Approximation Algorithms

Lecture 3: SteinerTree and MultiwayCut

Part I: STEINERTREE

Given: A graph G = (V, E)

Given: A graph G = (V, E) with edge weights $c: E \to \mathbb{Q}^+$

Given: A graph G = (V, E) with edge weights $c: E \to \mathbb{Q}^+$

Given: A graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition of V into a set T of **terminals** and a set S of **Steiner vertices**.

Given: A graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition of V into a set T of **terminals** and a set S of **Steiner vertices**.

Given: A graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition of V into a set T of **terminals** and a set S of **Steiner vertices**.

Given: A graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition of V into a set T of **terminals** and a set S of **Steiner vertices**.

Find: A subtree B = (V', E') of G that contains all terminals, i.e., $T \subseteq V'$

Given: A graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition of V into a set T of **terminals** and a set S of **Steiner vertices**.

Find: A subtree B = (V', E') of G that contains all terminals, i.e., $T \subseteq V'$

Given: A graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition of V into a set T of **terminals** and a set S of **Steiner vertices**.

Find: A subtree B = (V', E') of G that contains all terminals, i.e., $T \subseteq V'$, and has minimum cost $c(E') := \sum_{e \in E'} c(e)$ among all subtrees with this property.

Given: A graph G = (V, E) with edge weights $c \colon E \to \mathbb{Q}^+$ and a partition of V into a set T of **terminals** and a set S of **Steiner vertices**.

Find: A subtree B = (V', E') of G that contains all terminals, i.e., $T \subseteq V'$, and has minimum cost $c(E') := \sum_{e \in E'} c(e)$ among all subtrees with this property.

Restriction of SteinerTree where the graph *G* is complete and the cost function is **metric**

not complete

not complete not metric

not complete not metric

not complete not metric

complete metric

Approximation Algorithms

Lecture 3:

STEINERTREE and MultiwayCut

Part II:

Approximation Preserving Reduction

Let Π_1 , Π_2 be minimization problems.

Let Π_1 , Π_2 be minimization problems.

problems

 Π_1

 Π_2

Let Π_1 , Π_2 be minimization problems. An **approximation preserving reduction** from Π_1 to Π_2 ist a tuple (f,g) of poly-time computable functions with the following properties.

problems

 Π_1

 Π_2

Let Π_1 , Π_2 be minimization problems. An **approximation preserving reduction** from Π_1 to Π_2 ist a tuple (f,g) of poly-time computable functions with the following properties.

(i) For each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 with $\text{OPT}_{\Pi_2}(I_2) \leq \text{OPT}_{\Pi_1}(I_1)$.

problems

 Π_1

 Π_2

Let Π_1 , Π_2 be minimization problems. An **approximation preserving reduction** from Π_1 to Π_2 ist a tuple (f,g) of poly-time computable functions with the following properties.

(i) For each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 with $\text{OPT}_{\Pi_2}(I_2) \leq \text{OPT}_{\Pi_1}(I_1)$.

problems

 Π_1

 Π_2

instances

 I_1

Let Π_1 , Π_2 be minimization problems. An **approximation preserving reduction** from Π_1 to Π_2 ist a tuple (f,g) of poly-time computable functions with the following properties.

(i) For each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 with $\text{OPT}_{\Pi_2}(I_2) \leq \text{OPT}_{\Pi_1}(I_1)$.

problems Π_1 Π_2 instances I_1 I_2

- (i) For each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 with $\text{OPT}_{\Pi_2}(I_2) \leq \text{OPT}_{\Pi_1}(I_1)$.
- (ii) For each feasible solution t of I_2 , $s := g(I_1, t)$ is a feasible solution of I_1 with $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t)$.

```
problems \Pi_1 \Pi_2 instances I_1 I_2
```

- (i) For each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 with $\text{OPT}_{\Pi_2}(I_2) \leq \text{OPT}_{\Pi_1}(I_1)$.
- (ii) For each feasible solution t of I_2 , $s := g(I_1, t)$ is a feasible solution of I_1 with $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t)$.

- (i) For each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 with $\text{OPT}_{\Pi_2}(I_2) \leq \text{OPT}_{\Pi_1}(I_1)$.
- (ii) For each feasible solution t of I_2 , $s := g(I_1, t)$ is a feasible solution of I_1 with $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t)$.

- (i) For each instance I_1 of Π_1 , $I_2 := f(I_1)$ is an instance of Π_2 with $\text{OPT}_{\Pi_2}(I_2) \leq \text{OPT}_{\Pi_1}(I_1)$.
- (ii) For each feasible solution t of I_2 , $s := g(I_1, t)$ is a feasible solution of I_1 with $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t)$.

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor ? approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor ? approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α -approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor-α-approximation algorithm of Π_1 for each factor-α-approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor-α-approximation algorithm of Π_1 for each factor-α-approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α -approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

$$Set I_2 := , t := and s :=$$

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α -approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t :=$ and $s :=$

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor-α-approximation algorithm of Π_1 for each factor-α-approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s :=$

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α -approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $I_2 := f(I_1)$, $t := A(I_2)$ and $s := g(I_1, t)$.

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α -approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s := g(I_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1,s)$$

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor-α-approximation algorithm of Π_1 for each factor-α-approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s := g(I_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t)$$

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α -approximation algorithm of Π_1 for each factor- α -approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s := g(I_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2)$$

Theorem. Let Π_1 , Π_2 be minimization problems where there is an approximation preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor-α-approximation algorithm of Π_1 for each factor-α-approximation algorithm of Π_2 .

Proof.

Let A be a factor- α -approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s := g(I_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1)$$

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part III:
Reduction to MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f l_1 \xrightarrow{f} l_2$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f l_1 \xrightarrow{f} l_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f l_1 \xrightarrow{f} l_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f l_1 \xrightarrow{f} l_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 \xrightarrow{f} I_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f l_1 f l_2$

Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u,v) :=$ Length of shortest u–v-path in G_1 $c_2(u,v) \le c_1(u,v)$ for all $(u,v) \in E$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be optimal Steiner tree for I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be optimal Steiner tree for I_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be optimal Steiner tree for I_1

 B^* is also a feasible solution for I_2 , since $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be optimal Steiner tree for I_1

 B^* is also a feasible solution for I_2 , since $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be optimal Steiner tree for I_1

 B^* is also a feasible solution for I_2 , since $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same

 $OPT(I_2)$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be optimal Steiner tree for I_1

 B^* is also a feasible solution for I_2 , since $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same

$$OPT(I_2) \leq c_2(B^*)$$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be optimal Steiner tree for I_1

 B^* is also a feasible solution for I_2 , since $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same

$$OPT(I_2) \le c_2(B^*) \le c_1(B^*)$$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2)
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be optimal Steiner tree for I_1

 B^* is also a feasible solution for I_2 , since $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same

$$OPT(I_2) \le c_2(B^*) \le c_1(B^*) = OPT(I_1)$$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g = s - t

Let B_2 be Steiner tree of G_2

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g = s - t

Let B_2 be Steiner tree of G_2

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g = s - t

Let B_2 be Steiner tree of G_2

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

$$c_1(G_1') \le c_2(B_2)$$

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v-path in G_1 .

 $c_1(G'_1) \leq c_2(B_2)$; G'_1 connects all terminals

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v-path in G_1 .

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; not nec. a tree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v-path in G_1 .

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; not nec. a tree Consider spanning tree B_1 of G_1'

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v-path in G_1 .

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; not nec. a tree Consider spanning tree B_1 of G_1'

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v-path in G_1 .

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; not nec. a tree Consider spanning tree B_1 of $G_1' \rightsquigarrow$ Steiner tree B_1 of G_1

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be Steiner tree of G_2

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v-path in G_1 .

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; not nec. a tree

Consider spanning tree B_1 of $G'_1 \rightsquigarrow$ Steiner tree B_1 of G_1

$$c_1(B_1) \le c_1(G_1') \le c_2(B_2)$$

Approximation Algorithms

Lecture 3: SteinerTree and MultiwayCut

Part IV:

2-Approximation for SteinerTree

Consider optimal Steiner tree B^*

Consider optimal Steiner tree B^*

Consider optimal Steiner tree B^* Duplicate all edges in $B^* \leadsto$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$

Consider optimal Steiner tree B^* Duplicate all edges in $B^* \leadsto$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \rightsquigarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$

Find an Eulerian tour T' in $B' \rightsquigarrow c(T') = c(B') = 2 \cdot OPT$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \leadsto \text{Eulerian (multi-)graph } B'$ with cost $c(B') = 2 \cdot \text{OPT}$

Find an Eulerian tour T' in $B' \leadsto c(T') = c(B') = 2 \cdot OPT$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \rightsquigarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \leadsto \text{Eulerian (multi-)graph } B'$ with cost $c(B') = 2 \cdot \text{OPT}$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \leadsto \text{Eulerian (multi-)graph } B'$ with cost $c(B') = 2 \cdot \text{OPT}$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \leadsto \text{Eulerian (multi-)graph } B'$ with cost $c(B') = 2 \cdot \text{OPT}$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \rightsquigarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \leadsto \text{Eulerian (multi-)graph } B'$ with cost $c(B') = 2 \cdot \text{OPT}$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \leadsto \text{Eulerian (multi-)graph } B'$ with cost $c(B') = 2 \cdot \text{OPT}$

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \rightsquigarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$

Find an Eulerian tour T' in $B' \rightsquigarrow c(T') = c(B') = 2 \cdot \text{OPT}$ Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \rightsquigarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$

Find an Eulerian tour T' in $B' \rightsquigarrow c(T') = c(B') = 2 \cdot \text{OPT}$ Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \rightsquigarrow \text{Eulerian (multi-)graph } B'$ with cost $c(B') = 2 \cdot \text{OPT}$

Find an Eulerian tour T' in $B' \rightsquigarrow c(T') = c(B') = 2 \cdot OPT$ Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals

 $\rightsquigarrow c(H) \leq c(T') = 2 \cdot \text{OPT}$, since *G* is metric

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \rightsquigarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$

Find an Eulerian tour T' in $B' \leadsto c(T') = c(B') = 2 \cdot \text{OPT}$ Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals $\leadsto c(H) \le c(T') = 2 \cdot \text{OPT}$, since G is metric

MST B of G[T] has $c(B) \le c(H) \le 2 \cdot \text{OPT}$,

Consider optimal Steiner tree B^*

Duplicate all edges in $B^* \rightsquigarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$

Find an Eulerian tour T' in $B' \leadsto c(T') = c(B') = 2 \cdot \text{OPT}$ Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals

 $\rightsquigarrow c(H) \leq c(T') = 2 \cdot \text{OPT}$, since *G* is metric

MST *B* of G[T] has $c(B) \le c(H) \le 2 \cdot \text{OPT}$, since *H* is a spanning tree of G[T]

terminal

terminal

____ cost 2

 K_n

- terminal
- Steiner vertex

--- cost 2

- terminal
- Steiner vertex

____ cost 2

MST of G[T] with cost 2(n-1)

MST of G[T] with cost 2(n-1)Optimal solution with cost n

MST of G[T] with cost 2(n-1)Optimal solution with cost n

$$\frac{2(n-1)}{n} \rightarrow 2$$

- terminal
- Steiner vertex
- —— cost 1

____ cost 2

better?

MST of G[T] with cost 2(n-1)Optimal solution with cost n

$$\frac{2(n-1)}{n} \rightarrow 2$$

- terminal
- Steiner vertex
- —— cost 1
- ____ cost 2

better?

MST of G[T] with cost 2(n-1)Optimal solution with cost n

$$\frac{2(n-1)}{n} \to 2$$

- terminal
- Steiner vertex
- —— cost 1
- ____ cost 2

$$K_n$$

The best-known approximation factor for SteinerTree is $ln(4) + \varepsilon \approx 1.39$

[Byrka, Grandoni, Rothvoß & Sanita '10]

MST of G[T] with cost 2(n-1)Optimal solution with cost n

$$\frac{2(n-1)}{n} \to 2$$

- terminal
- Steiner vertex
- —— cost 1
- ____ cost 2

better?

The best-known approximation factor for

SteinerTree is $ln(4) + \varepsilon \approx 1.39$

[Byrka, Grandoni, Rothvoß & Sanita '10]

SteinerTree cannot be approximated within factor

 $\frac{96}{95} \approx 1.0105$ (unless P=NP)

[Chlebik & Chlebikova '08]

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part V:
MULTIWAYCUT

Given: A connected graph G = (V, E)

Given: A connected graph G = (V, E)

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V, E - E') are connected.

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V, E - E') are connected.

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V, E - E') are connected.

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V, E - E') are connected.

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V, E - E') are connected.

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V, E - E') are connected.

Given: A connected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V, E - E') are connected.

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

Minimum cost isolating cut can be computed efficiently!

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal *s*

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal *s*

Isolating Cuts

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal *s*

Isolating Cuts

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal *s*

Isolating Cuts

An **isolating cut** for a terminal t_i is a set of edges separating t_i from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal s and find minimum cost s- t_i -cut.

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part VI:
Algorithm for MultiwayCut

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

Return the union of \mathcal{C} of the k-1 cheapest such isolating cuts.

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

Return the union of \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

Return the union of \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C)$$
 ? $\sum_{i=1}^{k} c(C_i)$

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

Return the union of \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C) \leq \sum_{i=1}^{k} c(C_i)$$

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

Return the union of \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

Return the union of \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

Ignore the most expensive of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(C) \le \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have

$$c(C_1) \ge$$

For i = 1, ..., k:

Compute a minimum cost isolating cut C_i for t_i .

Return the union of \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

Ignore the most expensive of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(C) \le \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have $c(C_1) \ge \frac{1}{k} \sum_{i=1}^k c(C_i)$.

$$c(C_1) \geq \frac{1}{k} \sum_{i=1}^{\kappa} c(C_i).$$

Theorem. This algorithm is a factor-()-approximation algorithm for MultiwayCut.

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Observation.A =

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Observation. $A = \bigcup_{i=1}^{k} A_i$

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 $A_i = \{uv \in A \colon u \in K_i, v \notin K_i\}$

Theorem. This algorithm is a factor-(2 - 2/k)-approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut *A*:

 K_k

 K_k

$$ALG = (k-1)(k-1)$$

$$ALG = (k-1)(k-1)$$

$$ALG = (k-1)(k-1)$$

$$ALG = (k-1)(k-1)$$

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i$ =

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT =

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2k-2}{k}$ =

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2k-2}{k} = 2 - \frac{2}{k}$

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2k-2}{k} = 2 - \frac{2}{k}$

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2k-2}{k} = 2 - \frac{2}{k}$

better?

The best known approximation factor for

MultiwayCut is $1.2965 - \frac{1}{k}$.

[Sharma & Vondrák '14]

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2k-2}{k} = 2 - \frac{2}{k}$

The best known approximation factor for

MultiwayCut is $1.2965 - \frac{1}{k}$.

[Sharma & Vondrák '14]

MultiwayCut cannot be approximated within factor 1.20016 - O(1/k) (unless P=NP).

[Bérczi, Chandrasekaran, Király & Madan '18]