Lecture 3: SteinerTree and MultiwayCut

Part I: SteinerTree

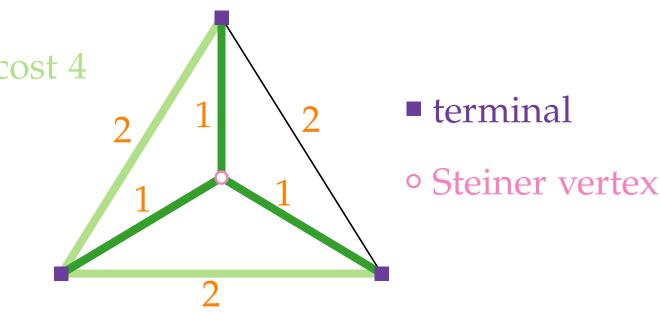
Joachim Spoerhase

SteinerTree

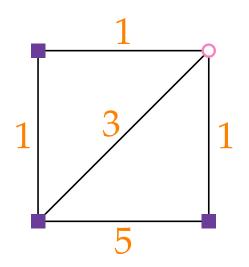
Given: A graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition of *V* into a set *T* of **terminals** and a set *S* of **Steiner vertices**.

Find: A subtree B = (V', E') of *G* that contains all terminals, i.e., $T \subseteq V'$, and has minimum cost $c(E') := \sum_{e \in E'} c(e)$ among all subtrees with this property.

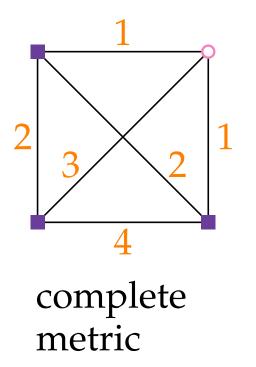
valid solution with cost 4 optimum solution with cost 3



Restriction of STEINERTREE where the graph *G* is complete and the cost function is **metric**, i.e., for every triple u, v, wof vertices, we have $c(u, w) \le c(u, v) + c(v, w)$.



not complete not metric



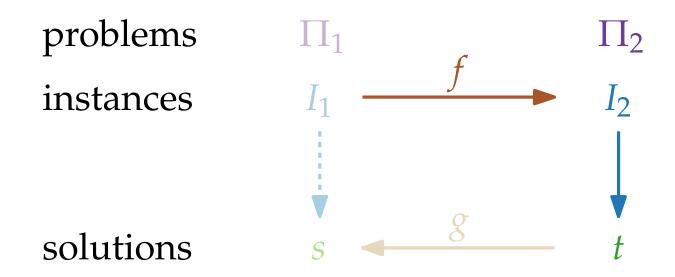
Lecture 3: SteinerTree and MultiwayCut

Part II: Approximation Preserving Reduction

Joachim Spoerhase

Approximation Preserving Reduction

- Let Π_1, Π_2 be minimization problems. An **approximation preserving reduction** from Π_1 to Π_2 ist a tuple (f,g) of poly-time computable functions with the following properties.
 - (i) For each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 with $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$.
 - (ii) For each feasible solution *t* of I_2 , $s := g(I_1, t)$ is a feasible solution of I_1 with $obj_{\Pi_1}(I_1, s) \le obj_{\Pi_2}(I_2, t)$.



Approximation Preserving Reduction

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α -approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Proof.

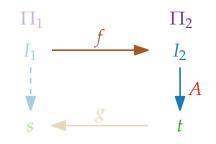
Let *A* be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s := g(I_1, t)$.

Then:

 $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1)$



Lecture 3: SteinerTree and MultiwayCut

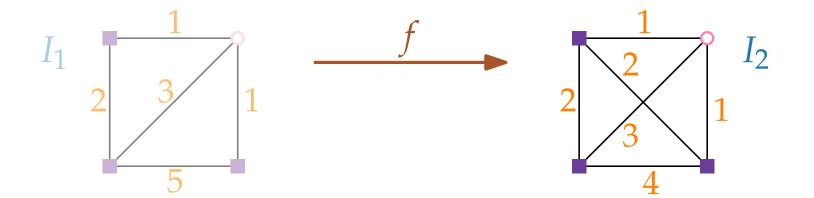
Part III: Reduction to METRICSTEINERTREE

Joachim Spoerhase

Theorem. There is an approximation preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (1) Mapping $f \xrightarrow{f} \xrightarrow{f} \xrightarrow{L_2}$ Instance I_1 of STEINERTREE: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$ Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

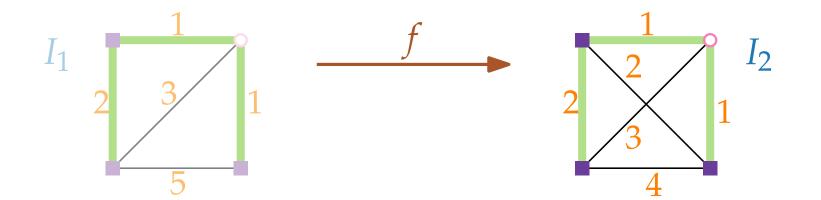
 $c_2(u, v) :=$ Length of shortest *u*–*v*-path in G_1



Theorem. There is an approximation preserving reduction from STEINERTREE to METRICSTEINERTREE.

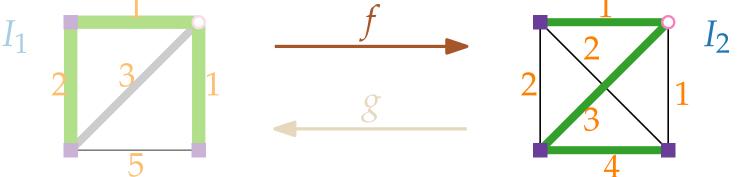
Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be optimal Steiner tree for I_1 B^* is also a feasible solution for I_2 , since $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same $OPT(I_2) \le c_2(B^*) \le c_1(B^*) = OPT(I_1)$



Theorem. There is an approximation preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping $g = e^{-a} e^{-a}$ Let B_2 be Steiner tree of G_2 Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v)of B_2 by a shortest u-v-path in G_1 . $c_1(G'_1) \leq c_2(B_2)$; G'_1 connects all terminals; not nec. a tree Consider spanning tree B_1 of $G'_1 \rightsquigarrow$ Steiner tree B_1 of G_1 $c_1(B_1) \leq c_1(G'_1) \leq c_2(B_2)$



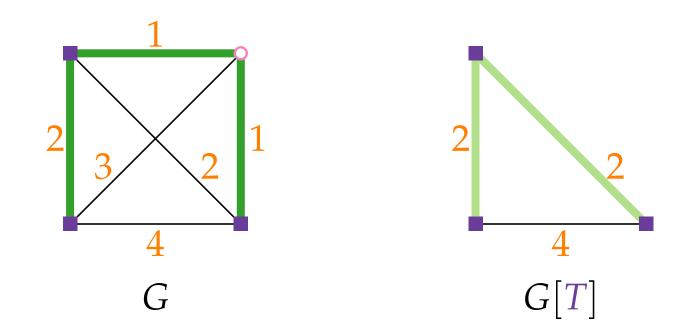
Lecture 3: SteinerTree and MultiwayCut

Part IV: 2-Approximation for STEINERTREE

Joachim Spoerhase

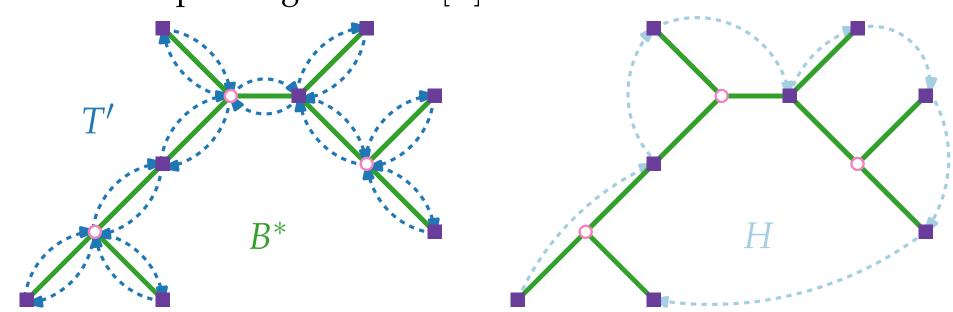
2-Approximation for STEINERTREE

Theorem. For an instance of METRICSTEINERTREE, let *B* be a minimum spanning tree (MST) of the subgraph G[T] induced by the terminal set *T*. Then $c(B) \leq 2 \cdot \text{OPT}$.



Proof of Approximation Factor

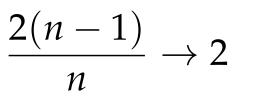
Consider optimal Steiner tree B^* Duplicate all edges in $B^* \rightsquigarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$ Find an Eulerian tour T' in $B' \rightsquigarrow c(T') = c(B') = 2 \cdot \text{OPT}$ Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals $\rightsquigarrow c(H) \le c(T') = 2 \cdot \text{OPT}$, since G is metric MST B of G[T] has $c(B) \le c(H) \le 2 \cdot \text{OPT}$, since H is a spanning tree of G[T]



Analysis Sharp?

 K_n

MST of G[T] with cost 2(n - 1)Optimal solution with cost n



terminal

• Steiner vertex

- cost 1

- cost 2

better? The best-known approximation factor for STEINERTREE is $\ln(4) + \varepsilon \approx 1.39$ [Byrka, Grandoni, Rothvoß & Sanita '10] STEINERTREE cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless P=NP) [Chlebik & Chlebikova '08]

Lecture 3: SteinerTree and MultiwayCut

Part V: MULTIWAYCUT

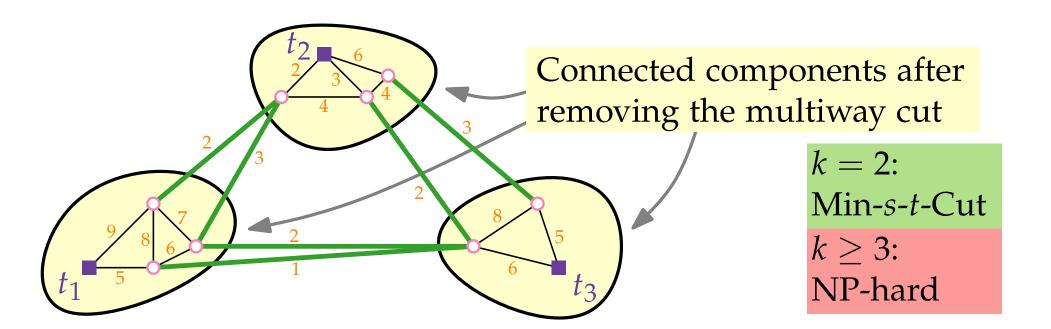
Joachim Spoerhase

MultiwayCut

Given: A connected graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

A **multiway cut** of *T* is a subset E' of edges such that no two terminals in the graph (V, E - E') are connected.

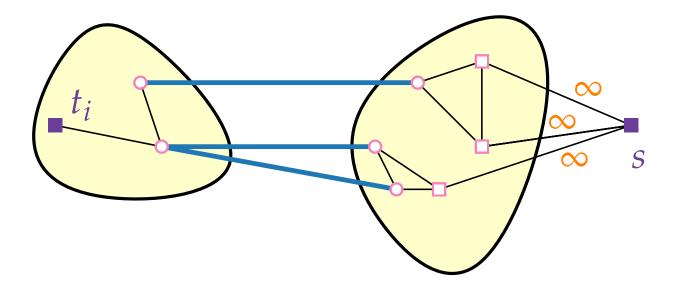
Find: A minimum cost multiway cut of *T*.



Isolating Cuts

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

Minimum cost isolating cut can be computed efficiently!



Add dummy terminal *s* and find minimum cost *s*- t_i -cut.

Lecture 3: SteinerTree and MultiwayCut

Part VI: Algorithm for MULTIWAYCUT

Joachim Spoerhase

Algorithm MULTIWAYCUT

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

Return the union of C of the k - 1 cheapest such isolating cuts.

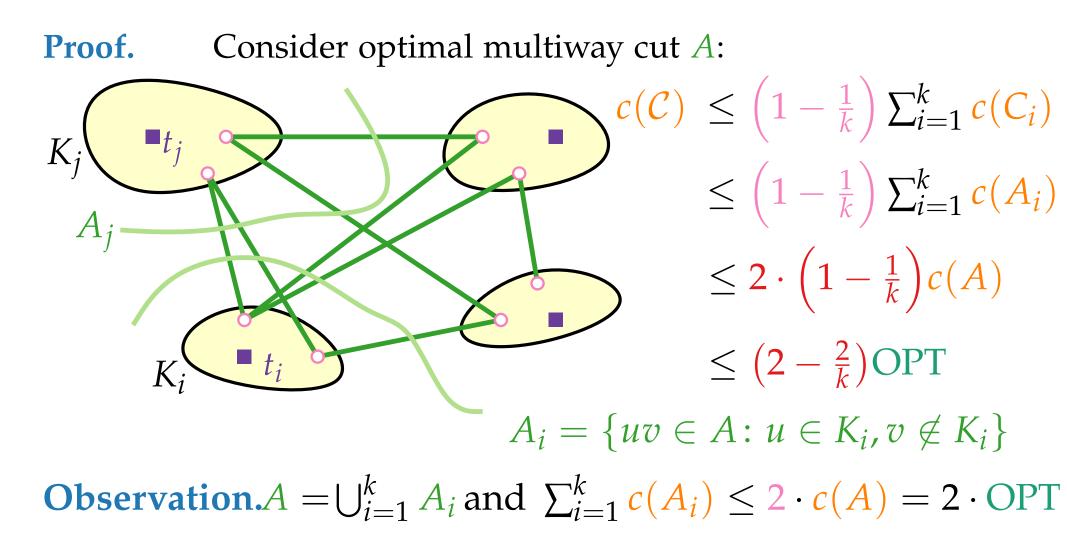
In other words: Ignore the most expensive of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(\mathcal{C}) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

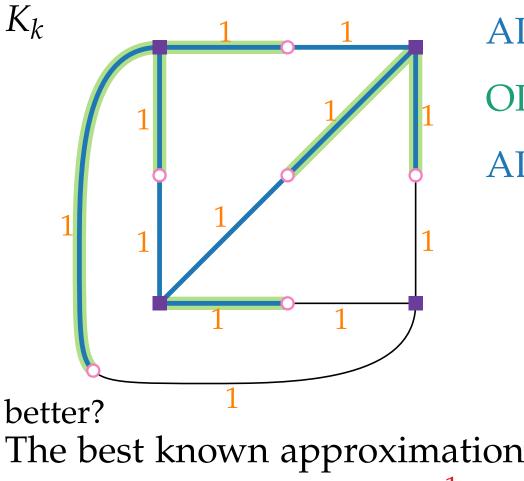
for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have $c(C_1) \ge \frac{1}{k} \sum_{i=1}^k c(C_i).$

Approximation Factor

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MULTIWAYCUT.



Analysis Sharp?



ALG =
$$(k - 1)(k - 1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2k-2}{k} = 2 - \frac{2}{k}$

better? 1 The best known approximation factor for MULTIWAYCUT is $1.2965 - \frac{1}{k}$. [Sharma & Vondrák '14] MULTIWAYCUT cannot be approximated within factor 1.20016 - O(1/k) (unless P=NP).

[Bérczi, Chandrasekaran, Király & Madan '18]