Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part I:
SteinerTree

SteinerTree

Given: A graph $G=(V, E)$

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$ and a partition of V into a set T of terminals and a set S of Steiner vertices.

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$ and a partition of V into a set T of terminals and a set S of Steiner vertices.

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$ and a partition of V into a set T of terminals and a set S of Steiner vertices.

- terminal
- Steiner vertex

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$ and a partition of V into a set T of terminals and a set S of Steiner vertices.
Find: A subtree $B=\left(V^{\prime}, E^{\prime}\right)$ of G that contains all terminals, i.e., $T \subseteq V^{\prime}$

- terminal
- Steiner vertex

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$ and a partition of V into a set T of terminals and a set S of Steiner vertices.
Find: A subtree $B=\left(V^{\prime}, E^{\prime}\right)$ of G that contains all terminals, i.e., $T \subseteq V^{\prime}$
valid solution with cost 4

- terminal
- Steiner vertex

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$ and a partition of V into a set T of terminals and a set S of Steiner vertices.
Find: A subtree $B=\left(V^{\prime}, E^{\prime}\right)$ of G that contains all terminals, i.e., $T \subseteq V^{\prime}$, and has minimum cost $c\left(E^{\prime}\right):=\sum_{e \in E^{\prime}} c(e)$ among all subtrees with this property.
valid solution with cost 4

- terminal
- Steiner vertex

SteinerTree

Given: A graph $G=(V, E)$ with edge weights $c: E \rightarrow \mathbb{Q}^{+}$ and a partition of V into a set T of terminals and a set S of Steiner vertices.
Find: A subtree $B=\left(V^{\prime}, E^{\prime}\right)$ of G that contains all terminals, i.e., $T \subseteq V^{\prime}$, and has minimum cost $c\left(E^{\prime}\right):=\sum_{e \in E^{\prime}} c(e)$ among all subtrees with this property.
valid solution with cost 4 optimum solution with cost 3

- terminal
- Steiner vertex

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

not complete

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

not complete not metric

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

not complete not metric

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

not complete not metric

complete metric

Lecture 3:
SteinerTree and MultiwayCut

Part II:

Approximation Preserving Reduction

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems.

Approximation Preserving Reduction
Let Π_{1}, Π_{2} be minimization problems.

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} ist a tuple $(f, 8)$ of poly-time computable functions with the following properties.

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} ist a tuple $(f, 8)$ of poly-time computable functions with the following properties.
(i) For each instance I_{1} of $\Pi_{1}, I_{2}:=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} ist a tuple $(f, 8)$ of poly-time computable functions with the following properties.
(i) For each instance I_{1} of $\Pi_{1}, I_{2}:=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
problems
instances

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} ist a tuple $(f, 8)$ of poly-time computable functions with the following properties.
(i) For each instance I_{1} of $\Pi_{1}, I_{2}:=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} ist a tuple $(f, 8)$ of poly-time computable functions with the following properties.
(i) For each instance I_{1} of $\Pi_{1}, I_{2}:=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
(ii) For each feasible solution t of $I_{2}, s:=8\left(I_{1}, t\right)$ is a feasible solution of I_{1} with $\mathrm{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \mathrm{obj}_{\Pi_{2}}\left(I_{2}, t\right)$.

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} ist a tuple $(f, 8)$ of poly-time computable functions with the following properties.
(i) For each instance I_{1} of $\Pi_{1}, I_{2}:=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
(ii) For each feasible solution t of $I_{2}, s:=8\left(I_{1}, t\right)$ is a feasible solution of I_{1} with $\mathrm{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \mathrm{obj}_{\Pi_{2}}\left(I_{2}, t\right)$.

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} ist a tuple $(f, 8)$ of poly-time computable functions with the following properties.
(i) For each instance I_{1} of $\Pi_{1}, I_{2}:=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
(ii) For each feasible solution t of $I_{2}, s:=\delta\left(I_{1}, t\right)$ is a feasible solution of I_{1} with $\mathrm{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \mathrm{obj}_{\Pi_{2}}\left(I_{2}, t\right)$.

Approximation Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximation preserving reduction from Π_{1} to Π_{2} ist a tuple $(f, 8)$ of poly-time computable functions with the following properties.
(i) For each instance I_{1} of $\Pi_{1}, I_{2}:=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
(ii) For each feasible solution t of $I_{2}, s:=\delta\left(I_{1}, t\right)$ is a feasible solution of I_{1} with $\mathrm{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \mathrm{obj}_{\Pi_{2}}\left(I_{2}, t\right)$.

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction (f, s) from to Π_{2}.

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor ? approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor ? approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.
problems
instances
solutions

Π_{2}
I_{2}
α-approximation
t

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.
Set $I_{2}:=\quad, t:=\quad$ and $s:=$

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.
Set $I_{2}:=f\left(I_{1}\right), t:=\quad$ and $s:=$

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.
Set $I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right)$ and $s:=$

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.
Set $I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right)$ and $s:=g\left(I_{1}, t\right)$.

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

$$
\text { Set } I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right) \text { and } s:=g\left(I_{1}, t\right) .
$$

Then:
$\mathrm{obj}_{\Pi_{1}}\left(I_{1}, s\right)$

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

$$
\text { Set } I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right) \text { and } s:=g\left(I_{1}, t\right) .
$$

Then:
$\mathrm{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \mathrm{obj}_{\Pi_{2}}\left(I_{2}, t\right)$

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

$$
\text { Set } I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right) \text { and } s:=g\left(I_{1}, t\right) .
$$

Then:
$\mathrm{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \mathrm{obj}_{\Pi_{2}}\left(I_{2}, t\right) \leq \alpha \cdot \mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right)$

Approximation Preserving Reduction

Theorem. Let,Π_{2} be minimization problems where there is an approximation preserving reduction $(f$,$) from to \Pi_{2}$. Then there is a factor- α-approximation algorithm of for each factor- α-approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α-approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

$$
\text { Set } I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right) \text { and } s:=g\left(I_{1}, t\right) .
$$

Then:
obj $_{\Pi_{1}}\left(I_{1}, s\right) \leq$ obj $_{\Pi_{2}}\left(I_{2}, t\right) \leq \alpha \cdot \mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \alpha \cdot \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$

Lecture 3:
SteinerTree and MultiwayCut

Part III:

Reduction to MetricSteinerTree

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.
Proof.
(1) Mapping f
$\xrightarrow{f} 1_{2}$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.
Proof. (1) Mapping $f \quad{ }_{h_{1}} I_{2}$
Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f

Instance I_{1} of SteinerTree: Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$: Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of shortest $u-v$-path in G_{1}
$c_{2}(u, v) \leq c_{1}(u, v)$ for all $(u, v) \in E$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.
Proof. (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) OPT $\left(I_{2}\right) \leq \operatorname{OPT}\left(I_{1}\right)$

Let B^{*} be optimal Steiner tree for I_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) OPT $\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be optimal Steiner tree for I_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \operatorname{OPT}\left(I_{1}\right)$

Let B^{*} be optimal Steiner tree for 1
B^{*} is also a feasible solution for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be optimal Steiner tree for 1
B^{*} is also a feasible solution for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be optimal Steiner tree for 1
B^{*} is also a feasible solution for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same
OPT(I_{2})

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be optimal Steiner tree for 1
B^{*} is also a feasible solution for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same
$\operatorname{OPT}\left(I_{2}\right) \leq c_{2}\left(B^{*}\right)$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be optimal Steiner tree for 1
B^{*} is also a feasible solution for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same
$\mathrm{OPT}\left(I_{2}\right) \leq c_{2}\left(B^{*}\right) \leq c_{1}\left(B^{*}\right)$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be optimal Steiner tree for
B^{*} is also a feasible solution for I_{2}, since $E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same
$\operatorname{OPT}\left(I_{2}\right) \leq c_{2}\left(B^{*}\right) \leq c_{1}\left(B^{*}\right)=\operatorname{OPT}\left(I_{1}\right)$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.
Proof. (3) Mapping 8

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.
Proof.
(3)

Let B_{2} be Steiner tree of G_{2}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.
Proof.
(3)

Let B_{2} be Steiner tree of G_{2}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.

(3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.

(3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.

(3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.

(3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.

(3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.
Proof.
(3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
$c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.

(3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
$c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
$c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; not nec. a tree

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
$c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; not nec. a tree
Consider spanning tree B_{1} of G_{1}^{\prime}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
$c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; not nec. a tree
Consider spanning tree B_{1} of G_{1}^{\prime}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
$c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; not nec. a tree Consider spanning tree B_{1} of $G_{1}^{\prime} \rightsquigarrow$ Steiner tree B_{1} of G_{1}

MetricSteinerTree

Theorem. There is an approximation preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be Steiner tree of G_{2}
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$-path in G_{1}.
$c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; not nec. a tree Consider spanning tree B_{1} of $G_{1}^{\prime} \rightsquigarrow$ Steiner tree B_{1} of G_{1} $c_{1}\left(B_{1}\right) \leq c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$

Approximation Algorithms

Lecture 3:
 SteinerTree and MultiwayCut

Part IV:
2-Approximation for SteinerTree

Joachim Spoerhase
Winter 2021/22

2-Approximation for SteinerTree

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2 \cdot$ OPT.

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2$. OPT.

G

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2 \cdot$ OPT.

G

$G[T]$

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2$. OPT.

G

$G[T]$

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2 \cdot$ OPT.

G

$G[T]$

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals $\rightsquigarrow c(H) \leq c\left(T^{\prime}\right)=2 \cdot$ OPT, since G is metric

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals $\rightsquigarrow c(H) \leq c\left(T^{\prime}\right)=2 \cdot$ OPT, since G is metric MST B of $G[T]$ has $c(B) \leq c(H) \leq 2 \cdot$ OPT,

Proof of Approximation Factor

Consider optimal Steiner tree B^{*}
Duplicate all edges in $B^{*} \rightsquigarrow$ Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$
Find an Eulerian tour T^{\prime} in $B^{\prime} \rightsquigarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OPT}$ Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals $\rightsquigarrow c(H) \leq c\left(T^{\prime}\right)=2 \cdot$ OPT, since G is metric MST B of $G[T]$ has $c(B) \leq c(H) \leq 2 \cdot$ OPT, since H is a spanning tree of $G[T]$

Analysis Sharp?

Analysis Sharp?

- terminal

Analysis Sharp?

- terminal

- cost 2

Analysis Sharp?

- terminal
- Steiner vertex
- cost 2

Analysis Sharp?

- terminal
- Steiner vertex
—— cost 2

Analysis Sharp?

- terminal
- Steiner vertex
- cost 2

Analysis Sharp?
MST of $G[T]$ with $\operatorname{cost} 2(n-1)$

- terminal
- Steiner vertex
_ cost 1
—— cost 2

Analysis Sharp?

MST of $G[T]$ with $\operatorname{cost} 2(n-1)$
Optimal solution with cost n

- terminal
- Steiner vertex
—_ cost 1
—— cost 2

Analysis Sharp?

MST of $G[T]$ with $\operatorname{cost} 2(n-1)$
Optimal solution with cost n

$\frac{2(n-1)}{n} \rightarrow 2$

- terminal
- Steiner vertex
- cost 1
- cost 2

Analysis Sharp?

MST of $G[T]$ with $\operatorname{cost} 2(n-1)$
Optimal solution with cost n
better?

$$
\frac{2(n-1)}{n} \rightarrow 2
$$

- terminal
- Steiner vertex
- cost 1
- cost 2

Analysis Sharp?

MST of $G[T]$ with $\operatorname{cost} 2(n-1)$
Optimal solution with cost n
better?
The best-known approximation factor for
SteinerTree is $\ln (4)+\varepsilon \approx 1.39$

$$
\frac{2(n-1)}{n} \rightarrow 2
$$

- terminal
- Steiner vertex
- cost 1
—— cost 2
[Byrka, Grandoni, Rothvoß \& Sanita '10]

Analysis Sharp?

MST of $G[T]$ with $\operatorname{cost} 2(n-1)$
Optimal solution with cost n
better?
The best-known approximation factor for SteinerTree is $\ln (4)+\varepsilon \approx 1.39$
[Byrka, Grandoni, Rothvoß \& Sanita '10]
SteinerTree cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless $\mathrm{P}=\mathrm{NP}$)

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part V:
MultiwayCut

MultiwayCut

Given: A connected graph $G=(V, E)$

MultiwayCut
Given: A connected graph $G=(V, E)$

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V, E-E^{\prime}\right)$ are connected.

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V, E-E^{\prime}\right)$ are connected.

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V, E-E^{\prime}\right)$ are connected. Find: A minimum cost multiway cut of T.

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V, E-E^{\prime}\right)$ are connected. Find: A minimum cost multiway cut of T.

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V, E-E^{\prime}\right)$ are connected. Find: A minimum cost multiway cut of T.

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V, E-E^{\prime}\right)$ are connected. Find: A minimum cost multiway cut of T.

MultiwayCut

Given: A connected graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}^{+}$and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V, E-E^{\prime}\right)$ are connected. Find: A minimum cost multiway cut of T.

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges separating t_{i} from all other terminals.

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges separating t_{i} from all other terminals.

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges separating t_{i} from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges separating t_{i} from all other terminals.

Minimum cost isolating cut can be computed efficiently!

S

Add dummy terminal s

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges separating t_{i} from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal s

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges separating t_{i} from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal s

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges separating t_{i} from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal s

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges separating t_{i} from all other terminals.

Minimum cost isolating cut can be computed efficiently!

Add dummy terminal s and find minimum cost $s-t_{i}$-cut.

Approximation Algorithms

Lecture 3:
 SteinerTree and MultiwayCut

Part VI:
Algorithm for MultiwayCut

Algorithm MultiwayCut

For $i=1, \ldots, k$:
 Compute a minimum cost isolating cut C_{i} for t_{i}.

Algorithm MultiwayCut

For $i=1, \ldots, k$:
Compute a minimum cost isolating cut C_{i} for t_{i}.
Return the union of \mathcal{C} of the $k-1$ cheapest such isolating cuts.

Algorithm MultiwayCut

For $i=1, \ldots, k$:
Compute a minimum cost isolating cut C_{i} for t_{i}.
Return the union of \mathcal{C} of the $k-1$ cheapest such isolating cuts.
In other words:
Ignore the most expensive of the isolating cuts C_{1}, \ldots, C_{k}.

Algorithm MultiwayCut

For $i=1, \ldots, k$:
Compute a minimum cost isolating cut C_{i} for t_{i}.
Return the union of \mathcal{C} of the $k-1$ cheapest such isolating cuts.
In other words:
Ignore the most expensive of the isolating cuts C_{1}, \ldots, C_{k}.

$$
\Rightarrow c(C) \quad ? \quad \sum_{i=1}^{k} c\left(C_{i}\right)
$$

Algorithm MultiwayCut

For $i=1, \ldots, k$:
Compute a minimum cost isolating cut C_{i} for t_{i}.
Return the union of \mathcal{C} of the $k-1$ cheapest such isolating cuts.
In other words:
Ignore the most expensive of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(C) \leq \quad \sum_{i=1}^{k} c\left(C_{i}\right)$

Algorithm MultiwayCut

For $i=1, \ldots, k$:
Compute a minimum cost isolating cut C_{i} for t_{i}.
Return the union of \mathcal{C} of the $k-1$ cheapest such isolating cuts.
In other words:
Ignore the most expensive of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(C) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right) \quad$ because:

Algorithm MultiwayCut

For $i=1, \ldots, k$:
Compute a minimum cost isolating cut C_{i} for t_{i}.
Return the union of \mathcal{C} of the $k-1$ cheapest such isolating cuts.
In other words:
Ignore the most expensive of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(C) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right) \quad$ because:
for the most expensive cut of C_{1}, \ldots, C_{k}, say C_{1}, we have

$$
c\left(C_{1}\right) \geq
$$

Algorithm MultiwayCut

For $i=1, \ldots, k$:
Compute a minimum cost isolating cut C_{i} for t_{i}.
Return the union of \mathcal{C} of the $k-1$ cheapest such isolating cuts.

In other words:

Ignore the most expensive of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(\mathcal{C}) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right) \quad$ because:
for the most expensive cut of C_{1}, \ldots, C_{k}, say C_{1}, we have

$$
c\left(C_{1}\right) \geq \frac{1}{k} \sum_{i=1}^{k} c\left(C_{i}\right)
$$

Approximation Factor

Theorem. This algorithm is a factor-()approximation algorithm for MultiwayCut.

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ -

 approximation algorithm for MultiwayCut.Proof. Consider optimal multiway cut A :

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ -

 approximation algorithm for MultiwayCut.Proof. Consider optimal multiway cut A :

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ -

 approximation algorithm for MultiwayCut.Proof. Consider optimal multiway cut A :

$$
A_{i}=\left\{u v \in A: u \in K_{i}, v \notin K_{i}\right\}
$$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

$$
A_{i}=\left\{u v \in A: u \in K_{i}, v \notin K_{i}\right\}
$$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

$$
A_{i}=\left\{u v \in A: u \in K_{i}, v \notin K_{i}\right\}
$$

Observation. $A=$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

$$
A_{i}=\left\{u v \in A: u \in K_{i}, v \notin K_{i}\right\}
$$

Observation. $A=\bigcup_{i=1}^{k} A_{i}$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

$$
A_{i}=\left\{u v \in A: u \in K_{i}, v \notin K_{i}\right\}
$$

Observation. $A=\bigcup_{i=1}^{k} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(A)=2 \cdot \mathrm{OPT}$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

$$
A_{i}=\left\{u v \in A: u \in K_{i}, v \notin K_{i}\right\}
$$

Observation. $A=\bigcup_{i=1}^{k} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(A)=2 \cdot \mathrm{OPT}$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

Observation. $A=\bigcup_{i=1}^{k} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(A)=2 \cdot \mathrm{OPT}$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

Observation. $A=\bigcup_{i=1}^{k} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(A)=2 \cdot \mathrm{OPT}$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

Observation. $A=\bigcup_{i=1}^{k} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(A)=2 \cdot \mathrm{OPT}$

Approximation Factor

Theorem. This algorithm is a factor-($2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider optimal multiway cut A :

Observation. $A=\bigcup_{i=1}^{k} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(A)=2 \cdot \mathrm{OPT}$

Analysis Sharp?
K_{k}

Analysis Sharp?

Analysis Sharp?

Analysis Sharp?

Analysis Sharp?

Analysis Sharp?

Analysis Sharp?

Analysis Sharp?

Analysis Sharp?

Analysis Sharp?

$$
\operatorname{ALG}=(k-1)(k-1)
$$

Analysis Sharp?

$$
\operatorname{ALG}=(k-1)(k-1)
$$

Analysis Sharp?

$$
\begin{aligned}
& \mathrm{ALG}=(k-1)(k-1) \\
& \mathrm{OPT}=\sum_{i=1}^{k-1} i=
\end{aligned}
$$

Analysis Sharp?

$$
\begin{aligned}
& \text { ALO }=(k-1)(k-1) \\
& \sim D=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2}
\end{aligned}
$$

Analysis Sharp?

$\mathrm{ALG}=(k-1)(k-1)$
$\mathrm{OPT}=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2}$
$\mathrm{ALG} / \mathrm{OPT}=$

Analysis Sharp?

$$
\begin{aligned}
& \text { ALG }=(k-1)(k-1) \\
& \text { OPT }=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \text { ALG } / \text { OPT }=\frac{2 k-2}{k}=
\end{aligned}
$$

Analysis Sharp?

$$
\begin{aligned}
& A \leq(K-1)(K-1) \\
& \text { DPr = }=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \text { AT~~~ }=\frac{2 k-2}{k}=2-\frac{2}{k}
\end{aligned}
$$

Analysis Sharp?

$$
\begin{aligned}
& \mathrm{ALG}=(k-1)(k-1) \\
& \mathrm{OPT}=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \mathrm{ALG} / \mathrm{OPT}=\frac{2 k-2}{k}=2-\frac{2}{k}
\end{aligned}
$$

Analysis Sharp?

K_{k}

$$
\begin{aligned}
& \text { ALG }=(k-1)(k-1) \\
& \text { OPT }=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \text { ALG } / \text { OPT }=\frac{2 k-2}{k}=2-\frac{2}{k}
\end{aligned}
$$

better?
The best known approximation factor for
MultiwayCut is $1.2965-\frac{1}{k}$.
[Sharma \& Vondrák '14]

Analysis Sharp?

K_{k}

$$
\begin{aligned}
& \mathrm{ALG}=(k-1)(k-1) \\
& \mathrm{OPT}=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \mathrm{ALG} / \mathrm{OPT}=\frac{2 k-2}{k}=2-\frac{2}{k}
\end{aligned}
$$

better?
The best known approximation factor for
MultiwayCut is $1.2965-\frac{1}{k}$.
[Sharma \& Vondrák '14]
MultiwayCut cannot be approximated within factor $1.20016-O(1 / k)$ (unless $\mathrm{P}=\mathrm{NP}$).

