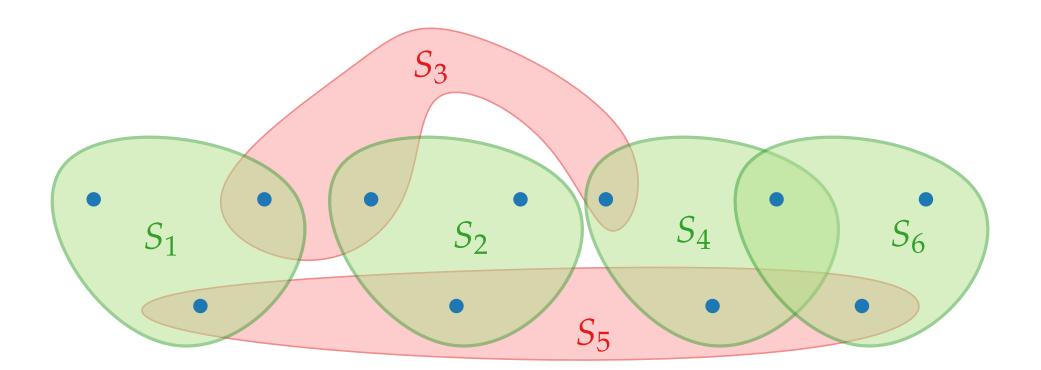
Lecture 2: SetCover and ShortestSuperString

Part I: SetCover

SetCover (card.)

Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.

Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimum cardinality.

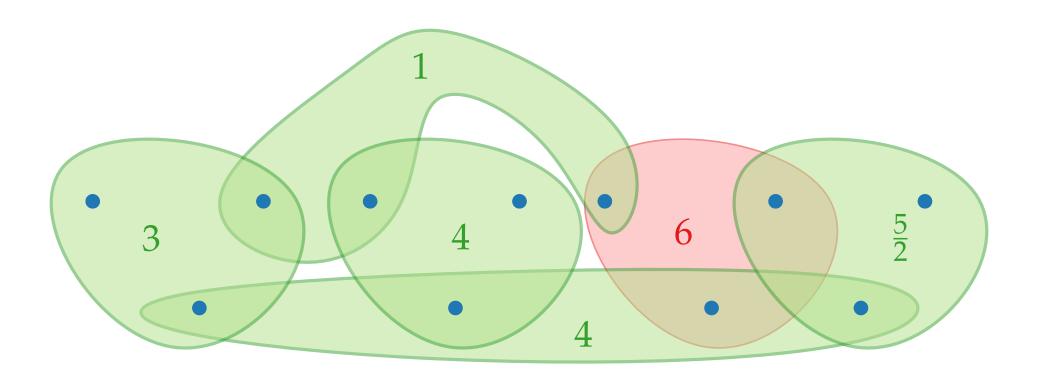


SetCover (general)

Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.

Each $S \in \mathcal{S}$ has $\cos t c(S) > 0$.

Find a **cover** $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimum cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.

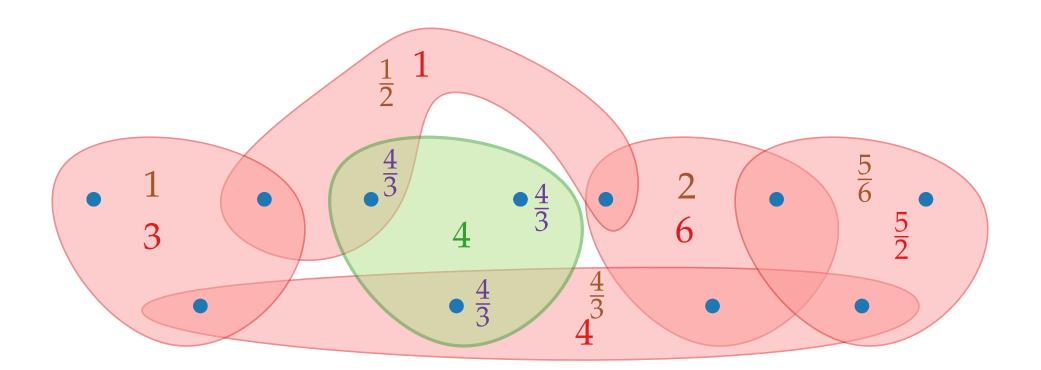


Lecture 2: SetCover and ShortestSuperString

Part II:
Greedy for SetCover

Iterative "Buying" of Elements

What is the real cost of picking a set? Set with k elements and cost c has per-element cost $\frac{c}{k}$. What happens if we "buy" a set? Fix price of elements bought and recompute per-element cost.



Iterative "Buying" of Elements

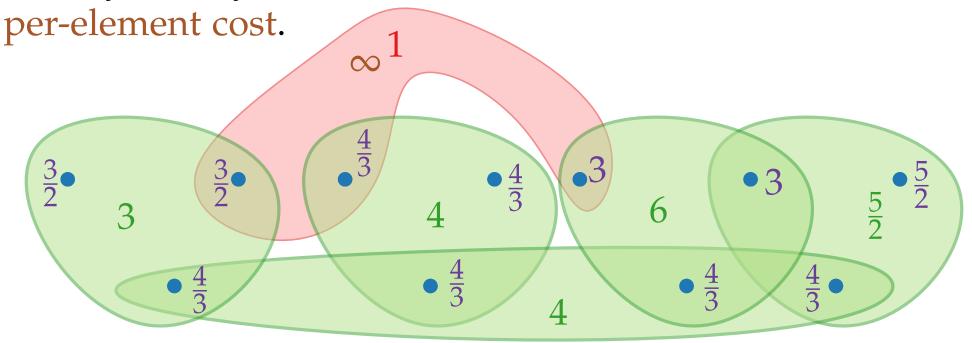
What is the real cost of picking a set?

Set with k elements and cost $\frac{c}{k}$ has per-element cost $\frac{c}{k}$.

What happens if we "buy" a set?

Fix price of elements bought and recompute per-element cost. $total cost: \sum_{u \in U} price(u)$

Greedy: Always choose the set with the minimum



Greedy for SetCover

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
   S' \leftarrow \emptyset
   while C \neq U do
         S \leftarrow \text{Set from } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
         foreach u \in S \setminus C do
            price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
         C \leftarrow C \cup S
         S' \leftarrow S' \cup \{S\}
   return \mathcal{S}'
                                                                        // Cover of U
```

Lecture 2:

SetCover and ShortestSuperString

Part III: Analysis

Analysis

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Proof. Iteration at which alg. buys $u_i \Rightarrow$

- $\leq j-1$ elements of *S* already bought
- $\geq \ell j + 1$ elements of *S* not yet bought
- **per-element cost for** S: $\leq c(S)/(\ell-j+1)$
- price by alg. no larger due to greedy choice

Analysis

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

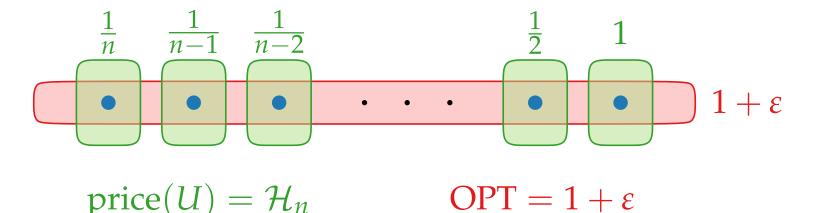
Lemma. price(S) := $\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. $OPT = \sum_{i=1}^m c(S_i)$ price $(U) = \sum_{u \in U} \operatorname{price}(u) \leq \sum_{i=1}^m \operatorname{price}(S_i)$ $\leq \sum_{i=1}^m c(S_i) \cdot \mathcal{H}_k = OPT \cdot \mathcal{H}_k$

Analysis tight?

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k.$$



better?

SetCover cannot be approximated within factor $(1 - o(1)) \cdot \ln(n)$ (unless P=NP)

Lecture 2: SetCover and ShortestSuperString

Part IV:
SHORTESTSUPERSTRING

SHORTESTSUPERSTRING (SSS)

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Example.

 $U := \{cbaa, abc, bcb\}$ cbaabcb

"covers" all strings in *U*

W.l.o.g.: No string s_i is a substring of any other string s_j .

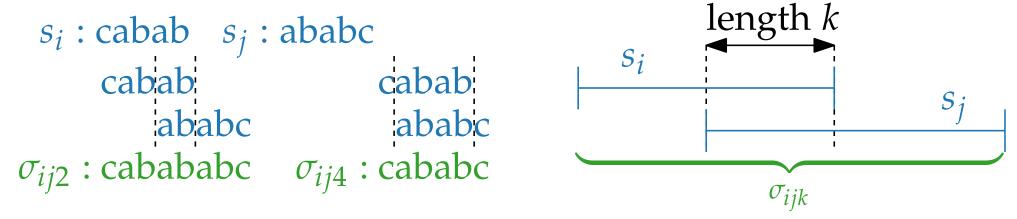
abcbaa abc bcb cbaa

SSS as a SetCover Problem

SetCover Instance: ground set U, set family S, costs c.

ground set $U := \{s_1, \ldots, s_n\}$

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)



 $S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ contains the elements of the ground set covered by σ_{ijk} .

$$c\left(S(\sigma_{ijk})\right) = |\sigma_{ijk}|$$
 (number of characters in σ_{ijk})
 $S = \{S(\sigma_{ijk}) \mid k > 0\}$ (possibly $i = j$)

Lecture 2:

SetCover and ShortestSuperString

Part V:

Solving ShortestSuperString via SetCover

Joachim Spoerhase

Winter 2021/22

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

$$OPT_{SSS} \leq OPT_{SC}$$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

 $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length $\sum_{i=1}^k |\pi_i| = \sum_{i=1}^k c(S(\pi_i)) = \text{OPT}_{SC}$.

Thus, $OPT_{SSS} \leq |s| = OPT_{SC}$.

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

Construct set cover with cost $\leq 2|s| = 2 \cdot \text{OPT}_{SSS}$.

 s_{b_1}

leftmost occurence of a string $s_{b_1} \in U$.

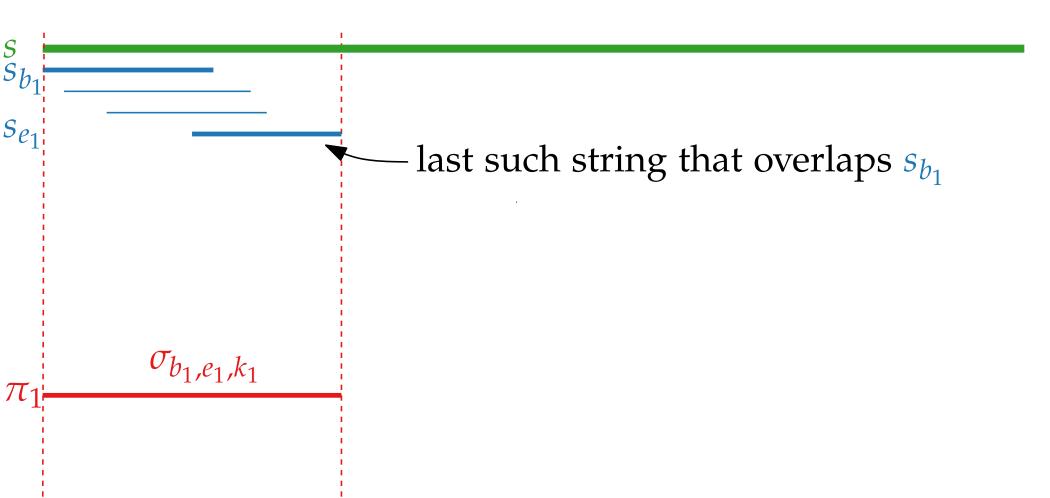
Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

Construct set cover with cost $\leq 2|s| = 2 \cdot OPT_{SSS}$.



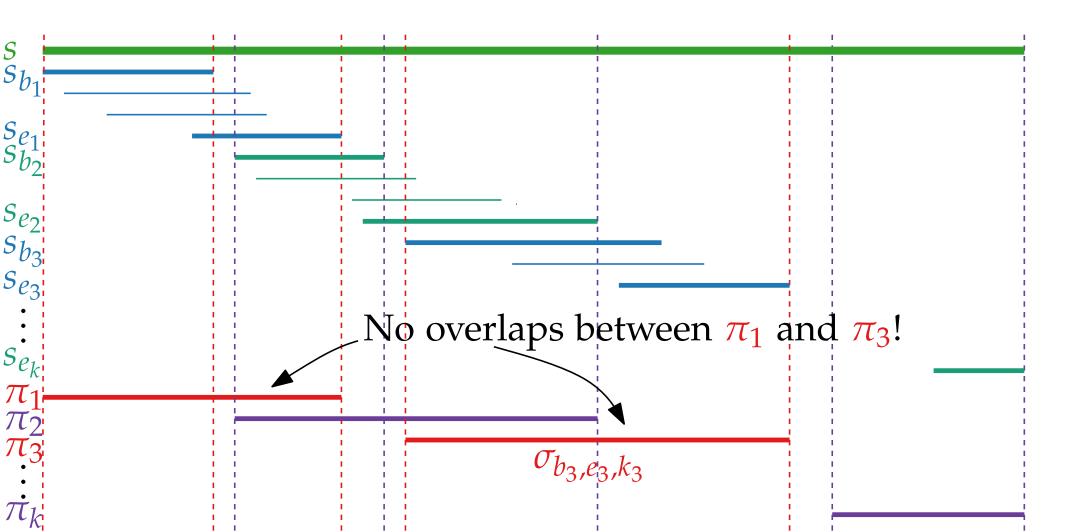
Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

Construct set cover with cost $\leq 2|s| = 2 \cdot OPT_{SSS}$.



Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Substrings π_i , π_{i+2} do not overlap.

Each character in s lies in at most **two** (subsequent) substrings, namely π_i and π_{i+1} .

$$\sum_{i} |\pi_{i}| \leq 2|s| = 2 \cdot \text{OPT}_{SSS}$$

Algorithm for SSS

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithms is a factor- $2\mathcal{H}_n$ -approximation algorithm for ShortestSuperString.

better?

The best-known approximation factor for ShortestSuperString is $\frac{71}{30} \approx 2.367$.

ShortestSuperString cannot be approximation within factor $\frac{333}{332} \approx 1.003$ (unless P=NP).