = %‘sj(u)

VAN
VAN




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ
Compute S; := {s;(u) |u € I }

| return S: u €l

VAN
VAN




Algorithm for the Weighted Version

'Algorithm Metric-Weighted-CENTER

Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ
Compute S; := {s;(u) |u € I }

| return S: u €l

VAN
VAN




Algorithm for the Weighted Version
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Sort the edges of G by cost :
forj=1,...,mdo
Construct GJZ

Find a maximal independent set [; in GJZ
Compute S; := {s;(u) |u € I }
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Theorem. The above is a factor- -approximation
algorithm for METRIC-WEIGHTED-CENTER.
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