Approximation Algorithms

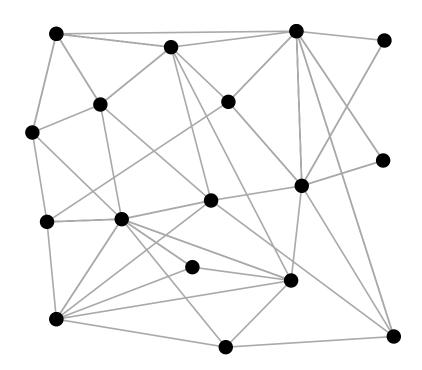
Lecture 6:

k-Center via Parametric Pruning

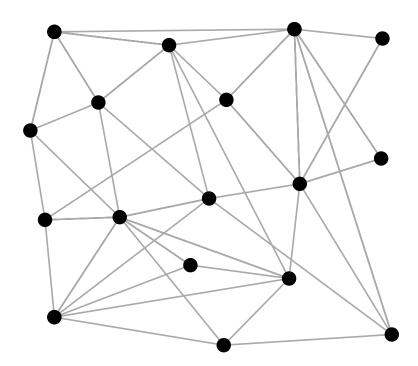
Part I:
METRIC-k-CENTER

Given: A graph G = (V, E)

Given: A graph G = (V, E)

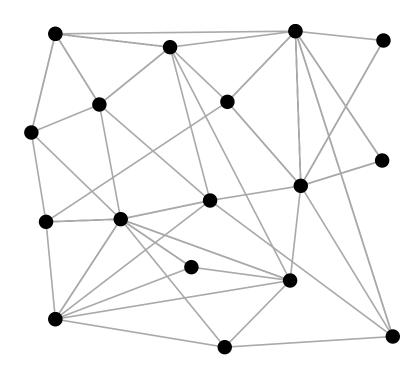


Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



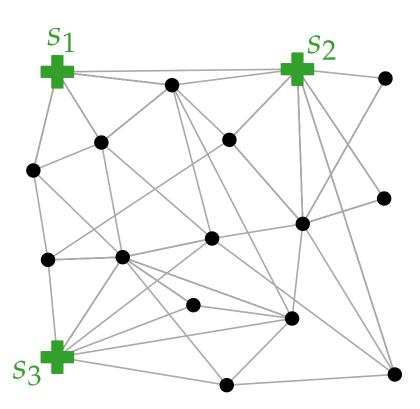
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

vertex set
$$S \subseteq V$$

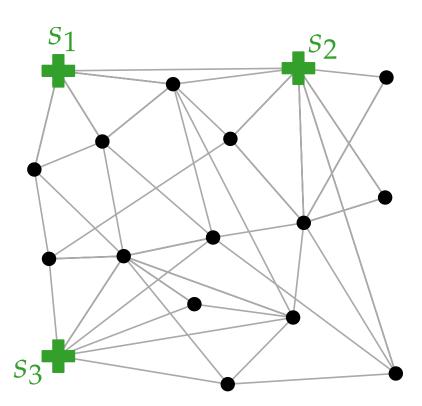


Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

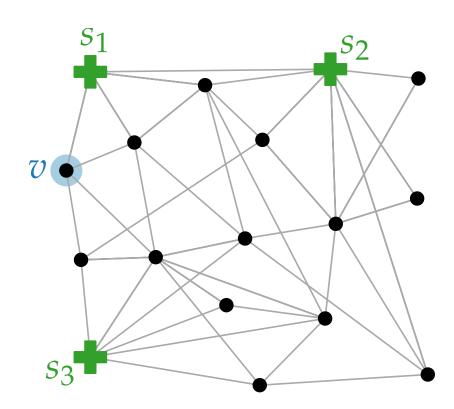
vertex set
$$S \subseteq V$$



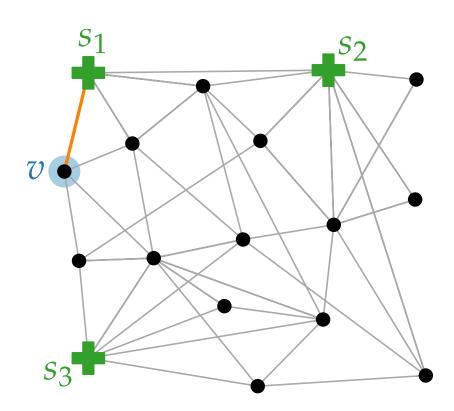
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



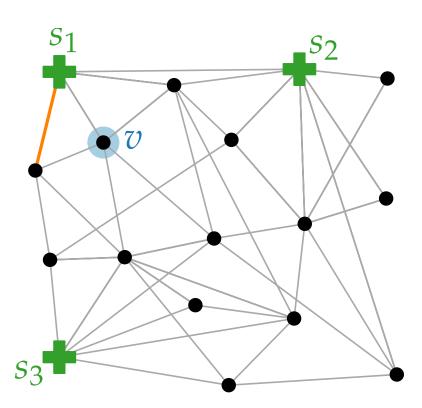
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



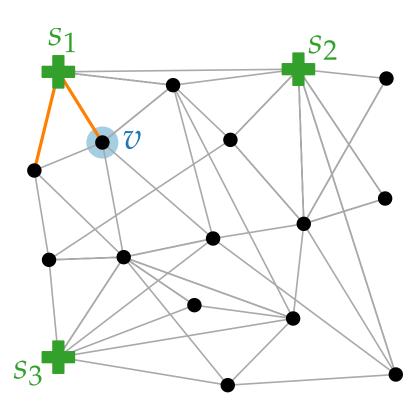
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



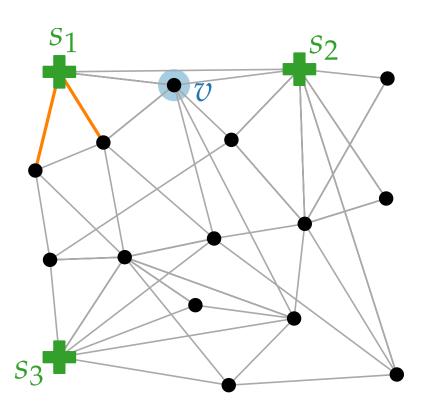
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



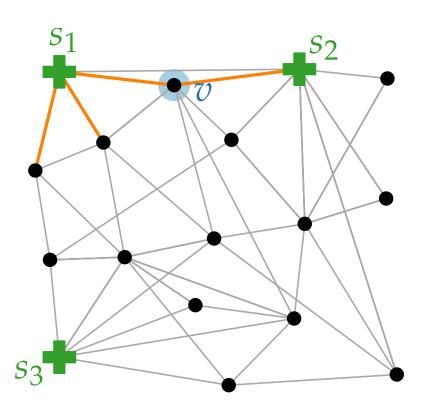
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



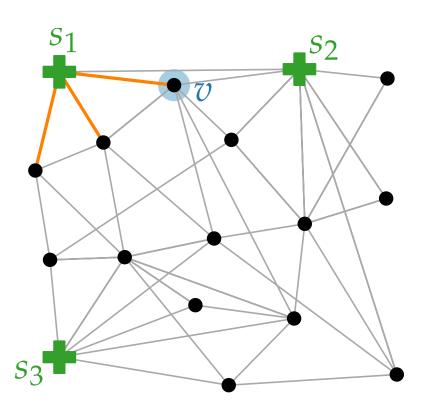
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



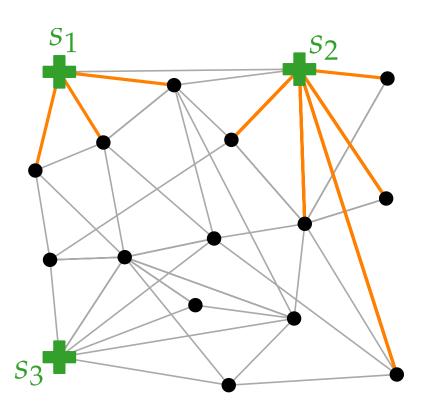
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



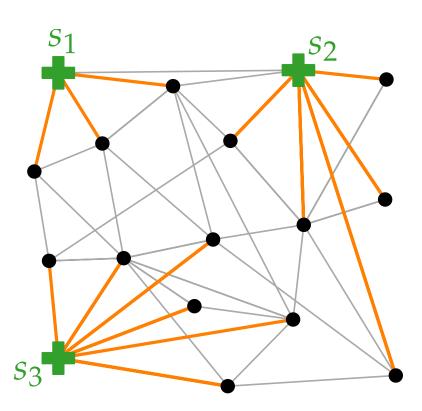
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



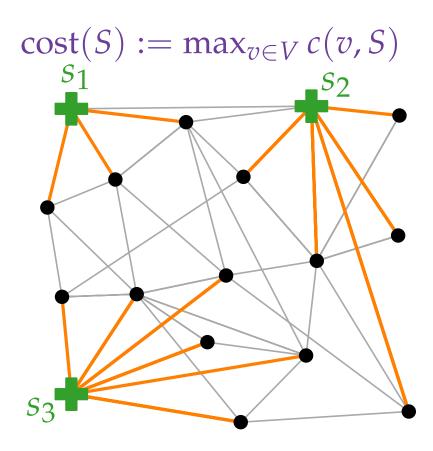
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



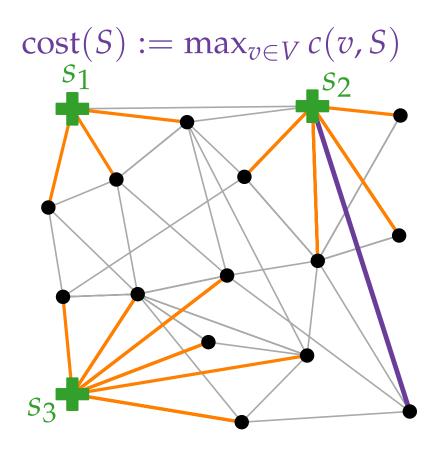
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

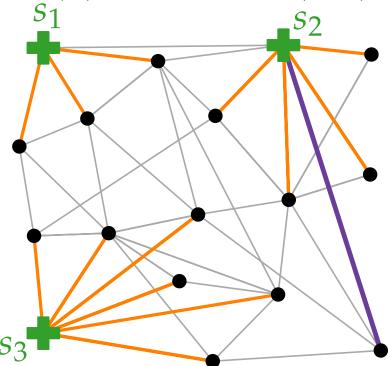


Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



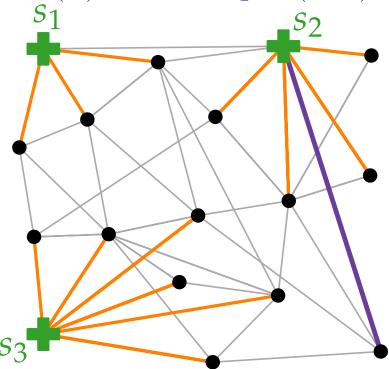
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.



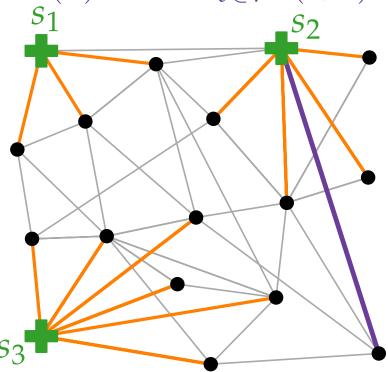
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.



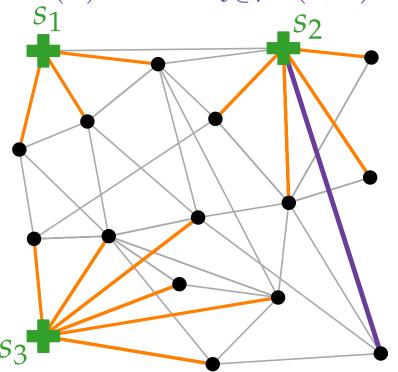
Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

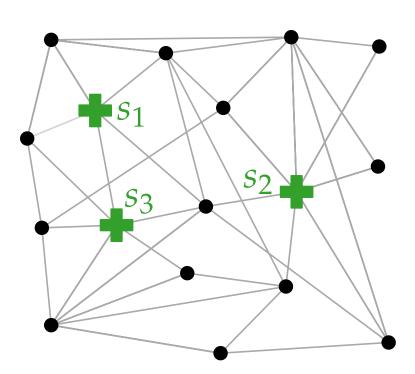
For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.



Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

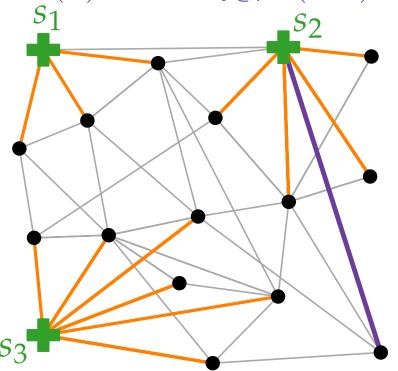
For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

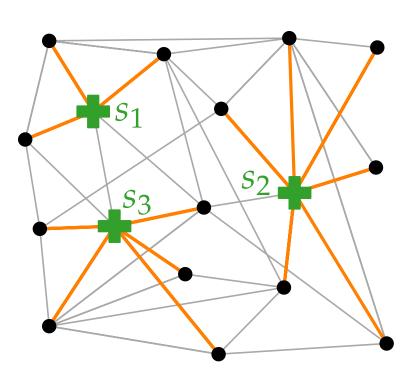




Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

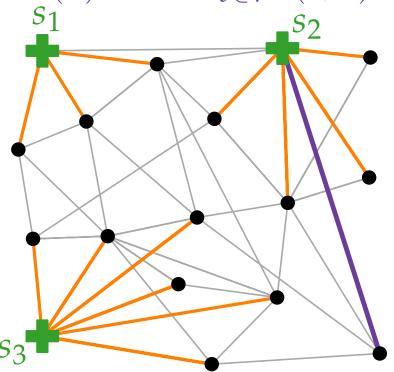
For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

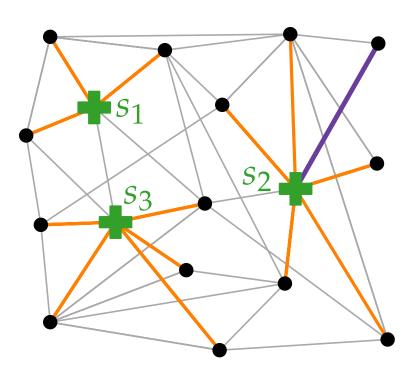




Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.



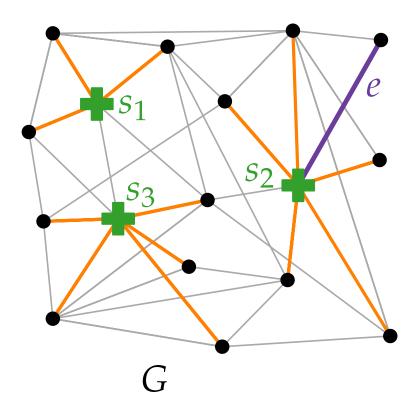


Approximation Algorithms

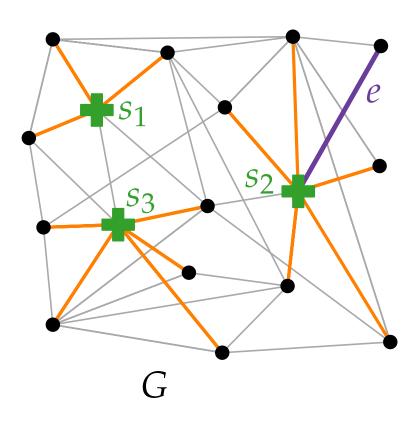
Lecture 6:

k-Center via Parametric Pruning

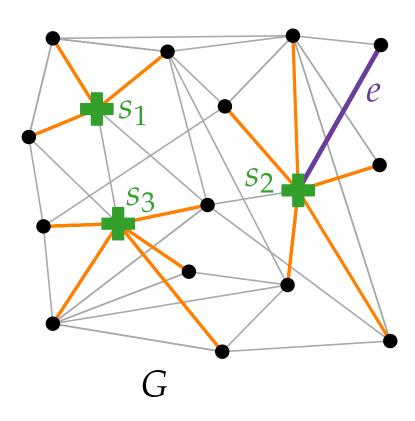
Part II: Parametric Pruning



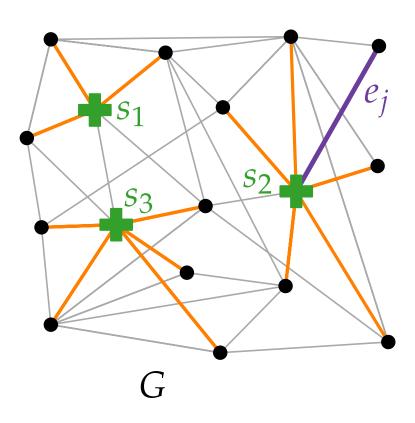
Let $E = \{e_1, ..., e_m\}$ with $c(e_1) \le ... \le c(e_m)$.



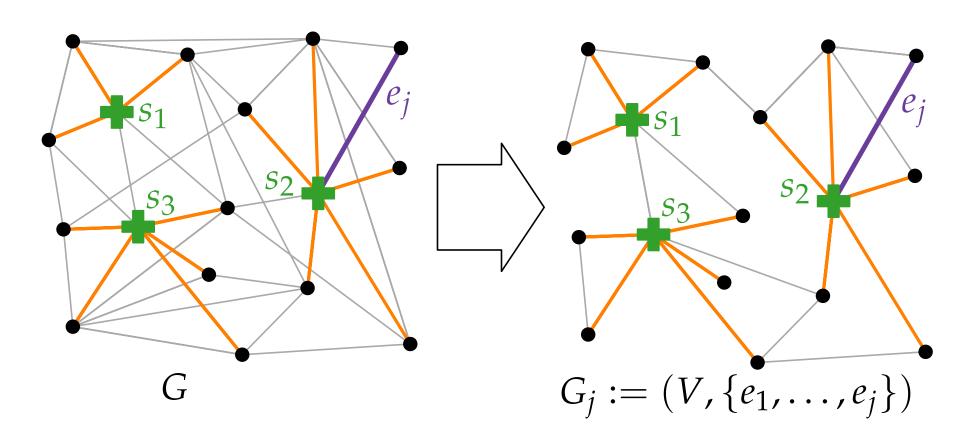
Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \le \dots \le c(e_m)$. Suppose we know that $OPT = c(e_j)$.



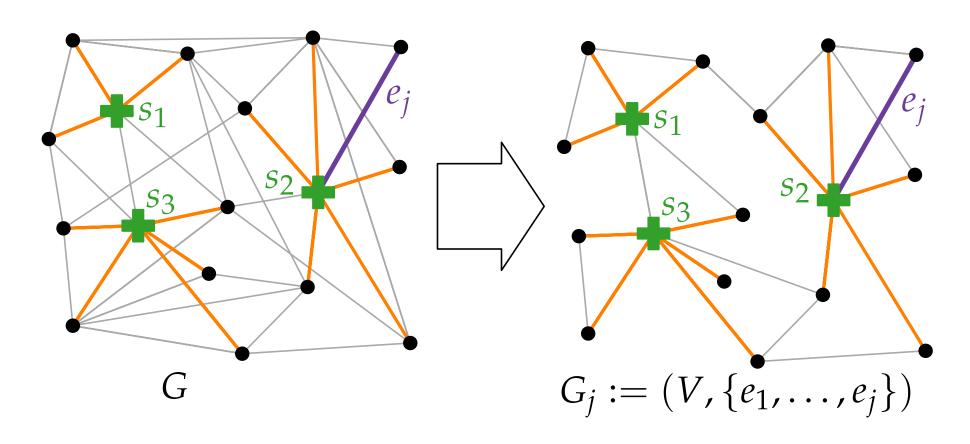
Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \le \dots \le c(e_m)$. Suppose we know that $OPT = c(e_j)$.



Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \le \dots \le c(e_m)$. Suppose we know that $OPT = c(e_j)$.

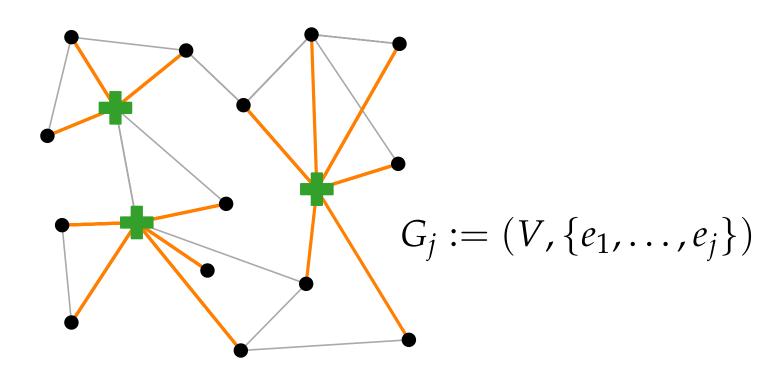


Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \le \dots \le c(e_m)$. Suppose we know that $OPT = c(e_j)$.

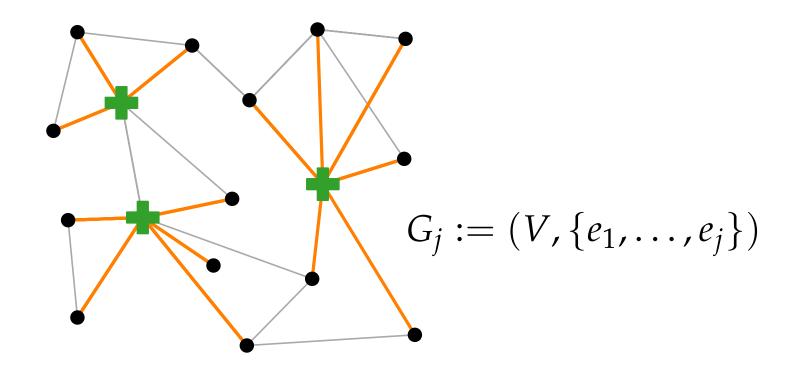


... try each G_i .

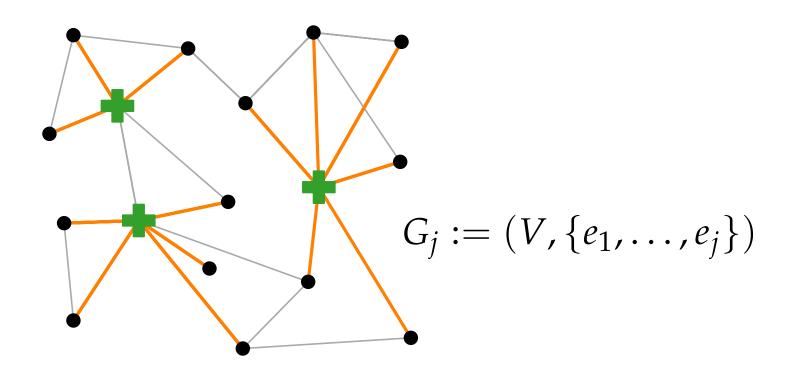
Def.



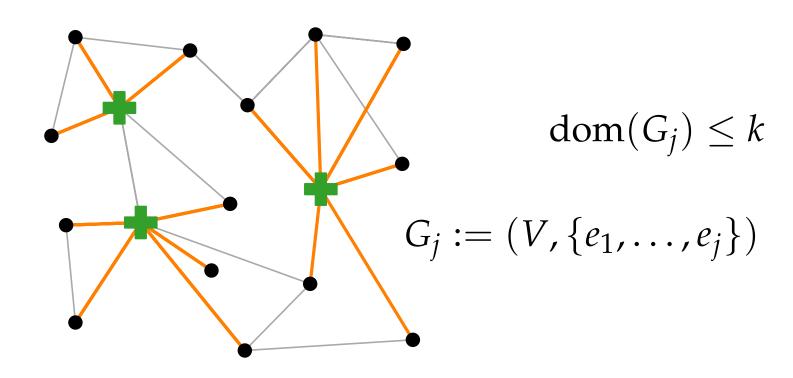
Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D.



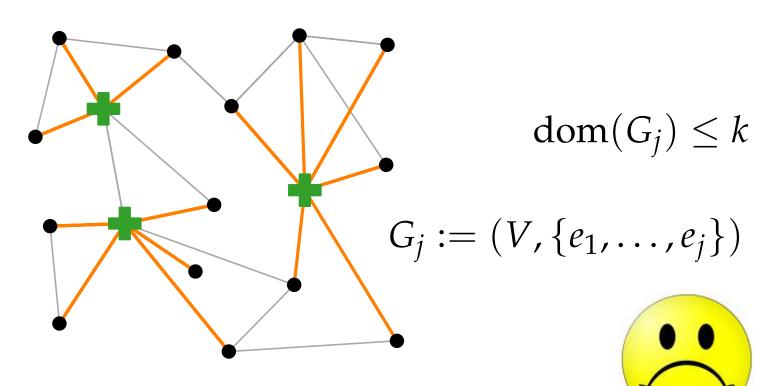
Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).



Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).



Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).



... but computing dom(H) is NP-hard.

Approximation Algorithms

Lecture 6:

k-Center via Parametric Pruning

Part III: Square of a Graph

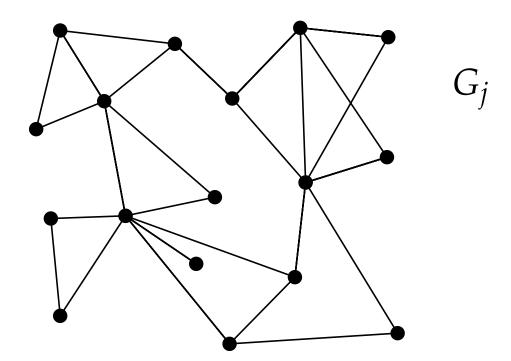
Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_j

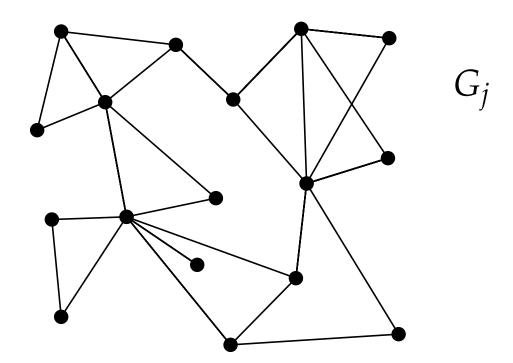
Def. The square H^2 of a graph H has the same vertex set as H.

Idea: Find a small dominating set in a "coarsened" G_j

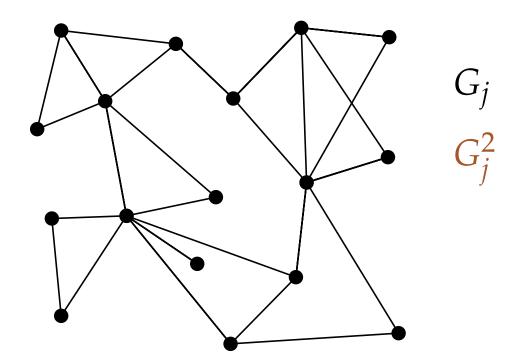
Def. The square H^2 of a graph H has the same vertex set as H.



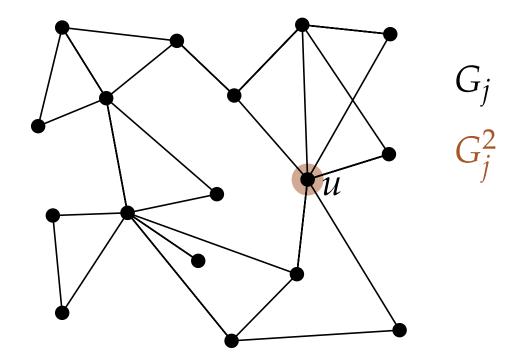
Idea: Find a small dominating set in a "coarsened" G_j



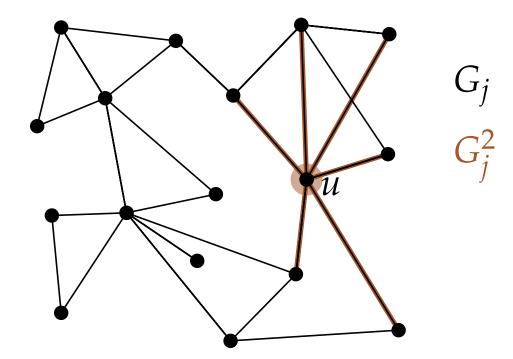
Idea: Find a small dominating set in a "coarsened" G_j



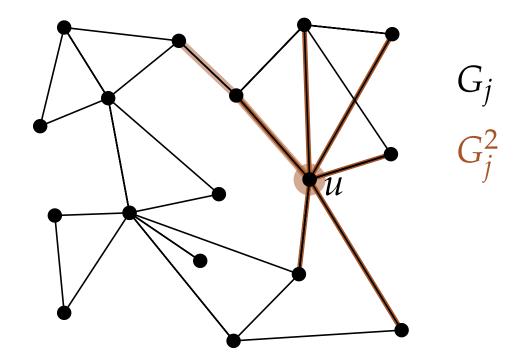
Idea: Find a small dominating set in a "coarsened" G_j



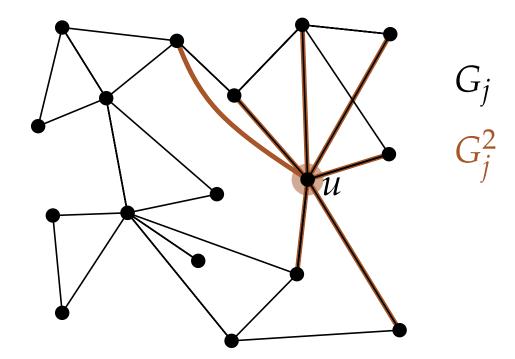
Idea: Find a small dominating set in a "coarsened" G_j



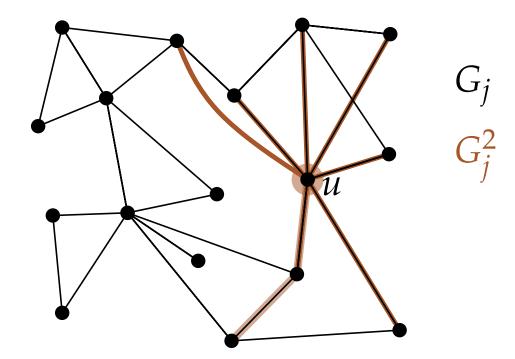
Idea: Find a small dominating set in a "coarsened" G_j



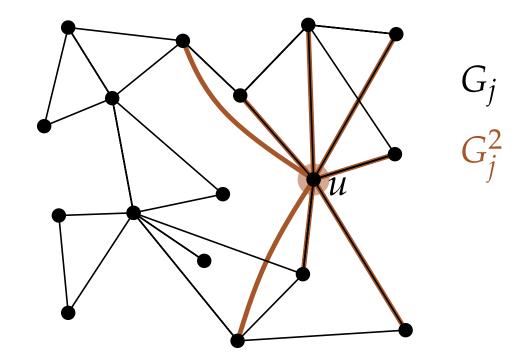
Idea: Find a small dominating set in a "coarsened" G_j



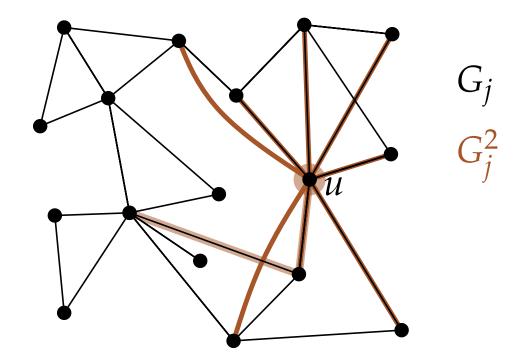
Idea: Find a small dominating set in a "coarsened" G_j



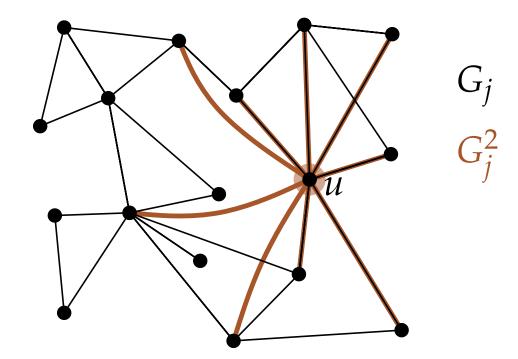
Idea: Find a small dominating set in a "coarsened" G_j



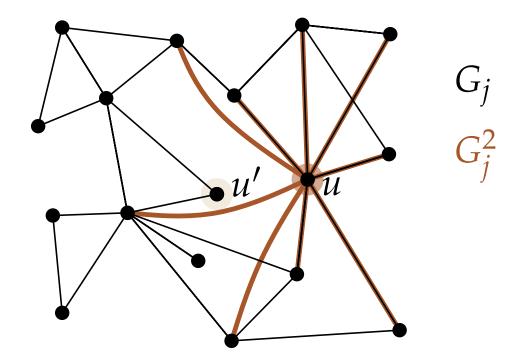
Idea: Find a small dominating set in a "coarsened" G_j



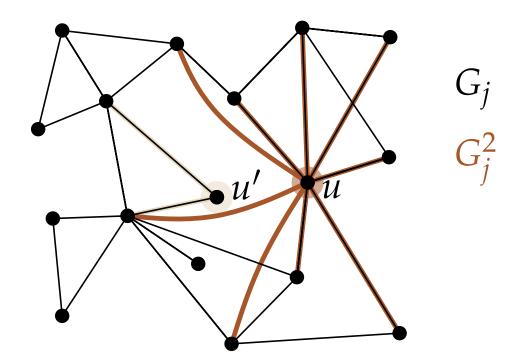
Idea: Find a small dominating set in a "coarsened" G_j



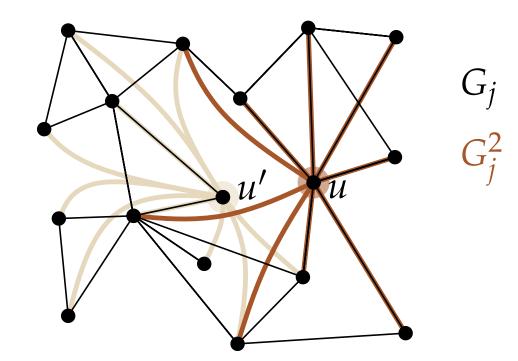
Idea: Find a small dominating set in a "coarsened" G_j



Idea: Find a small dominating set in a "coarsened" G_j



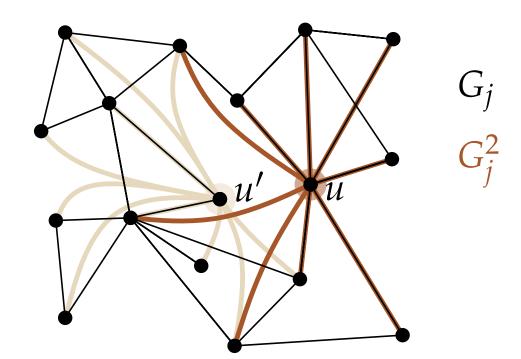
Idea: Find a small dominating set in a "coarsened" G_j



Idea: Find a small dominating set in a "coarsened" G_j

Def. The **square** H^2 of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

Obs. A dominating set in G_j^2 with $\leq k$ elements is already a 2-approximation.



Find a small dominating set in a "coarsened" G_i Idea:

The square H^2 of a graph H has the same vertex Def. set as H. Additionally, two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.

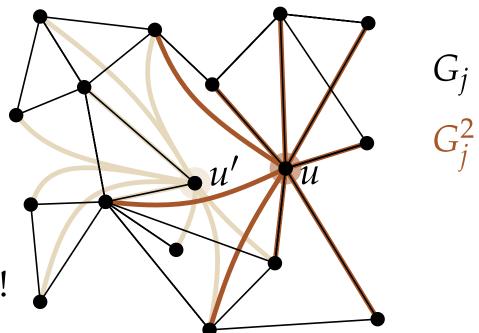
Obs. A dominating set in G_i^2 with $\leq k$ elements is already a 2-approximation.

Idea: Find a small dominating set in a "coarsened" G_j

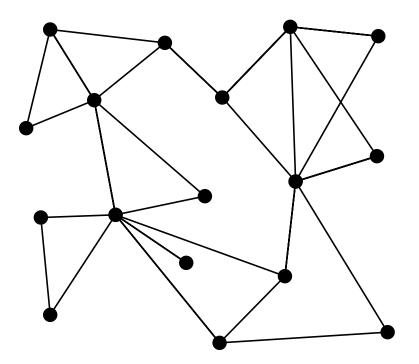
Def. The **square** H^2 of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

Obs. A dominating set in G_j^2 with $\leq k$ elements is already a 2-approximation.

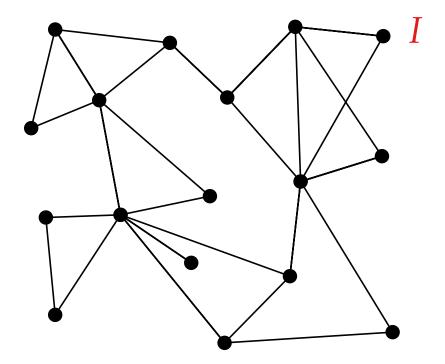
Why? $\max_{e \in E(G_i)} c(e) = OPT!$



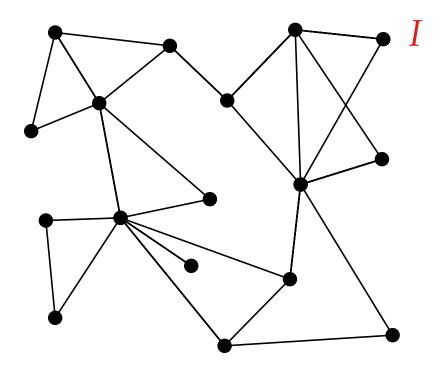
Def. A vertex set *I* in a graph is called **independent** (or **stable**), if no pair of vertices in *I* form an edge.



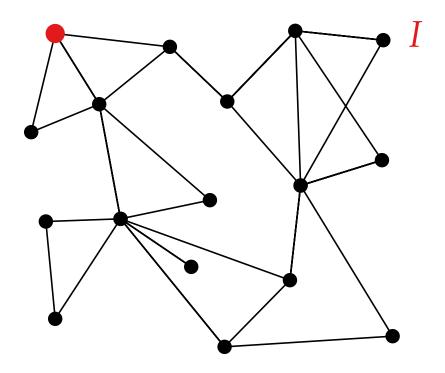
Def. A vertex set *I* in a graph is called **independent** (or **stable**), if no pair of vertices in *I* form an edge.



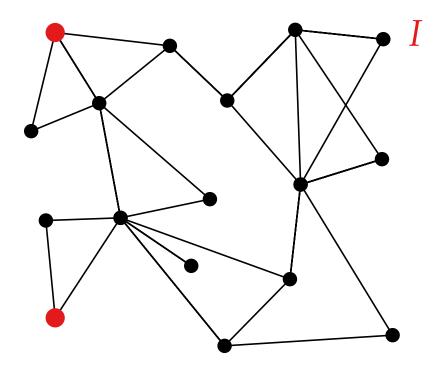
Def.



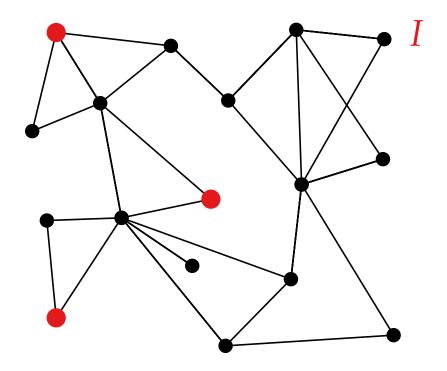
Def.



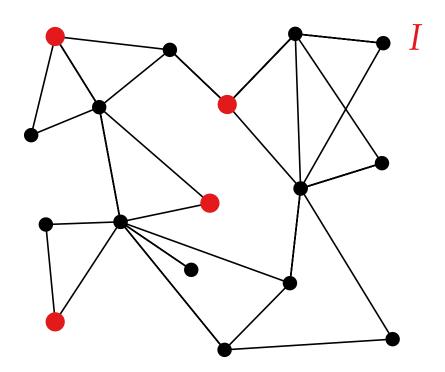
Def.



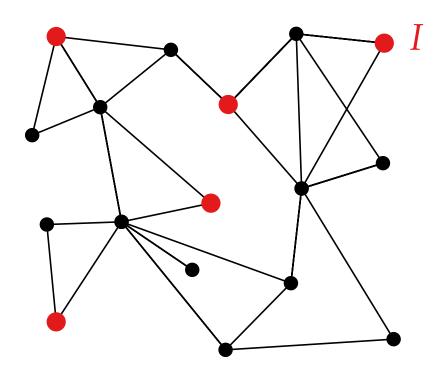
Def.



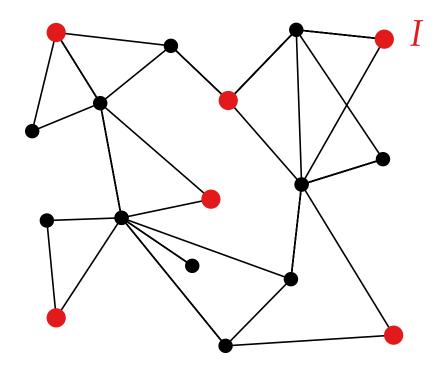
Def.



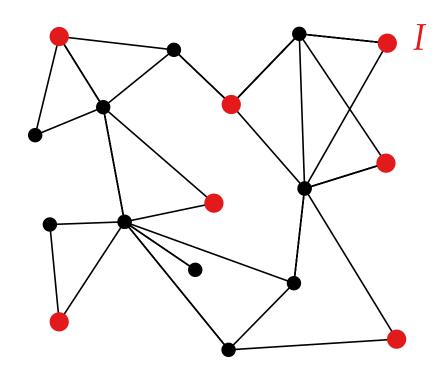
Def.



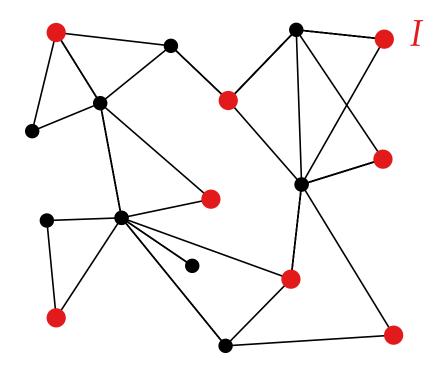
Def.



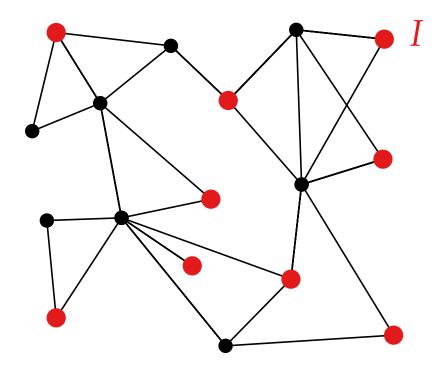
Def.



Def.



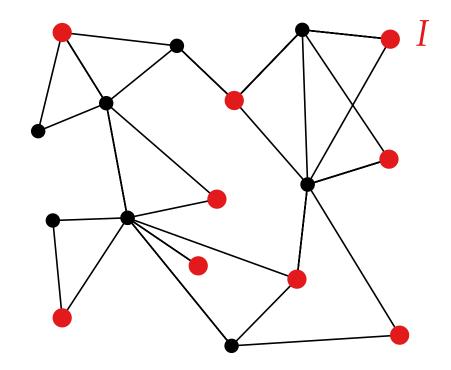
Def.



Def.

A vertex set *I* in a graph is called **independent** (or **stable**), if no pair of vertices in *I* form an edge. An independent set is called **maximal** when no superset of it is an independent set.

Obs. Maximal independent sets are dominating sets :-)



Independent Sets in H^2

```
Lemma. For a graph H and an independent set I in H^2, |I| \leq \text{dom}(H).
```

Independent Sets in H^2

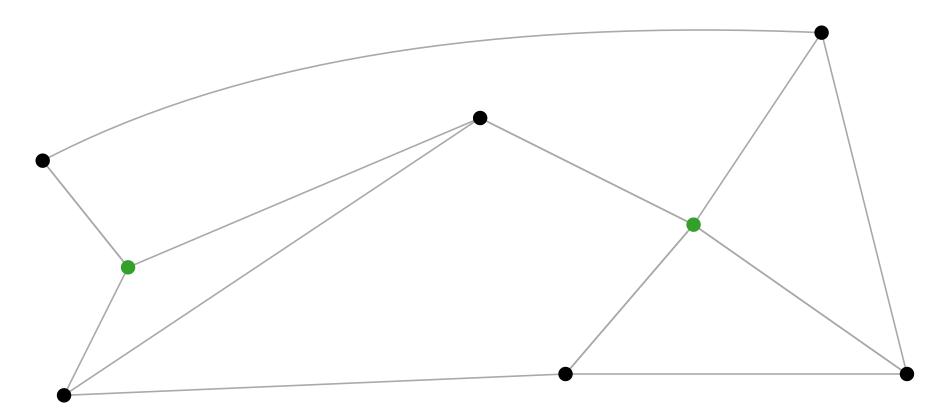
```
Lemma. For a graph H and an independent set I in H^2, |I| \leq \text{dom}(H).
```

What does a dominating set of H look like in H^2 ?

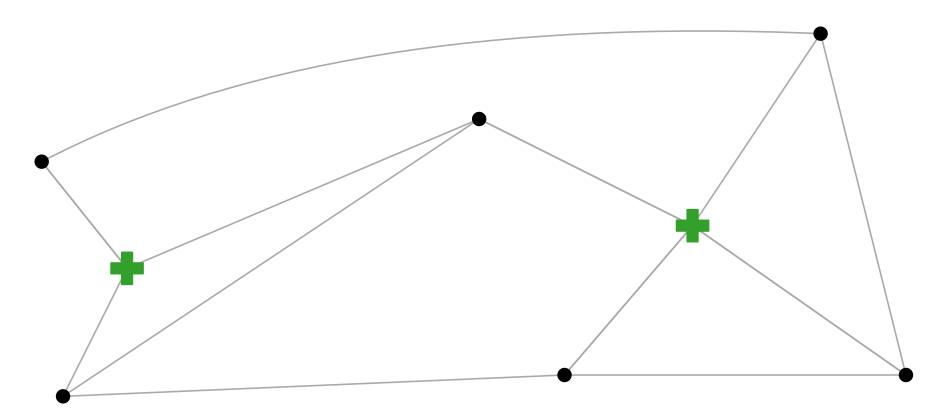
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

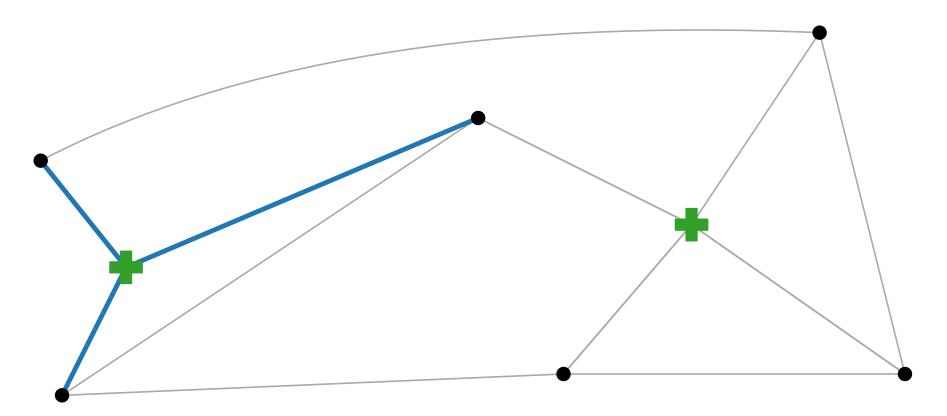
What does a dominating set of H look like in H^2 ?



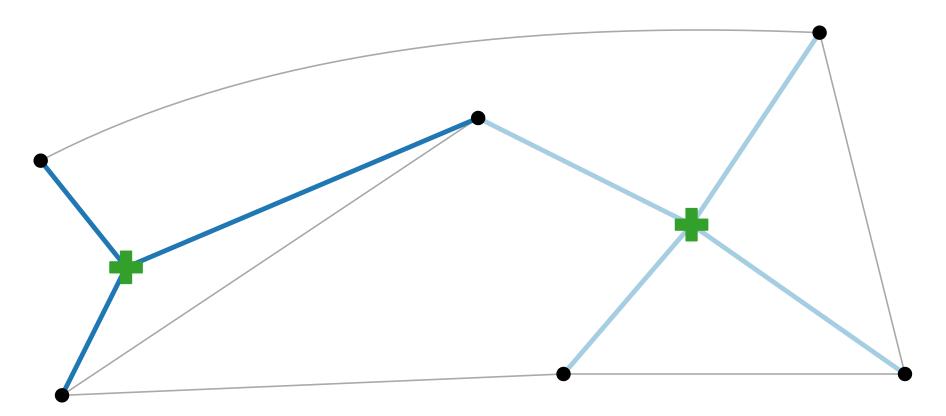
Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.



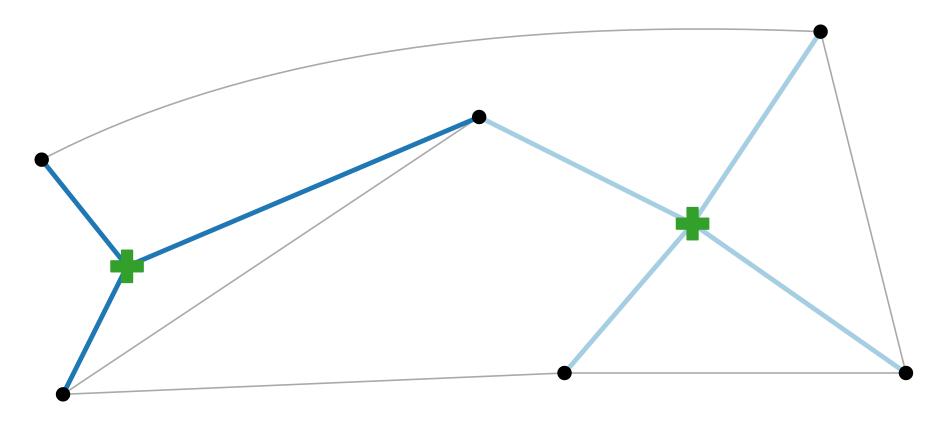
Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.



Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.



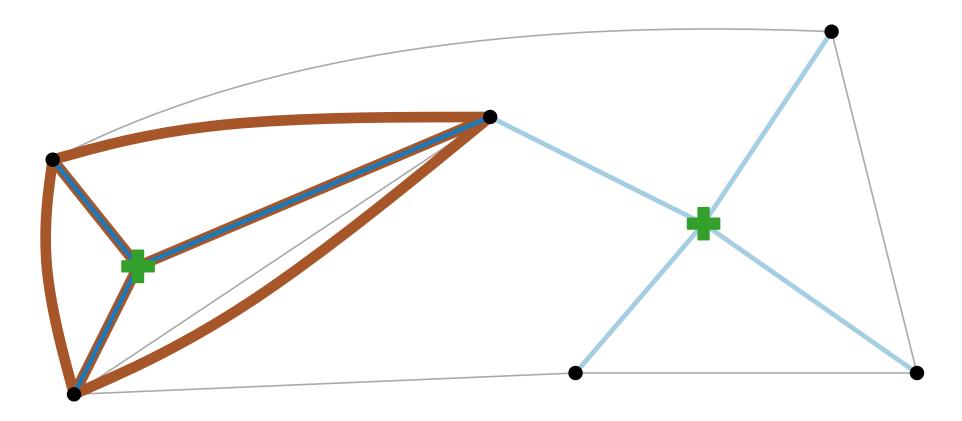
Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.



Star in *H*

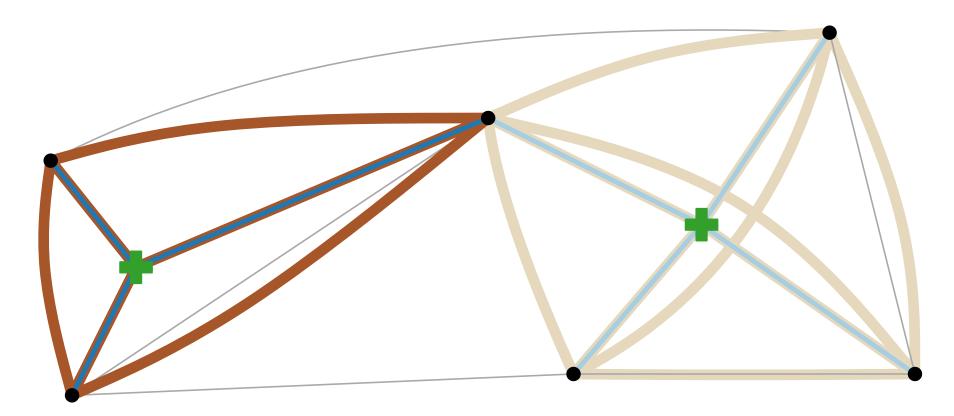
Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2 ?



Star in *H*

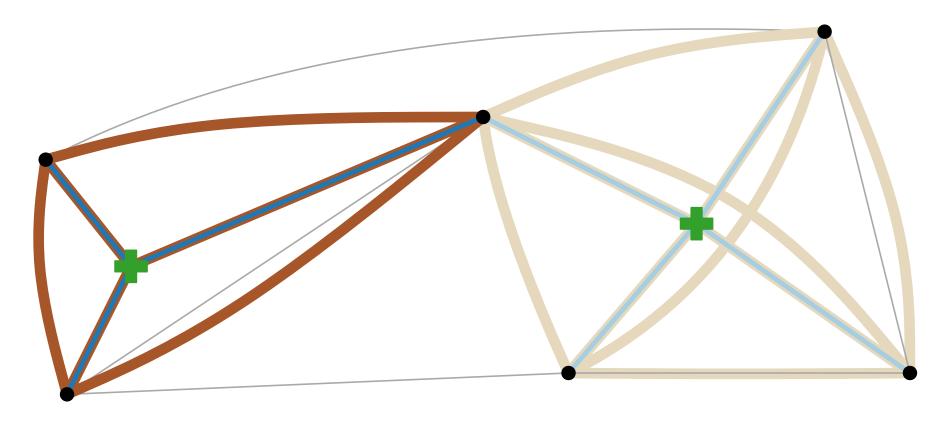
Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.



Star in *H*

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2 ?

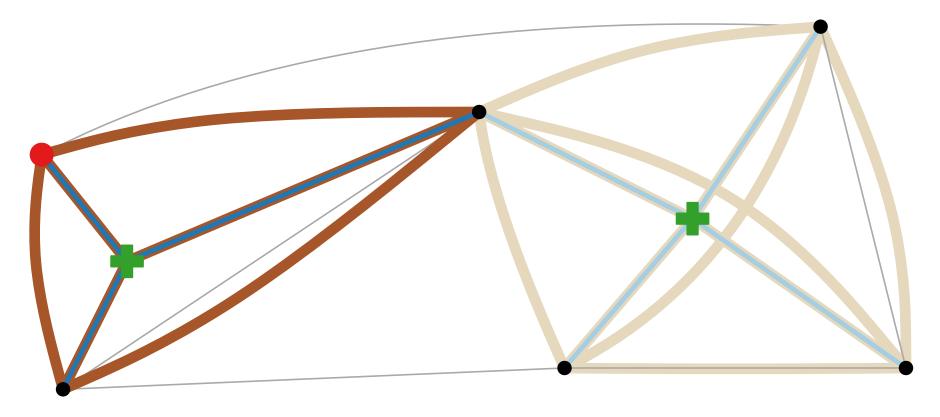


Star in *H*

Clique in H^2

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2 ?

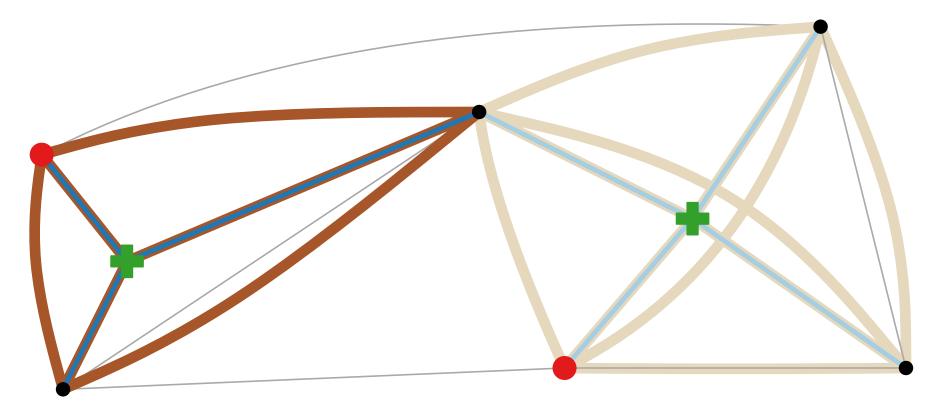


Star in *H*

Clique in H^2

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2 ?



Star in *H*

Clique in H^2

Approximation Algorithms

Lecture 6:

k-Center via Parametric Pruning

Part IV:

Metric-k-Center(G = (V, E; c), k) Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1, \ldots, m do
```

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1, \ldots, m do

Construct G_j^2
```

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1, \ldots, m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2
```

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \le ... \le c(e_m)

for j = 1, ..., m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2

if |I_j| \le k then

return I_j
```

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \le ... \le c(e_m)

for j = 1, ..., m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2

if |I_j| \le k then

return I_j
```

Lemma. For *j* provided by the algorithm, we have $c(e_j) \leq \text{OPT}$.

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1, \ldots, m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2

if |I_j| \leq k then

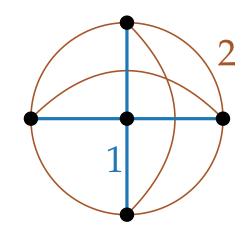
| return I_j
```

Lemma. For *j* provided by the algorithm, we have $c(e_j) \leq \text{OPT}$.

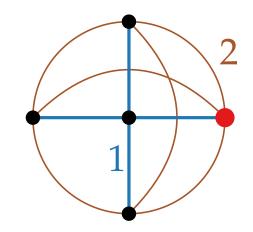
Theorem. The above algorithm is a factor-2-approximation algorithm for Metric-*k*-Center problem.

What about a tight example?

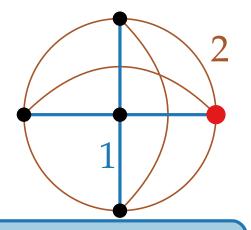
What about a tight example?



What about a tight example?

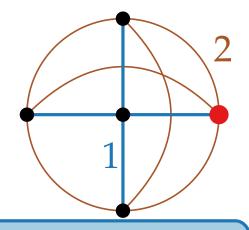


What about a tight example?



Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

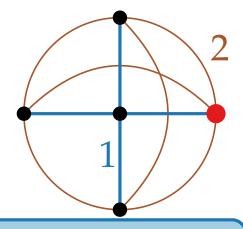
What about a tight example?



Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric *k*-Center.

What about a tight example?

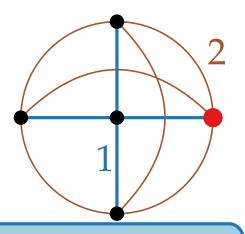


Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric

k-Center problem, for any $\varepsilon > 0$.

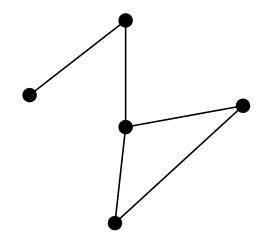
Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k

What about a tight example?

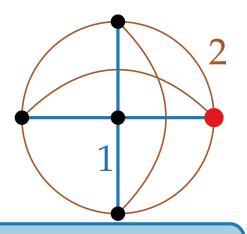


Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k



What about a tight example?



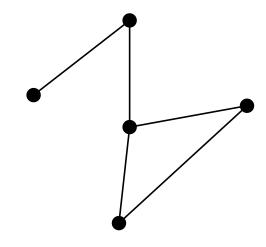
Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric *k*-Center problem, for any $\varepsilon > 0$.

Proof.

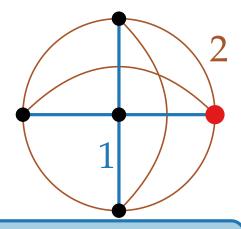
Reduce from dominating set to metric *k*-Center.

Given.: G = (V, E), k

Constr. complete graph $G' = (V, E \cup E')$



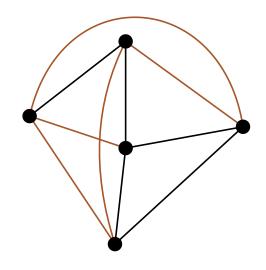
What about a tight example?



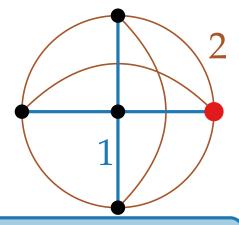
Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k

Constr. complete graph $G' = (V, E \cup E')$



What about a tight example?

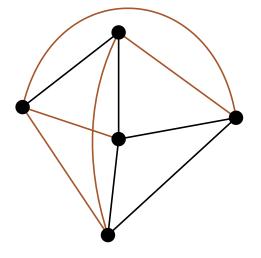


Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

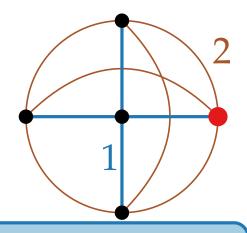
Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k

Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$



What about a tight example?



Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric *k*-Center problem, for any $\varepsilon > 0$.

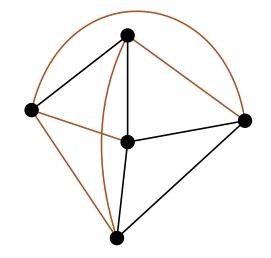
Proof.

Reduce from dominating set to metric *k*-Center. Given.: G = (V, E), k

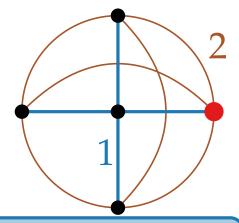
Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

S: metric k-Center



What about a tight example?



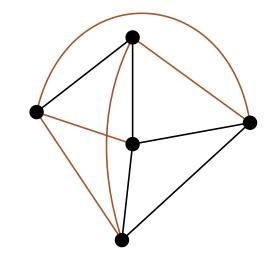
Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-CENTER. Given.: G = (V, E), k

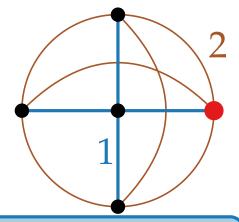
Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

S: metric *k*-Center If $dom(G) \le k$, then cost(S) = 1



What about a tight example?



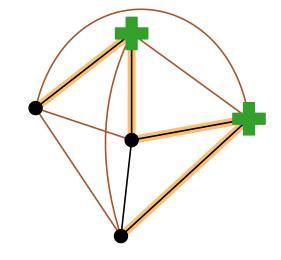
Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-CENTER. Given.: G = (V, E), k

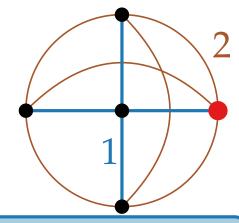
Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

S: metric *k*-Center If $dom(G) \le k$, then cost(S) = 1



What about a tight example?

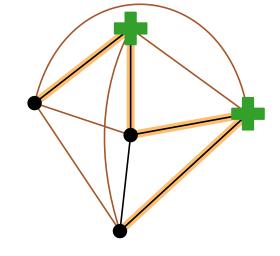


Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

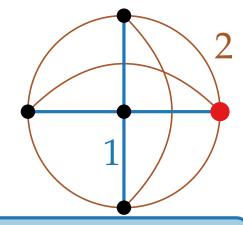
Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k

Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$



What about a tight example?

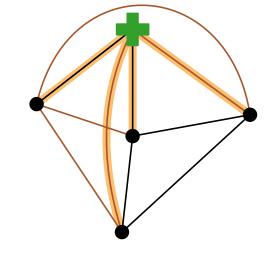


Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

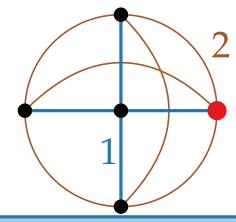
Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k

Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$



What about a tight example?

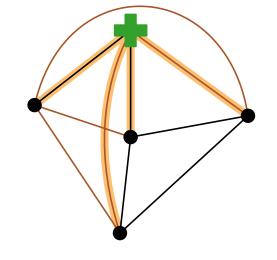


Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

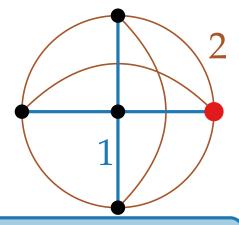
Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k

Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$



What about a tight example?



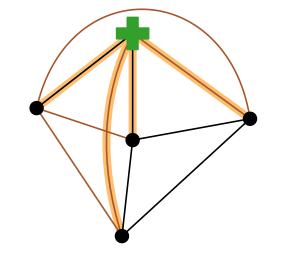
Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k

Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

 \triangle -inequality holds



Approximation Algorithms

Lecture 6:

k-Center via Parametric Pruning

Part V:

METRIC-WEIGHTED-CENTER

Metric-k-Center

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{>0}$ and a natural number $k \le |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{>0}$ and a natural number $k \le |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

METRIC-k-CENTER WEIGHTED

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$. , vertex weights $w: V \to \mathbb{Q}_{\geq 0}$ and a budget $W \in \mathbb{Q}_+$

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

METRIC-k-CENTER WEIGHTED

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$. , vertex weights $w: V \to \mathbb{Q}_{\geq 0}$ and a budget $W \in \mathbb{Q}_+$

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

vertex set S of weight at most W

Find: A k-element vertex set S, such that

 $cost(S) := max_{v \in V} c(v, S)$ is minimized.

```
Algorithm Metric-
                                  -CENTER
  Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      if |I_j| \leq k then return I_j
```

```
Algorithm Metric-Weighted-Center
  Sort the edges of G by cost : c(e_1) \leq ... \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      if |I_j| \leq k then return I_j
```

```
Algorithm Metric-Weighted-Center
  Sort the edges of G by cost : c(e_1) \leq ... \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
                                          what about the weights?
     if |I_j| \leq k then return I_j
```

Algorithm Metric-Weighted-Center Sort the edges of G by $cost : c(e_1) \le ... \le c(e_m)$ for j = 1, ..., m do Construct G_j^2 Find a maximal independent set I_j in G_j^2 what about the weights? if $|I_j| \le k$ then return I_j

Algorithm Metric-Weighted-Center Sort the edges of *G* by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for $j = 1, \ldots, m$ do Construct G_i^2 Find a maximal independent set I_i in G_i^2 what about the weights? if $|I_j| \leq k$ then | return I_j

$$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$$

```
Algorithm Metric-Weighted-Center
  Sort the edges of G by cost : c(e_1) \le ... \le c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
                                          what about the weights?
     if |I_j| \leq k then | return I_j
```

$$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$$

```
Algorithm Metric-Weighted-Center
  Sort the edges of G by cost : c(e_1) \leq ... \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
     Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
     if |I_i| \leq k then
                                           S_j(u)
                                   u \in I_j
        return I_i
```

$$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$$

```
Algorithm Metric-Weighted-Center
 Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
 for j = 1, \ldots, m do
     Construct G_i^2
     Find a maximal independent set I_i in G_i^2
     Compute S_i := \{ s_i(u) \mid u \in I_i \}
     u \in I_j \qquad \bullet s_j(u)
```

$$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$$

```
Algorithm Metric-Weighted-Center
  Sort the edges of G by cost : c(e_1) \leq ... \leq c(e_m)
  for j = 1, \ldots, m do
       Construct G_i^2
       Find a maximal independent set I_i in G_i^2
       Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W return I_j \setminus S_j \setminus w(S_j) \le W u \in I_j \setminus s_j(u)
```

$$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$$

```
Algorithm Metric-Weighted-Center
  Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W
return I_j S_j u \in I_j
```

$$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$$

```
Algorithm Metric-Weighted-Center
  Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W
return I_j S_j u \in I_j
```

$$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$$

```
Algorithm Metric-Weighted-Center
  Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W
return I_j S_j u
                           u \in I_j
```

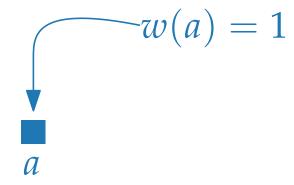
$$s_j(u) := \text{lightest node in } N_{G_i}(u) \cup \{u\}$$

Theorem. The above is a factor-3-approximation algorithm for Metric-Weighted-Center.

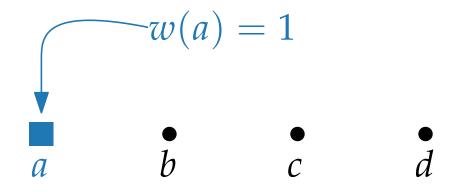
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

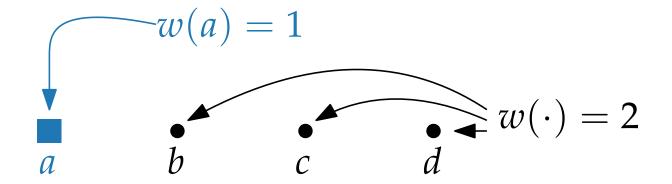
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



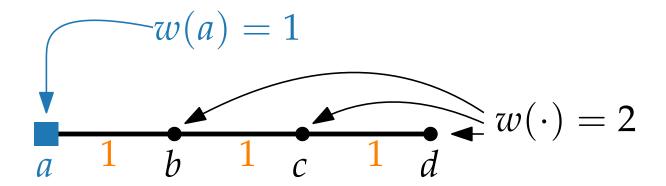
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



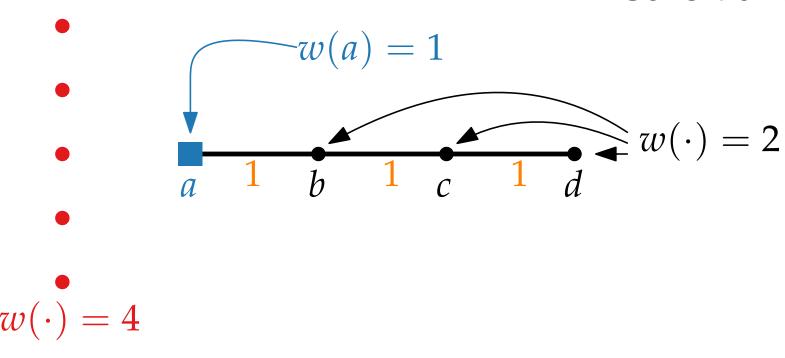
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

