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Maximizing Profits

You're the boss of a small company that produces two
products P; and P,. For the production of x; units of P,
and x; units of P, you're profit in € is:

G(x1,x2) = 30x1 4+ 50x>

Three machines M4, Mp and M¢ produce the required
components A, B and C for the products. The components
are used in different quantities for the products, and each
machine requires some time for the production.

MAI
MB:
MC:

4x1 N

- 11x2 < 880

X1

- xp < 150
x2§ 60

Which choice of (x1, x2) maximizes the profit?



Solution Linear constraints:
Mp: 4x1 + 11xy < 880

MB . X1 T X2 S 150
MC : X2 < 60
X1 > 0
5300 X2 > 0
€5, O : .
7% Linear target function:

G(xlle) — 30361 -+ 50.?(?2
= (30,50)(3})

G(110,40) = 5.300

.~ S&~Qf ‘fa]j.(1~~~~~ &
... solutions “

30)

,profit line”: orthogonal to ( -
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Motivation: Upper and Lower Bounds

Consider hard NP-Minimization Problem.

Decision Problem:
For given 5, is an upper bound for OPT?

Efficiently verifiable “Yes”-certificates.

/ “no”-certificates?
~~ probably not! (conjecture: NP # coNP)

Need lower bound < OPT/«
(approximate “no”-certificates)
for approximation algorithms!

Examples:
B Vertex Cover: lower bound by matchings

m TSP: lower bound by MST or Cycle Cover



Linear Programming

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize cTx
subjectto Ax

minimize 7x;
subjectto  x;
5x 1

Standard form (HA)

VIV IV



Linear Programming — Upper Bounds

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize 7x{144+ x»1 + bx315 = 30
subject to x12 —  x01 4+ 3x39 > 1010

5x110+ 2x52 —  x33 69
X1,X2, X3 0

Valid solution?
x=(2,1,3)
= obj(x) = 30 is upper bound for OPT
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Linear Programming — Lower Bounds

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

7X1 n

minimize
subjectto 2x; — 21 -

_xz_

7X1 n

+
5x1 + 2x, —
X1,X2, X3

-5x3 > x1 —xp +3x3 = OPT > 10

VIV IV

_xz_

-ox3 > (x1 — xo + 3x3) + (5xy + 2% — x3)

> 1046 = OPT > 16
7x1+x0+5x3 >2-(x1 —x2+3x3) + (5x1 +2xp — x3)
>2-104+6 = OPT > 26

-14
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Linear Programming — Lower Bounds

minimize 7x1 + %

subject to yl(xl - X

yZ( 5x1 —+ 2x2

7x1 4+ xo +dx3 > Y1+ (X1 —x2 4+ 3x3) + 12 - (5x1 + 2xp — x3)
> 1y1-10+1y7 -6 = OPT > 10y + 61

maximize 10y
subject to 1

<
<
<
>

Any feasible solution to the dual program provides a lowerQ&
bound for the optimum of the primal program. O

x =1(7/4,0,11/4) both y = (2,1) provide objective value 26



Primal — Dual

minimize

subject to

maximize
subject to

clx
Ax
X

bTy

ATy

11 -

ram

ram

Dual Program of the Dual Pro

minimize

subject to

cTx
Ax

ram
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LP-Duality

minimize c'x Primal
subjectto Ax

maximize bTy
subjectto ATy < ¢
y = 0

‘Theorem. The primal program has a finite optimum

& the dual program has a finite optimum.
Moreover, if x* = (x7,...,x;,) and

yv* = (yy,..., Y, ) are optimal solutions for the

primal and dual program (resp.), then
n

m
Zc]-x]* =) by
1=1

j=1
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Weak LP-Duality

minimize c'x

maximize DTy

subject to

subjectto ATy C

‘Theorem. If x = (x1,...,%,) and y = (y1,...,Ym) are valid
solutions for the primal and dual program
(resp.), then  =n m

Y cixj =) by;.

=1 i=1




Complementary Slackness

minimize

subject to

maximize by

subject to

Theorem. Let x = (xq,...,x,) and y = (1, ...,y ) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:

For each j =1,...,n: either x; = 0 or }./"; a;;y; = c;

Dual CS:

For eachi =1,...,m: either y; = 0 or 2?21 a;ix; = b

Proof. Follows from LP-Duality:

N

A

Vi -

A
I
p—

n
> aiix; | vi >
j=1

15-10
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LPs and Convex Polytopes

The feasible solutions of an LP
with 7 variables from a convex
polytope in R” (intersection of
halfspaces).

Corners of the polytope are called //(
extreme point solutions <

n linearly independent inequalities
(constraints) are satisfied with
equality.

When an optimal solution exists,
some extreme point will also be
optimal.



Integer Linear Programs (ILPs)

minimize cTx
subjectto Ax
X

minimize c¢Tx

17 -

subjectto Ax >
X €

Many NP-optimization problems can be formulated as
ILPs; thus ILPs are NP-hard to solve.

LP-Relaxation provides lower bound: OPTp < OPTyp
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Max-Flow-Problem

Given: A directed graph G = (V, E) with edge capacities
and two special vertices: the source s and sink ¢.

Find: A maximum s—t-flow (i.e., non-negative edge weights f),
such that

B f(u0) < for each edge (u,v) € E
B ) (0)eE f(1,0) = Ypz)ek f(v,2) for each vertex v € V — {5, t}

The flow value is the inflow to f minus the outflow from ¢t.

2/




Min-Cut-Problem

Given: A directed graph G = (V, E) with edge capacities
and two special vertices: the source s and sink ¢.

Find: An s—f-cut, i.e., a vertex set X with s € X and t € X, such
that the total weight of the edges from X to X is
minimum.

20 -



Max-Flow-Min-Cut-Theorem

21 -

Theorem. The value of a maximum s—t-flow and the

weight of a minimum s—f-cut are the same.

Proof. Special case of LP-Duality ...

maximize  fys
subjectto  f,, < ¢, V(u,v) € E\{(t,s)}

Z fuv— Z fvzgo VoeV

u: (u,v)eE z: (v,z)€E
fuv =0
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Max-Flow-Min-Cut-Theorem

Theorem. The value of a maximum s—t-flow and the
weight of a minimum s—f-cut are the same.

Proof. Special case of LP-Duality ...

maximize  fys

subjectto  f,, < ¢, V(u,v) € E\{(t,s)} duo
Z fuv Z fvz <0 VoeV Po
u: (u,v)eE z: (v,z)€E
fuo >0 V(u,v) c L
maximize cTx =}, )cp (0 fuo) +1-fis =c=(0,...,0,1)
Which constraints contain f,, # fs? Auv, Pu, Po
:>duv_l9u‘|‘l9020
Which constraints contain f;s? Ps, Pt

= ps —pr 2> 1
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Max-Flow-Min-Cut-Theorem

Theorem. The value of a maximum s—t-flow and the
weight of a minimum s—f-cut are the same.

Proof. Special case of LP-Duality ...

maximize  fys
subjectto  f,, < ¢, V(u,v) € E\{(t,s)}
Z fuv Z fvz <0 VoeV

u: (u,v)eE z: (v,z)€E
fuo >0 V(u,v) c L

minimize Z Cup * duv

(u,0)€E\{(t5)}
subjectto d,, — py +py >0 V(u,v) € E\{(t,5s)}

V(u,v) € E
VueV
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Dual LP - Interpretation as ILP

minimize Z Cuo Ay
(u,0)€E\{(ts)}
subjectto d,, —py+ 1y >0

ps —pt = 1
dyp 20 € {0,1}

equivalent to Min-Cut!
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Dual LP — Factional Cuts

minimize Y .d,,= LP-Relaxation of the ILP
(uv)€E\{(ts)}
subjectto d,, — py +py >0 V(u,v) € E\{(t,5s)}

Each V(u,v) € E
extreme-point VueV

solution is
integral! (HA)

Each s—t-path o

-
s =70g,...,0 =t has
length > 1 wurt. d:

2 dijr1 2 Z — Pi+1)

= Ps — Pt




Dual LP — Complementary Slackness

25 -

maximize  f
subjectto [, < 0 V(u,v) € E\{(t,s)}
Z fio— Y, fo=<0 Vo eV
u: (u,v)€E z: (v,z)€E
fuvzo V(u,v) c L
minimize Z Cuv * duv [ Primal CS:
(u0)eE\{(ts)}
subject to  dyy — pu + po > 0 Vj: Either x; = 0 or }"; a;;y; = ¢;
Zs —>Pt > 1 Dual CS:
PZUZ_OO Vi: Either y; = 0 or 2?21 ajjXj = b;

For a max flow and min cut:

B For each forward edge
(u,v) of the cut: f,, = ;0.
(dyv =1, so by dual CS: fi,0 = cuv.)

B For each backward edge
(u,v) of the cut: f,, = 0.

(Otherwise, by primal CS: dyyp — 041 =0.)
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