Lecture 4:

Linear Programming and LP-Duality

Part I:

Introduction to Linear Programming

Maximizing Profits

You're the boss of a small company that produces two products P_1 and P_2 . For the production of x_1 units of P_1 and x_2 units of P_2 , you're profit in \in is:

$$G(x_1, x_2) = 30x_1 + 50x_2$$

Three machines M_A , M_B and M_C produce the required components A, B and C for the products. The components are used in different quantities for the products, and each machine requires some time for the production.

$$M_A$$
: $4x_1 + 11x_2 \le 880$

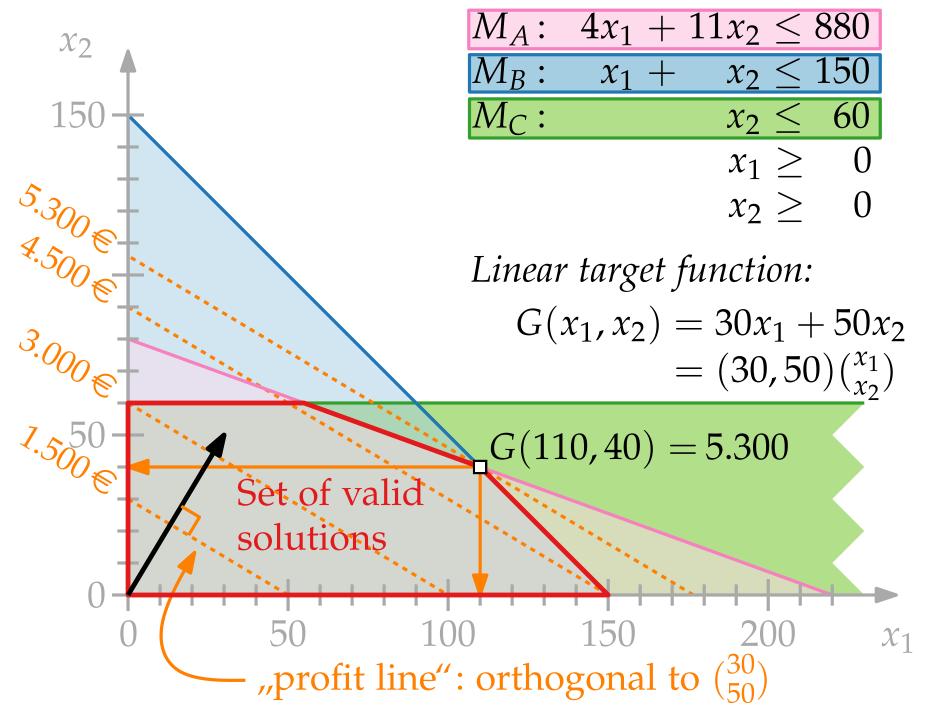
$$M_B: x_1 + x_2 \le 150$$

$$M_C: x_2 \le 60$$

Which choice of (x_1, x_2) maximizes the profit?

Solution

Linear constraints:



Lecture 4:

Linear Programming and LP-Duality

Part II:
Upper Bounds for LPs

Motivation: Upper and Lower Bounds

Consider hard NP-Minimization Problem.

Decision Problem:

For given S, is obj(S) an upper bound for OPT?

Efficiently verifiable "Yes"-certificates.

Lower bounds / "no"-certificates? → probably not! (conjecture: NP ≠ coNP)

Need lower bound $obj(S) \leq OPT/\alpha$ (approximate "no"-certificates) for approximation algorithms!

Examples:

- Vertex Cover: lower bound by matchings
- TSP: lower bound by MST or Cycle Cover

Linear Programming

Optimize (i.e., minimize or maximize) a linear (*objective*) function subject to linear inequalities (*constraints*).

minimize
$$c^{\intercal}x$$
 Standard form (HA) subject to $Ax \geq b$ $x \geq 0$

Example.
$$c = \begin{pmatrix} 7 \\ 1 \\ 5 \end{pmatrix}$$
 $A = \begin{pmatrix} 1 & -1 & 3 \\ 5 & 2 & -1 \end{pmatrix}$ $b = \begin{pmatrix} 10 \\ 6 \end{pmatrix}$

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

Linear Programming – Upper Bounds

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

minimize
$$7x_114+ x_21 + 5x_315 = 30$$

subject to $x_12 - x_21 + 3x_39 \ge 1010$
 $5x_110+ 2x_22 - x_33 \ge 69$
 $x_1, x_2, x_3 \ge 0$

Valid solution?

$$x = (2,1,3)$$

 $\Rightarrow \text{obj}(x) = 30 \text{ is upper bound for OPT}$

Lecture 4:

Linear Programming and LP-Duality

Part III:
Lower Bounds for LPs

Linear Programming – Lower Bounds

Optimize (i.e., minimize or maximize) a linear (*objective*) function subject to linear inequalities (*constraints*).

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $2 \cdot x_1 - 2 \cdot x_2 + 2 \cdot 3x_3 \ge 2 \cdot 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

$$7x_{1} + x_{2} + 5x_{3} \geq x_{1} - x_{2} + 3x_{3} \Rightarrow OPT \geq 10$$

$$7x_{1} + x_{2} + 5x_{3} \geq (x_{1} - x_{2} + 3x_{3}) + (5x_{1} + 2x_{2} - x_{3})$$

$$\geq 10 + 6 \qquad \Rightarrow OPT \geq 16$$

$$7x_{1} + x_{2} + 5x_{3} \geq 2 \cdot (x_{1} - x_{2} + 3x_{3}) + (5x_{1} + 2x_{2} - x_{3})$$

$$\geq 2 \cdot 10 + 6 \qquad \Rightarrow OPT \geq 26$$

Linear Programming – Lower Bounds

minimize
$$7x_1 + x_2 + 5x_3$$
 Primal subject to $y_1(x_1 - x_2 + 3x_3) \ge 10y_1$ $y_2(5x_1 + 2x_2 - x_3) \ge 6y_2$ $x_1, x_2, x_3 \ge 0$

$$7x_1 + x_2 + 5x_3 \ge y_1 \cdot (x_1 - x_2 + 3x_3) + y_2 \cdot (5x_1 + 2x_2 - x_3)$$

$$\ge y_1 \cdot 10 + y_2 \cdot 6 \Rightarrow OPT \ge 10y_1 + 6y_2$$

```
maximize 10y_1 + 6y_2 Dual subject to y_1 + 5y_2 \le 7 -y_1 + 2y_2 \le 1 3y_1 - y_2 \le 5 y_1, y_2 \ge 0
```

Any feasible solution to the **dual** program provides a lower bound for the optimum of the **primal** program.

x = (7/4, 0, 11/4) both y = (2, 1) provide objective value 26.

Primal – Dual

Primal Program

minimize
$$c^{\mathsf{T}}x$$

subject to $Ax \geq b$
 $x \geq 0$

Dual Program

maximize
$$b^{\mathsf{T}}y$$

subject to $A^{\mathsf{T}}y \leq c$
 $y > 0$

Dual Program of the Dual Program

minimize
$$c^{\mathsf{T}}x$$

subject to $Ax \geq b$
 $x \geq 0$

Lecture 4:

Linear Programming and LP-Duality

Part IV:

LP-Duality and Complementary Slackness

LP-Duality

minimize
$$c^{\intercal}x$$
 Primal subject to $Ax \geq b$ $x \geq 0$

maximize
$$b^{\mathsf{T}}y$$
 Dual subject to $A^{\mathsf{T}}y \leq c$ $y \geq 0$

Theorem. The primal program has a finite optimum \Leftrightarrow the dual program has a finite optimum. Moreover, if $x^* = (x_1^*, \dots, x_n^*)$ and $y^* = (y_1^*, \dots, y_m^*)$ are optimal solutions for the primal and dual program (resp.), then $\sum_{i=1}^n c_i x_j^* = \sum_{i=1}^m b_i y_i^*.$

Weak LP-Duality

minimize $c^{\mathsf{T}}x$ subject to $Ax \geq b$ x > 0 maximize $b^{T}y$ subject to $A^{T}y \leq c$ $y \geq 0$

Theorem. If $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ are valid solutions for the primal and dual program (resp.), then $\sum_{i=1}^{n} c_i x_i \ge \sum_{i=1}^{m} b_i y_i.$

Proof. $\sum_{j=1}^{n} \overline{c_j} x_j \ge \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i \ge \sum_{i=1}^{m} \overline{b_i} y_i.$

Complementary Slackness

minimize $c^{\mathsf{T}}x$ subject to $Ax \geq b$ x > 0 maximize $b^{\mathsf{T}}y$ subject to $A^{\mathsf{T}}y \leq c$ $y \geq 0$

Theorem. Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ be valid solutions for the primal and dual program (resp.). Then x and y are optimal if and only if the following conditions are met:

Primal CS:

For each j = 1, ..., n: either $x_j = 0$ or $\sum_{i=1}^m a_{ij} y_i = c_j$

Dual CS:

For each i = 1, ..., m: either $y_i = 0$ or $\sum_{j=1}^n a_{ij} x_j = b_i$

Proof. Follows from LP-Duality:

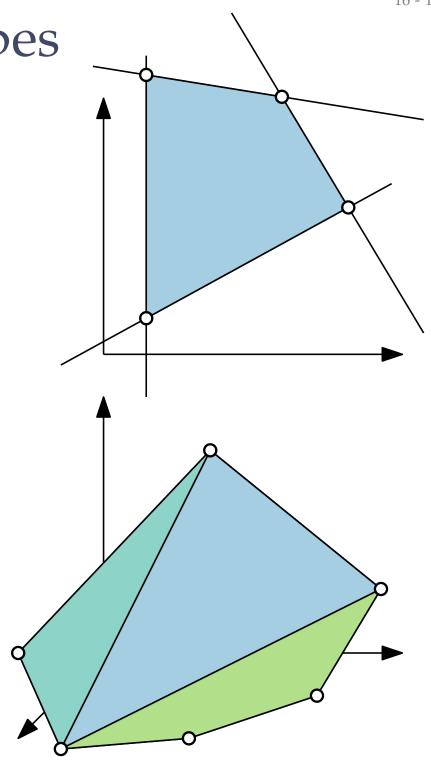
$$\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} \geq \sum_{i=1}^{m} b_{i} y_{i}.$$

LPs and Convex Polytopes

The feasible solutions of an LP with n variables from a **convex polytope** in \mathbb{R}^n (intersection of halfspaces).

Corners of the polytope are called **extreme point solutions** \Leftrightarrow *n* linearly independent inequalities (constraints) are satisfied with equality.

When an optimal solution exists, some extreme point will also be optimal.



Integer Linear Programs (ILPs)

```
minimize c^{\mathsf{T}}x

subject to Ax \geq b

x \geq 0
```

$$\begin{array}{ccc} \mathbf{minimize} & c^\intercal x \\ \mathbf{subject\ to} & Ax & \geq & b \\ x & \in \mathbb{N} \end{array}$$

Many NP-optimization problems can be formulated as ILPs; thus ILPs are NP-hard to solve.

LP-Relaxation provides lower bound: $OPT_{LP} \leq OPT_{ILP}$

Lecture 4:

Linear Programming and LP-Duality

Part V:

Min-Max-Relationships

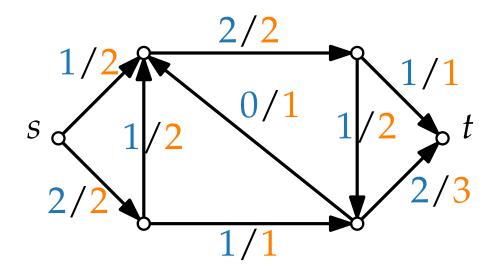
Max-Flow-Problem

Given: A directed graph G = (V, E) with edge capacities $c: E \to \mathbb{Q}_+$ and two special vertices: the source s and sink t.

Find: A maximum s–t-flow (i.e., non-negative edge weights f), such that

- $f(u,v) \le c(u,v)$ for each edge $(u,v) \in E$

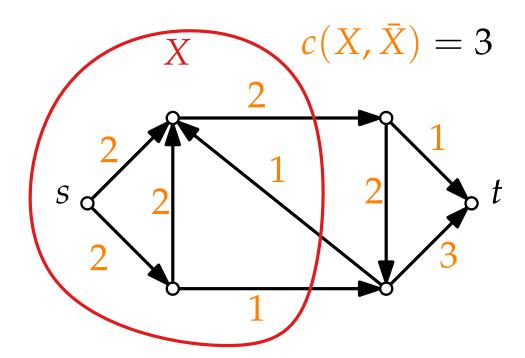
The **flow value** is the inflow to t minus the outflow from t.



Min-Cut-Problem

Given: A directed graph G = (V, E) with edge capacities $c: E \to \mathbb{Q}_+$ and two special vertices: the source s and sink t.

Find: An s–t-cut, i.e., a vertex set X with $s \in X$ and $t \in X$, such that the total weight $c(X, \overline{X})$ of the edges from X to \overline{X} is minimum.

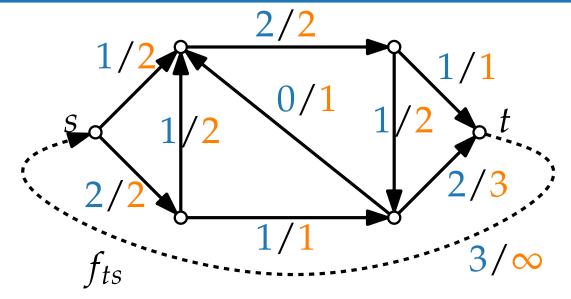


Max-Flow-Min-Cut-Theorem

Theorem. The value of a maximum *s*–*t*-flow and the weight of a minimum *s*–*t*-cut are the same.

Proof. Special case of LP-Duality ...

```
maximizef_{ts}subject tof_{uv} \leq c_{uv}\forall (u,v) \in E \setminus \{(t,s)\}\sum_{u: (u,v) \in E} f_{uv} - \sum_{z: (v,z) \in E} f_{vz} \leq 0\forall v \in Vu: (u,v) \in Ez: (v,z) \in Ef_{uv} \geq 0\forall (u,v) \in E
```



Max-Flow-Min-Cut-Theorem

Theorem. The value of a maximum *s*–*t*-flow and the weight of a minimum *s*–*t*-cut are the same.

Proof. Special case of LP-Duality ...

```
\begin{array}{lll} \textbf{maximize} & f_{ts} \\ \textbf{subject to} & f_{uv} \leq c_{uv} & \forall (u,v) \in E \setminus \{(t,s)\} & d_{uv} \\ & \sum\limits_{u: \ (u,v) \in E} f_{uv} - \sum\limits_{z: \ (v,z) \in E} f_{vz} \leq 0 & \forall v \in V & p_v \\ & f_{uv} \geq 0 & \forall (u,v) \in E \end{array}
```

maximize
$$c^{\mathsf{T}}x = \sum_{(u,v)\in E} (0 \cdot f_{uv}) + 1 \cdot f_{ts} \Rightarrow c = (0,\ldots,0,1)$$

Which constraints contain $f_{uv} \neq f_{ts}$?

$$d_{uv}, p_u, p_v$$

$$\Rightarrow d_{uv} - p_u + p_v \ge 0$$

Which constraints contain f_{ts} ?

 p_s , p_t

$$\Rightarrow p_s - p_t \geq 1$$

Max-Flow-Min-Cut-Theorem

Theorem. The value of a maximum *s*–*t*-flow and the weight of a minimum *s*–*t*-cut are the same.

Proof. Special case of LP-Duality ...

```
maximize f_{ts}
subject to f_{uv} \leq c_{uv} \forall (u,v) \in E \setminus \{(t,s)\} d_{uv}
\sum_{u: (u,v) \in E} f_{uv} - \sum_{z: (v,z) \in E} f_{vz} \leq 0 \qquad \forall v \in V \quad p_v
f_{uv} \geq 0 \qquad \forall (u,v) \in E \qquad \forall (u,v) \in E
```

minimize
$$\sum_{(u,v)\in E\setminus\{(t,s)\}} c_{uv} \cdot d_{uv}$$
subject to
$$d_{uv} - p_u + p_v \geq 0$$
$$\forall (u,v)\in E\setminus\{(t,s)\}$$
$$p_s - p_t \geq 1$$
$$\forall (u,v)\in E$$
$$d_{uv} \geq 0$$
$$\forall (u,v)\in E$$
$$p_u \geq 0$$
$$\forall u\in V$$

Lecture 4:

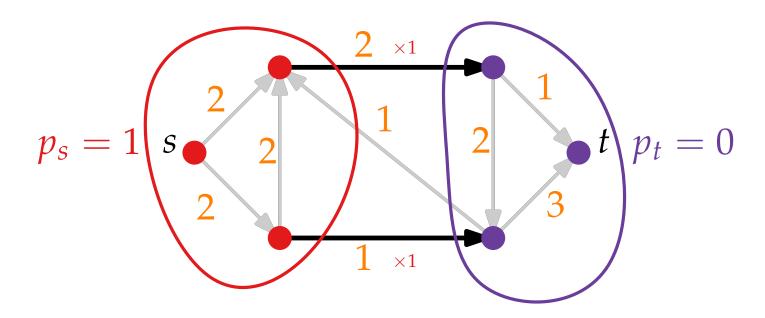
Linear Programming and LP-Duality

Part VI:
Dual LP of Max Flow

Dual LP – Interpretation as ILP

minimize
$$\sum_{(u,v)\in E\setminus \{(t,s)\}} c_{uv} \cdot d_{uv}$$
subject to
$$d_{uv} - p_u + p_v \geq 0$$
$$\forall (u,v) \in E \setminus \{(t,s)\}$$
$$p_s - p_t \geq 1$$
$$\forall (u,v) \in E$$
$$d_{uv} \geq 0 \in \{0,1\}$$
$$\forall (u,v) \in E$$
$$p_u \geq 0 \in \{0,1\}$$
$$\forall u \in V$$

equivalent to Min-Cut!

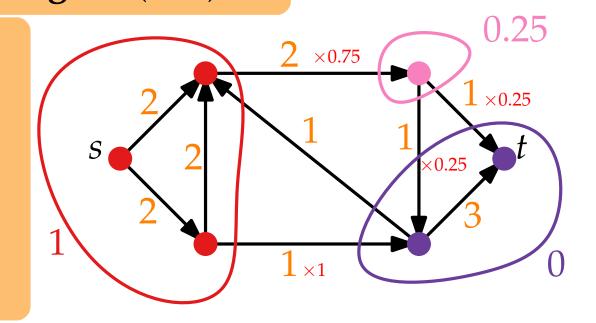


Dual LP – Factional Cuts

minimize $\sum_{\substack{(u,v)\in E\setminus\{(t,s)\}\\(u,v)\in E\setminus\{(t,s)\}\\}} c_{uv}\cdot d_{uv}\equiv \text{LP-Relaxation of the ILP}$ subject to $d_{uv}-p_u+p_v\geq 0 \qquad \forall (u,v)\in E\setminus\{(t,s)\}$ $p_s-p_t\geq 1$ $d_{uv}\geq 0 \qquad \text{Each}$ $\forall (u,v)\in E$ $p_u\geq 0 \qquad \text{extreme-point} \qquad \forall u\in V$ solution is

integral! (HA)

Each
$$s$$
- t -path $s = v_0, \ldots, v_k = t$ has length ≥ 1 w.r.t. d :
$$\sum_{i=0}^{k-1} d_{i,i+1} \geq \sum_{i=0}^{k-1} (p_i - p_{i+1})$$
$$= p_s - p_t$$



Dual LP – Complementary Slackness

maximize
subject to
$$f_{ts}$$

 $f_{uv} \leq c_{uv}$
 $\sum_{u: (u,v) \in E} f_{uv} - \sum_{z: (v,z) \in E} f_{vz} \leq 0$
 $f_{vz} \leq 0$
 $\forall (u,v) \in E$
 $\forall (u,v) \in E$

```
minimize \sum_{\substack{(u,v)\in E\setminus \{(t,s)\}\\d_{uv}-p_u+p_v\geq 0\\p_s-p_t\geq 1\\d_{uv}\geq 0\\p_u\geq 0}} c_{uv}\cdot d_{uv} Primal CS: \forall j : \text{ Either } x_j=0 \text{ or } \sum_{i=1}^m a_{ij}y_i=c_j Dual CS: \forall i : \text{ Either } y_i=0 \text{ or } \sum_{j=1}^n a_{ij}x_j=b_i
```

For a max flow and min cut:

- For each forward edge (u, v) of the cut: $f_{uv} = c_{uv}$. $(d_{uv} = 1, \text{ so by dual CS: } f_{uv} = c_{uv}$.)
- For each backward edge (u, v) of the cut: $f_{uv} = 0$. (Otherwise, by primal CS: $d_{uv} 0 + 1 = 0$.)

