Approximation Algorithms

Lecture 2: SetCover and ShortestSuperString

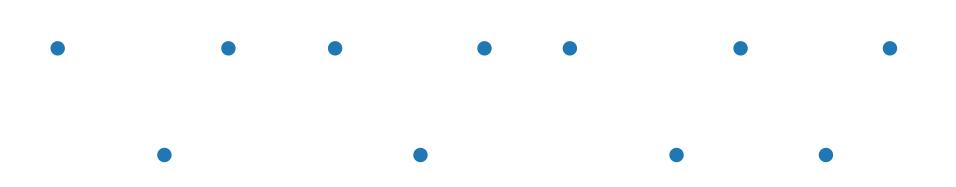
Part I: SetCover

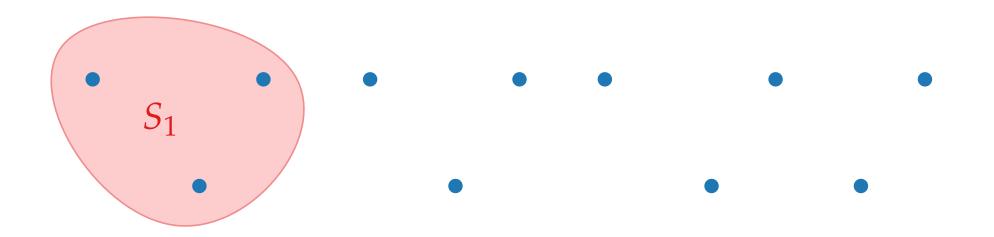
Joachim Spoerhase

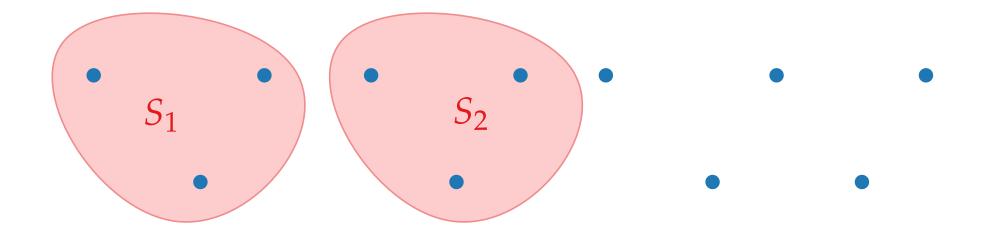
Winter 2021/22

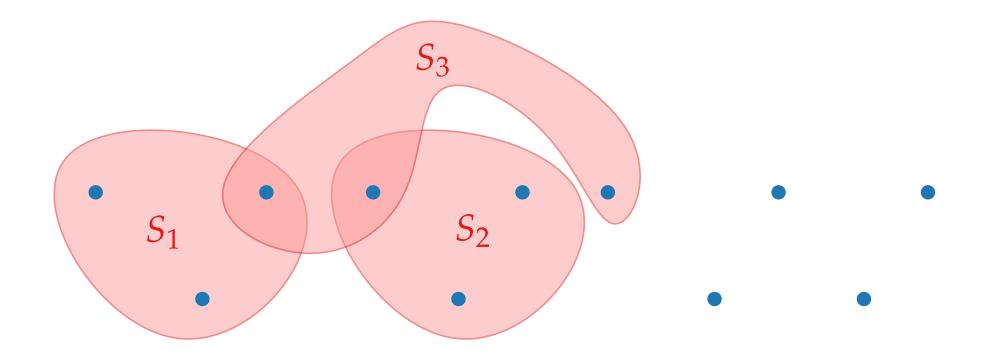
Given a **ground set** *U*

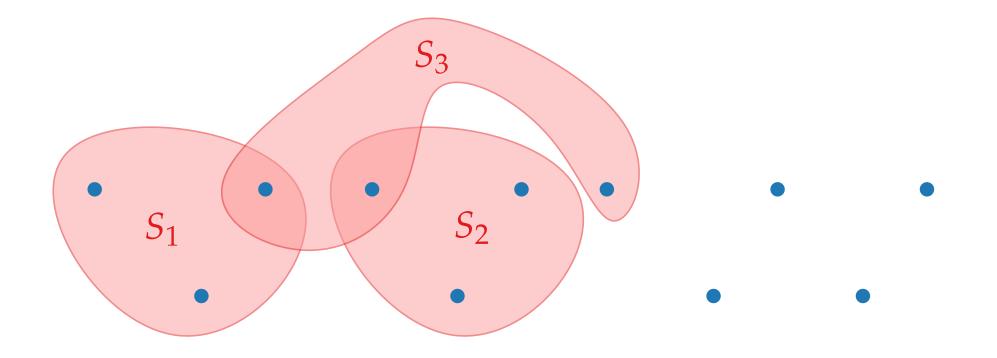
Given a **ground set** *U*

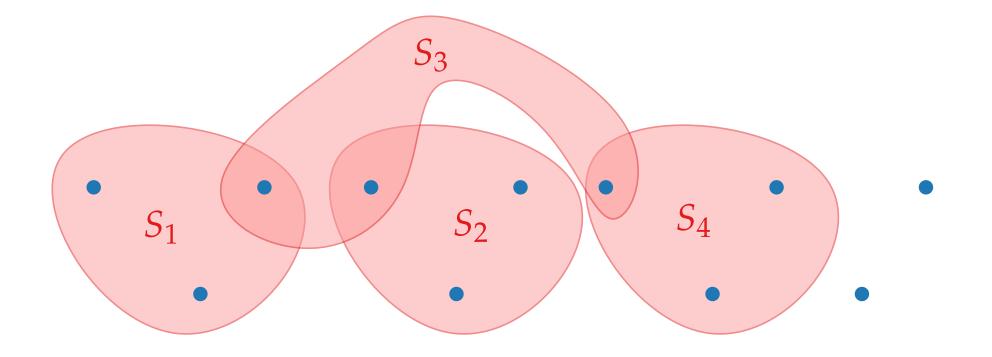


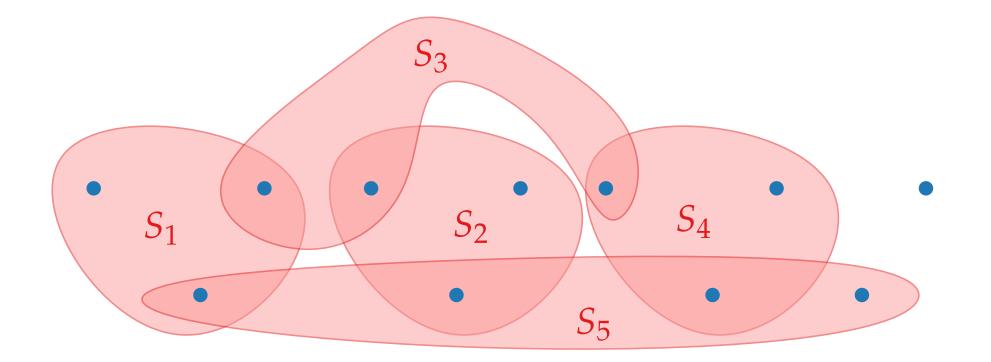


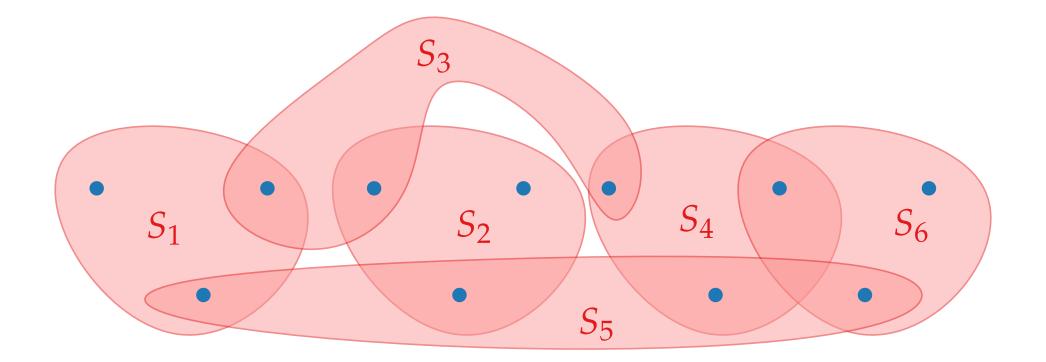




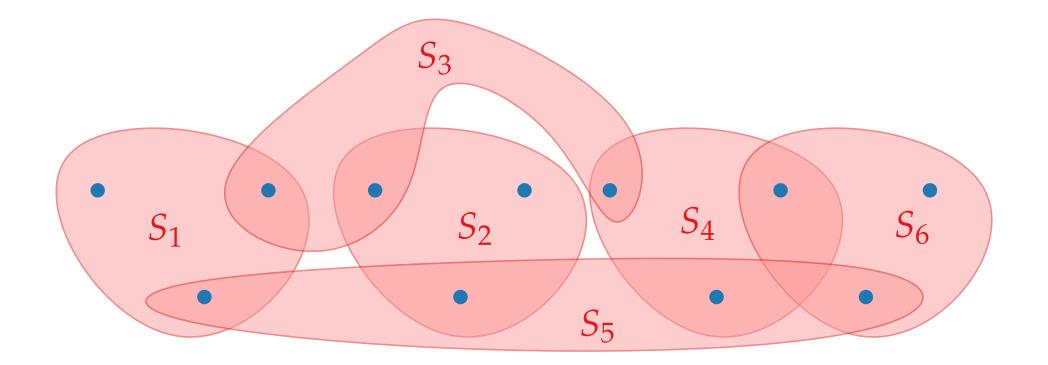




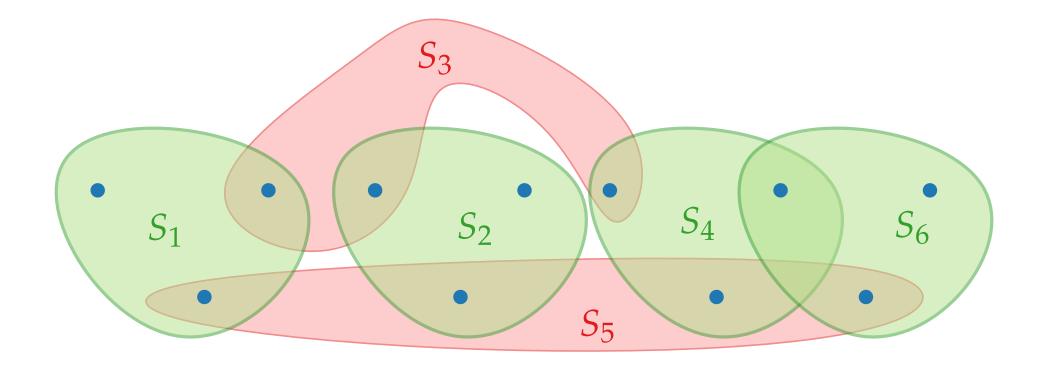




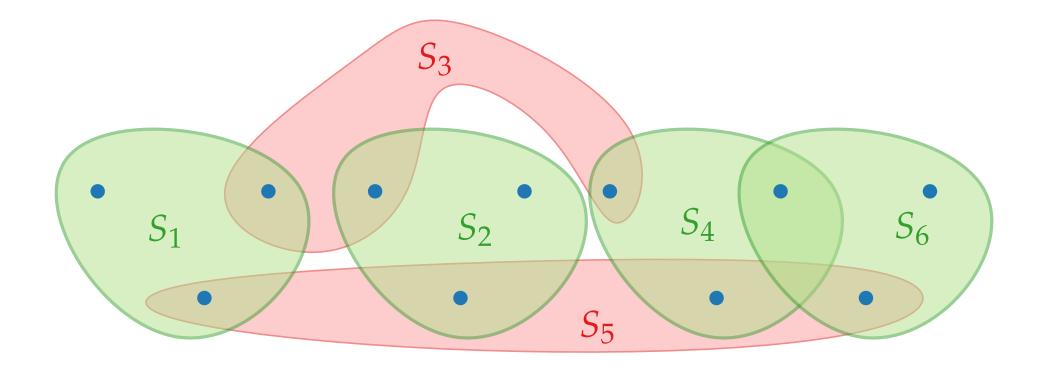
Given a ground set *U* and a family S of subsets of *U* with $\bigcup S = U$.



Given a ground set *U* and a family *S* of subsets of *U* with $\bigcup S = U$.

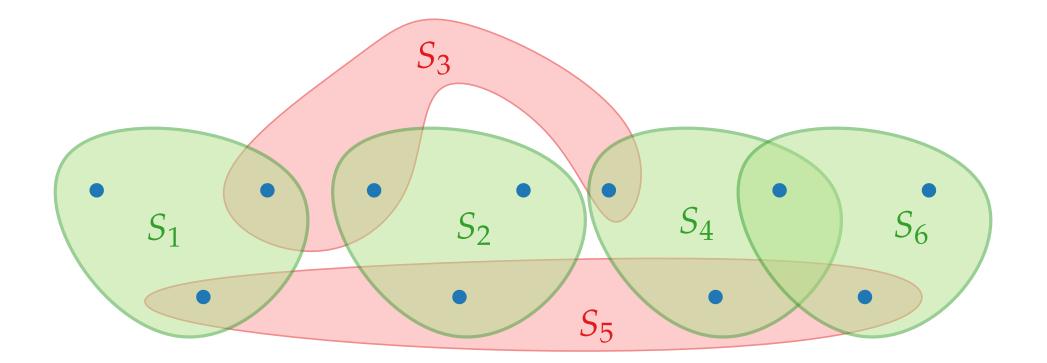


Given a ground set *U* and a family S of subsets of *U* with $\bigcup S = U$.

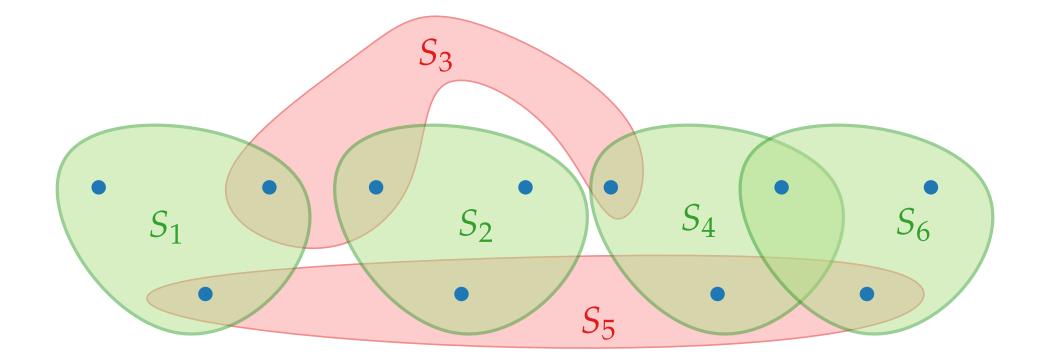


Given a **ground set** *U* and a family S of **subsets** of *U* with $\bigcup S = U$.

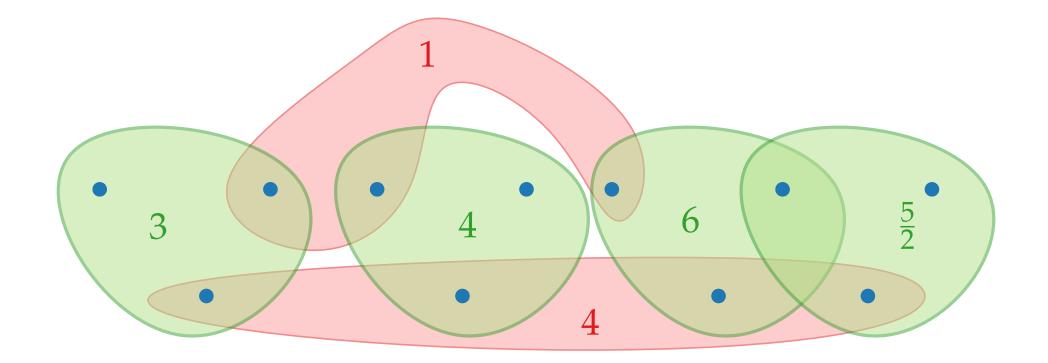
Each $S \in S$ has cost c(S) > 0.



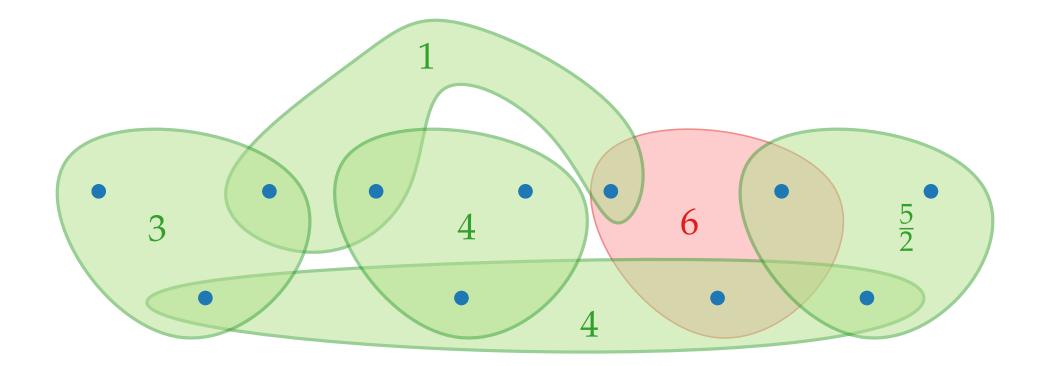
- Each $S \in S$ has cost c(S) > 0.
- Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimum cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.



- Each $S \in S$ has cost c(S) > 0.
- Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimum cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.



- Each $S \in S$ has cost c(S) > 0.
- Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimum cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.



Approximation Algorithms

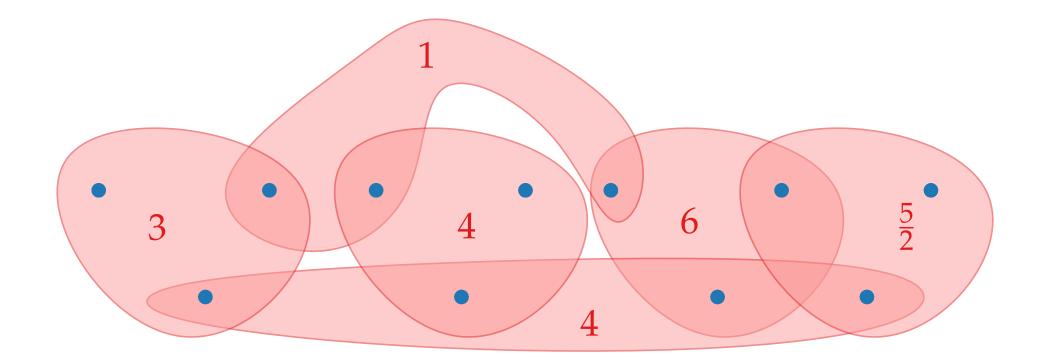
Lecture 2: SetCover and ShortestSuperString

Part II: Greedy for SetCover

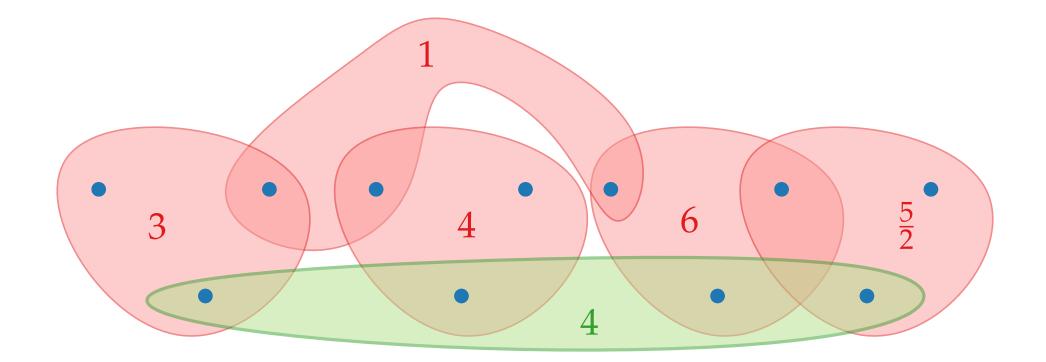
Joachim Spoerhase

Winter 2020/21

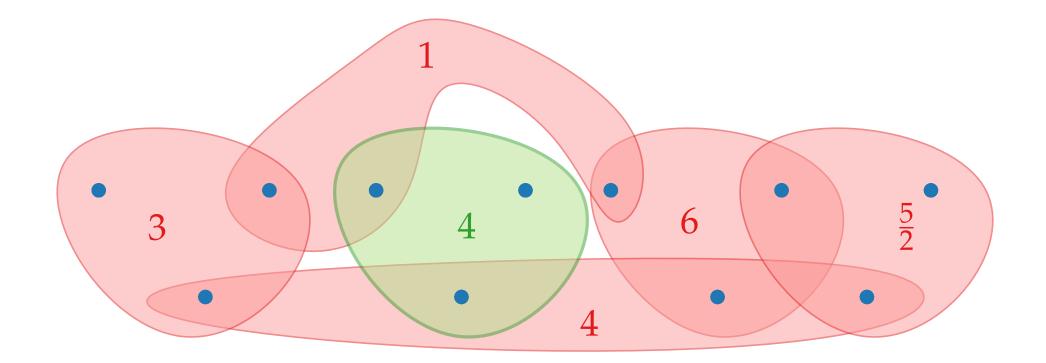
What is the real cost of picking a set?

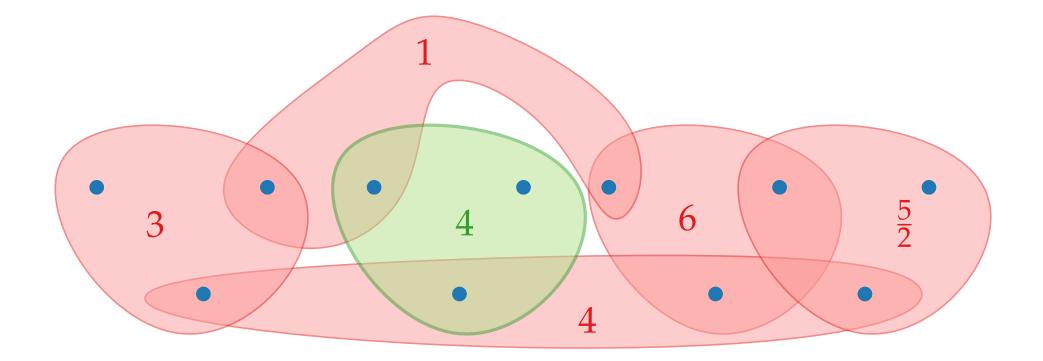


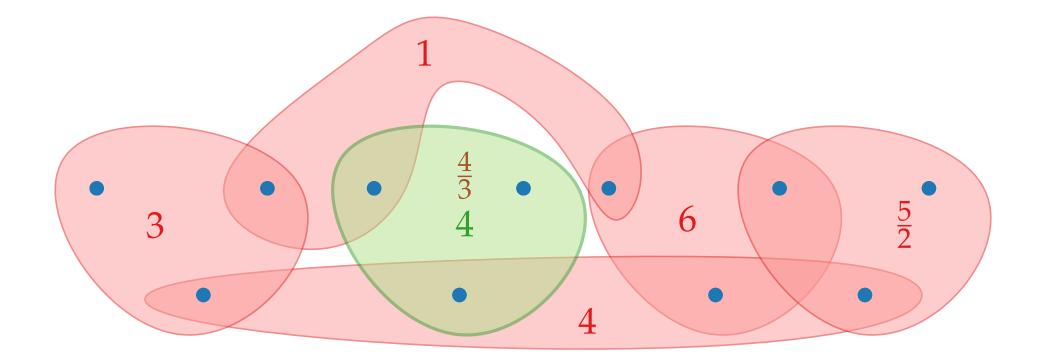
What is the real cost of picking a set?

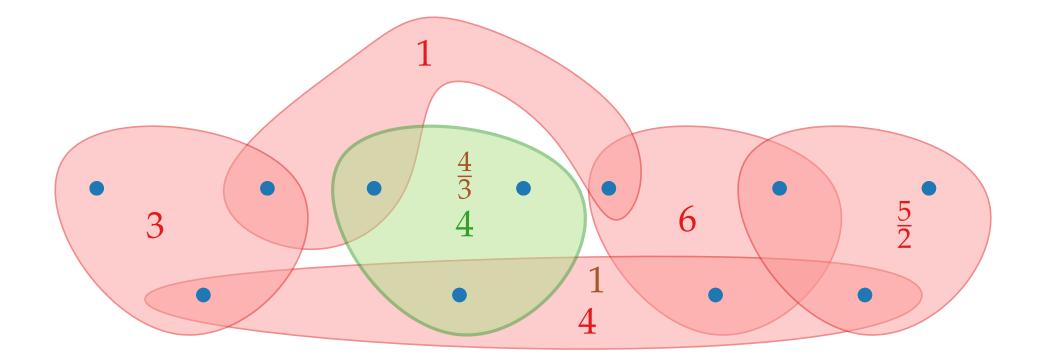


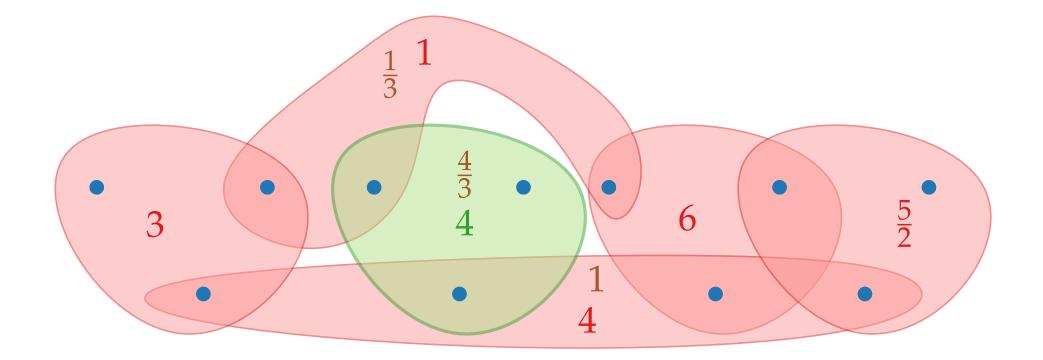
What is the real cost of picking a set?

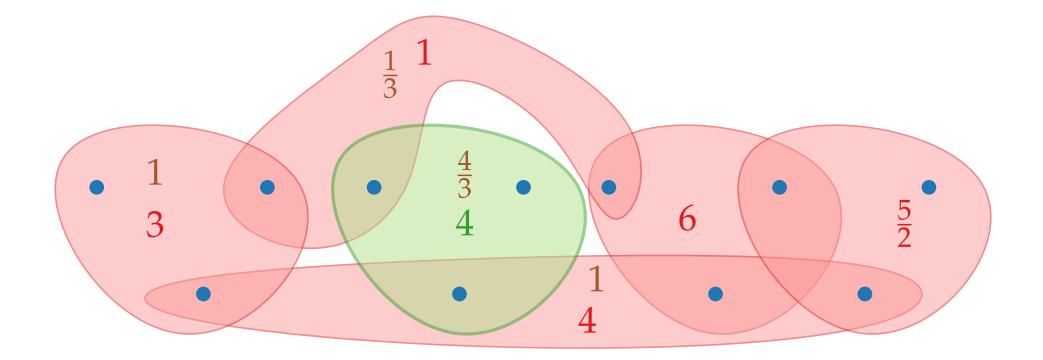


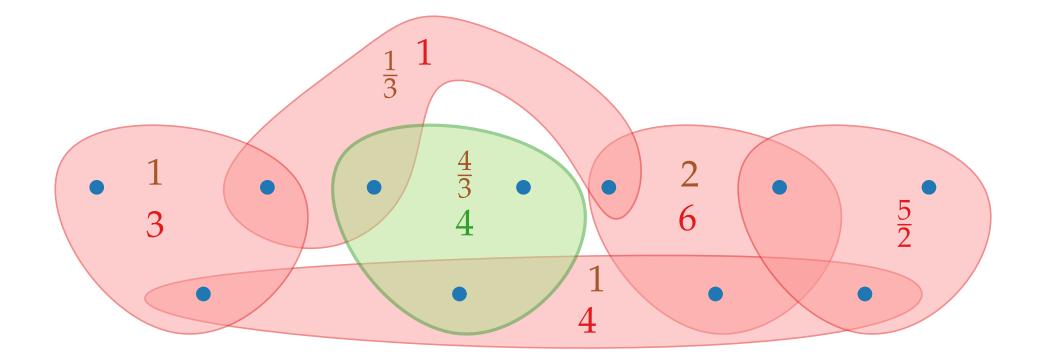


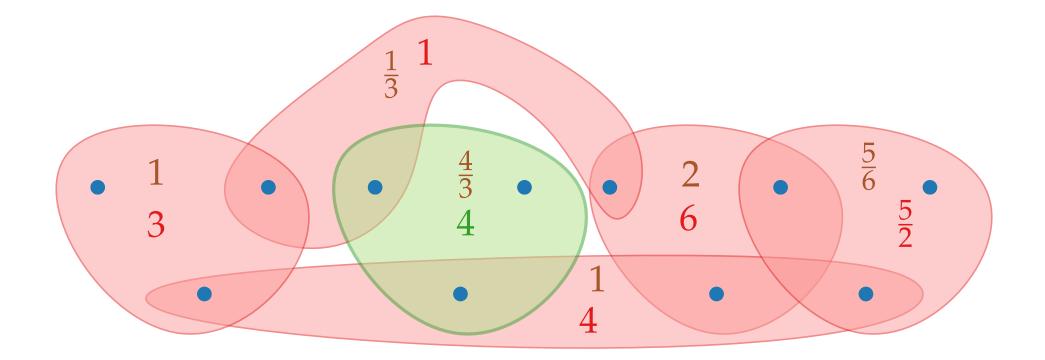




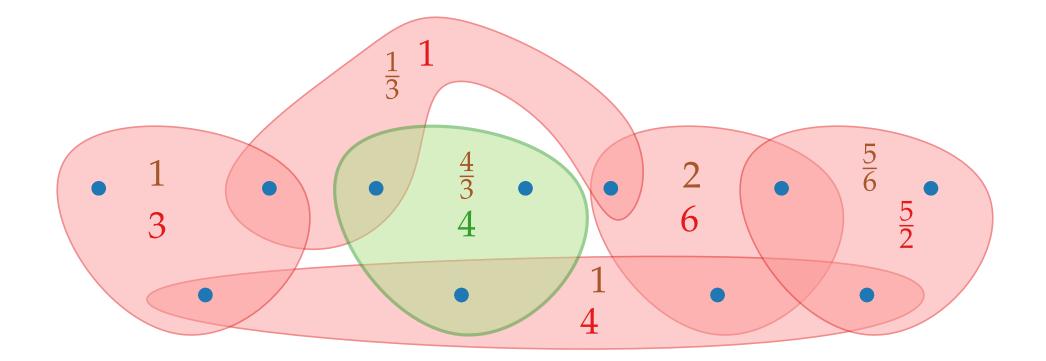


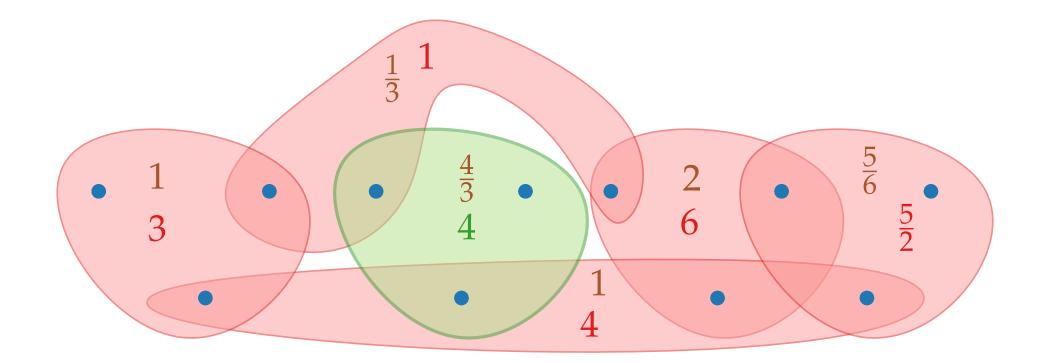


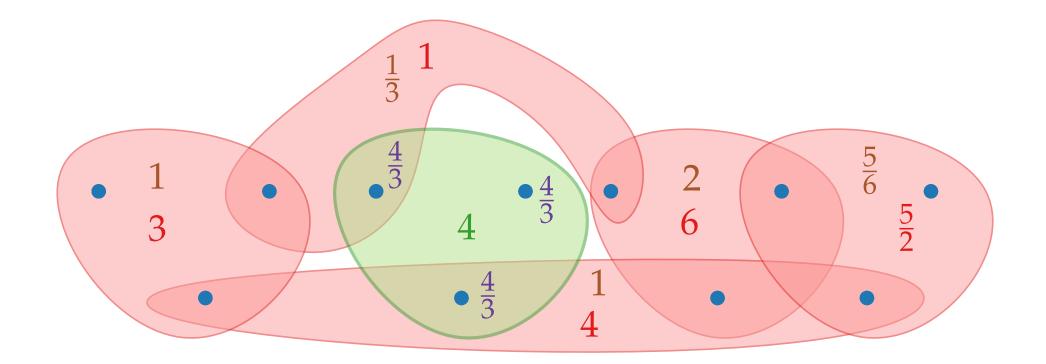


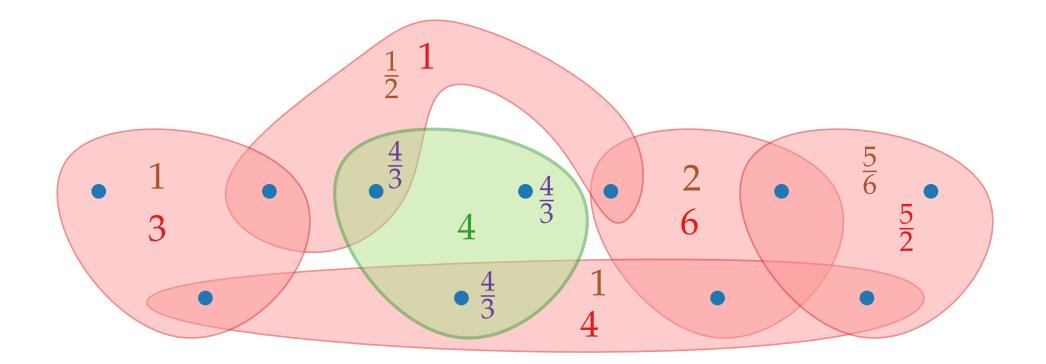


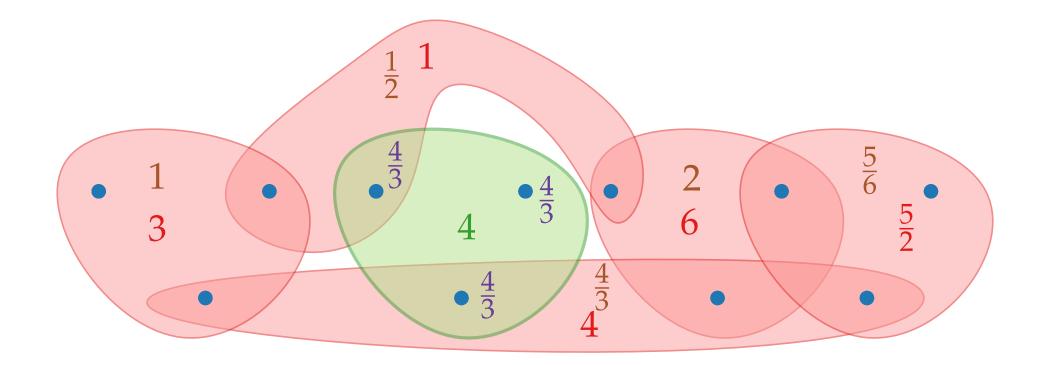
What is the real cost of picking a set? Set with *k* elements and cost *c* has per-element cost $\frac{c}{k}$. What happens if we "buy" a set?

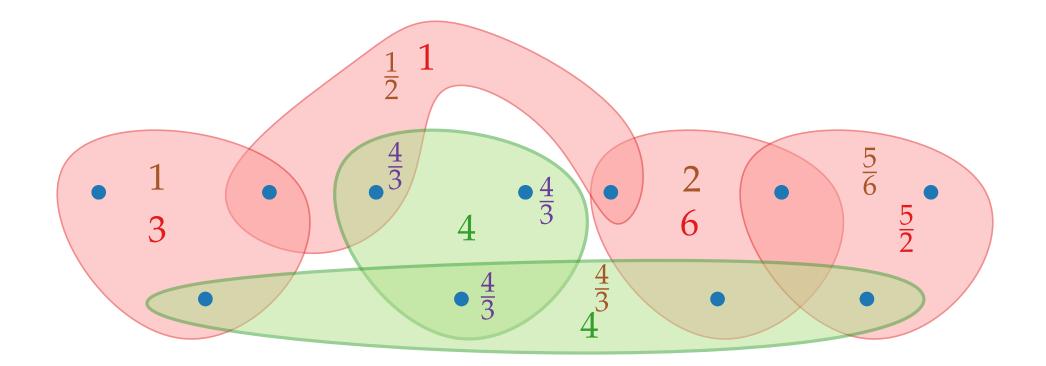


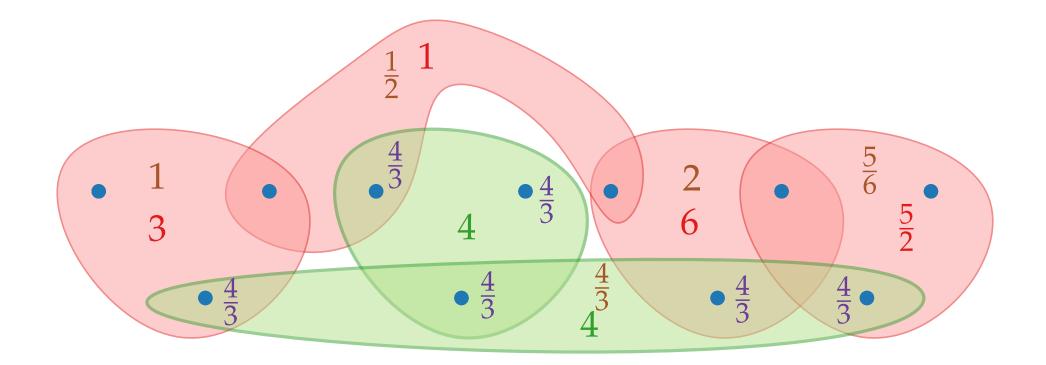


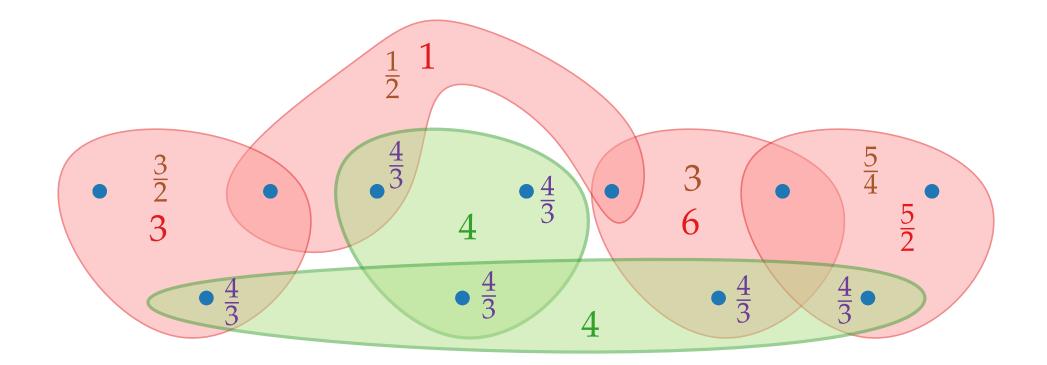


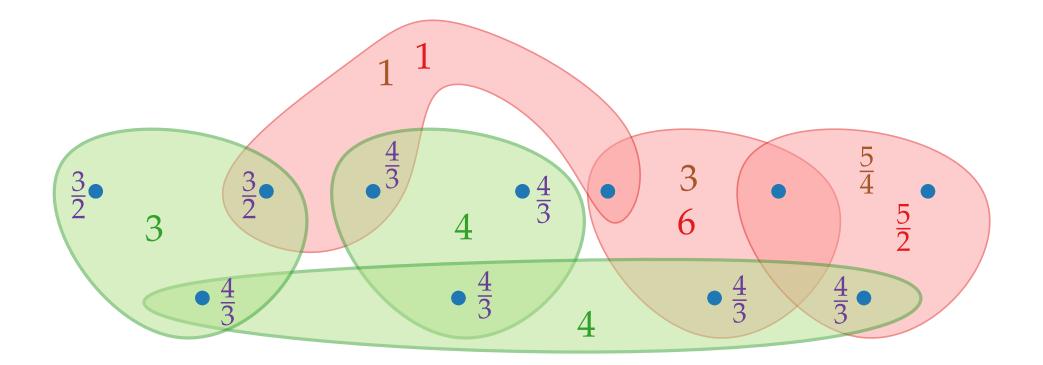


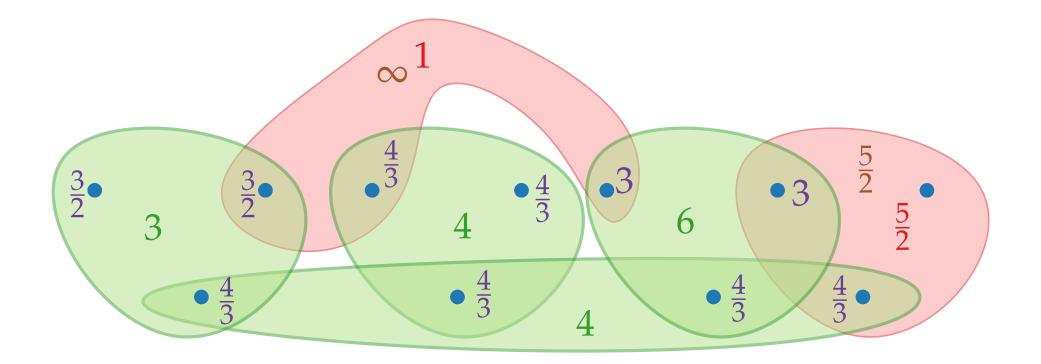


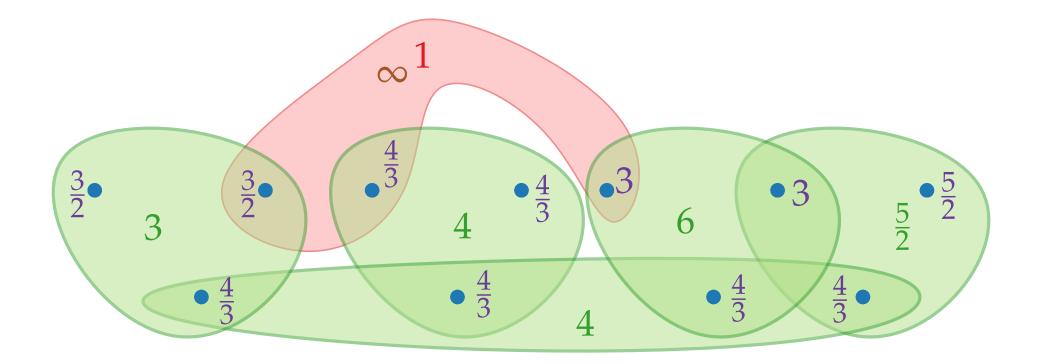


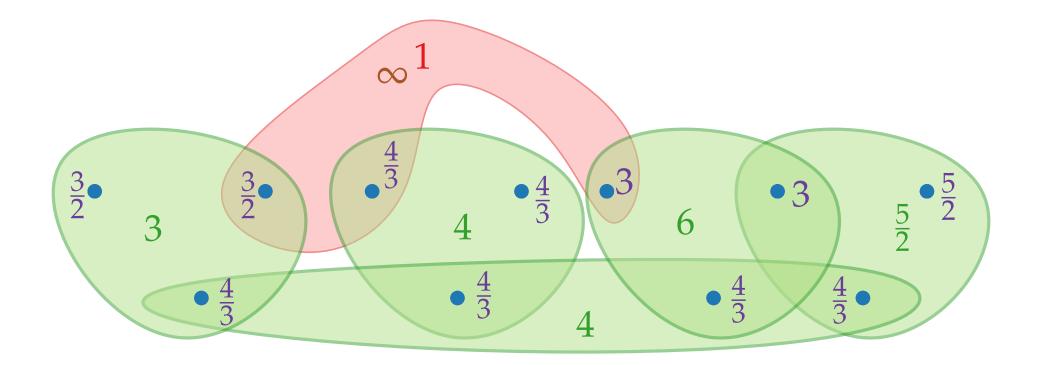






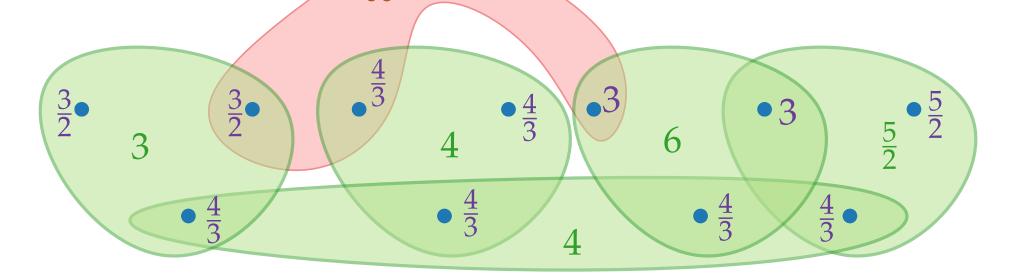




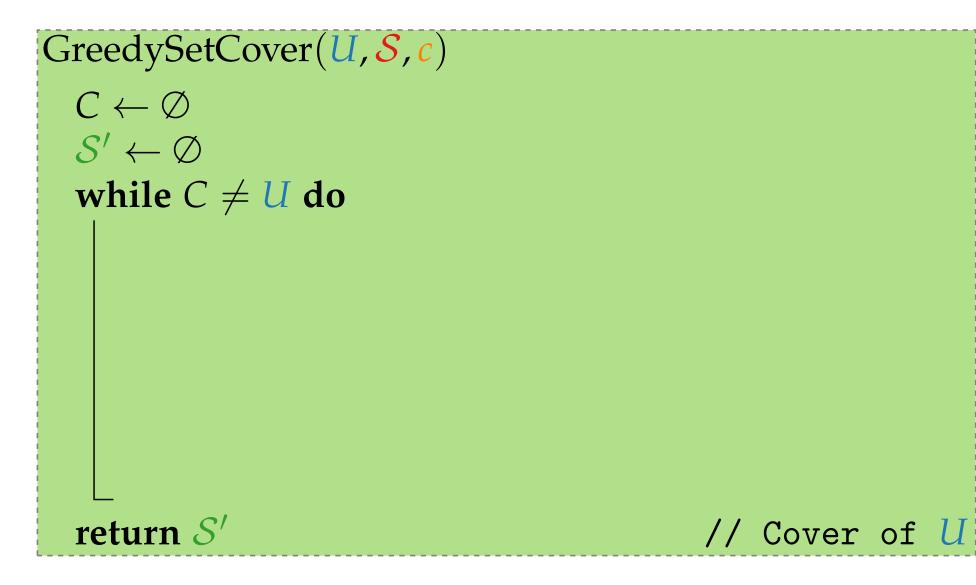


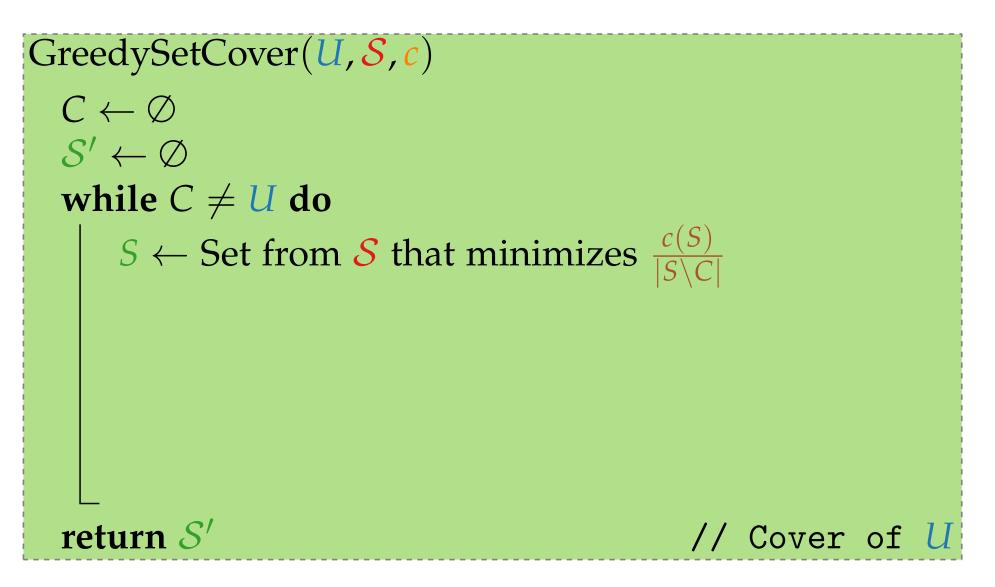
What is the real cost of picking a set? Set with *k* elements and cost *c* has per-element cost $\frac{c}{k}$. What happens if we "buy" a set? Fix price of elements bought and recompute per-element cost. Cost. $\sum_{u \in U} \operatorname{price}(u)$

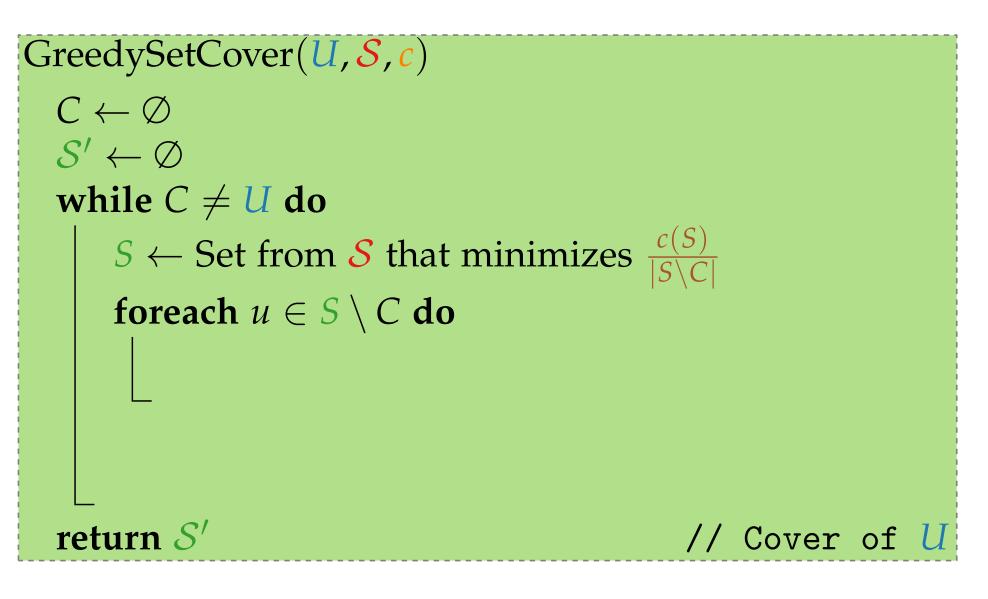
Greedy: Always choose the set with the minimum per-element cost. 1

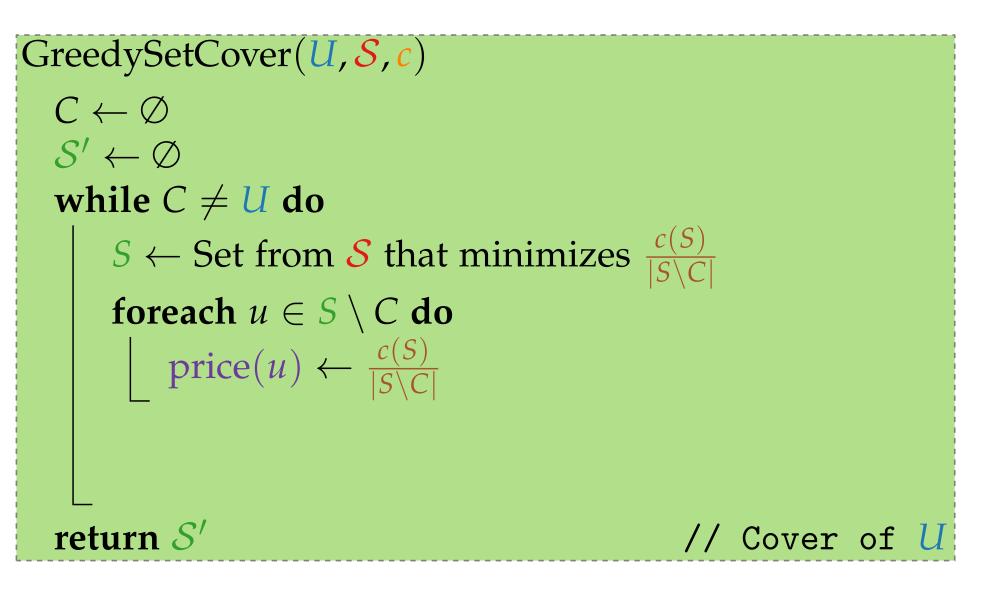


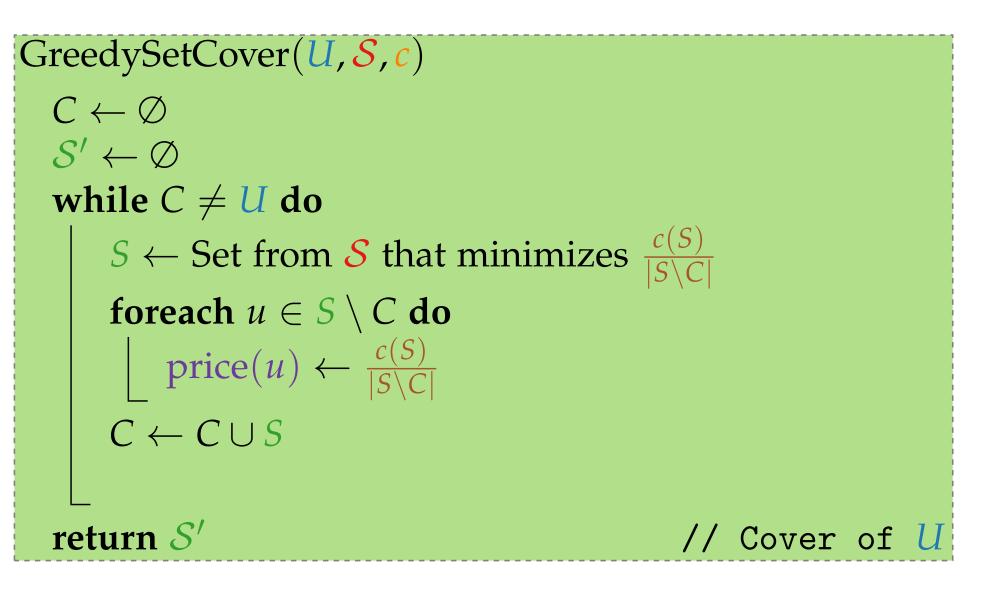
GreedySetCover(*U*, *S*, *c*) $C \leftarrow \emptyset$ $\mathcal{S}' \leftarrow \emptyset$ return S'// Cover of U

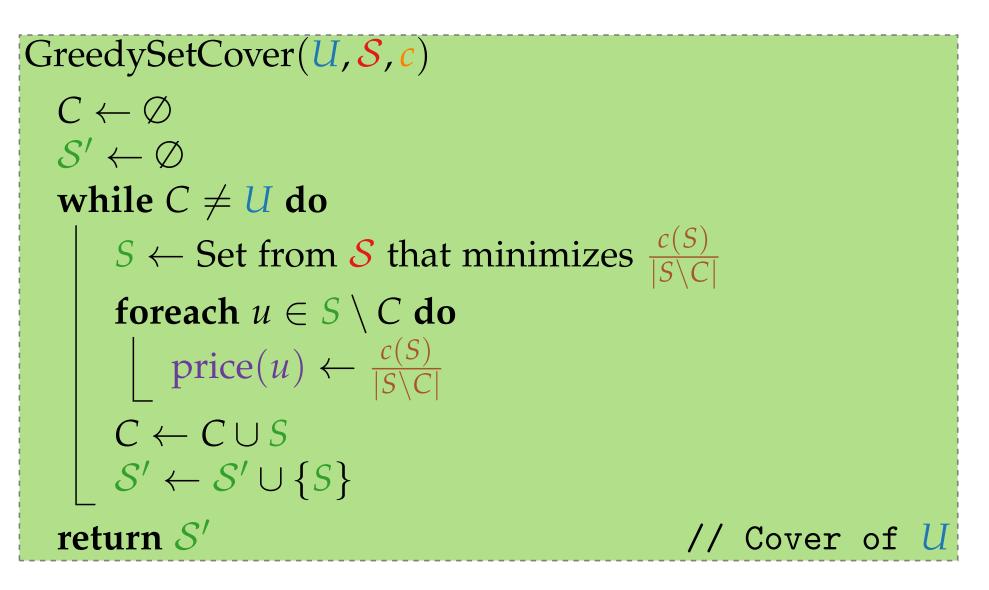












Approximation Algorithms

Lecture 2: SetCover and ShortestSuperString

Part III: Analysis

Joachim Spoerhase

Winter 2021/22

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_j) \leq$

Proof.

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma.	Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in
	the order they are covered ("bought") by
	GreedySetCover. Then
	$\operatorname{price}(u_j) \leq$

Proof. Iteration at which alg. buys $u_i \Rightarrow$

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_j) \leq$

Proof. Iteration at which alg. buys $u_j \Rightarrow \leq j - 1$ elements of *S* already bought

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_j) \leq$

Proof. Iteration at which alg. buys $u_j \Rightarrow$

■ $\leq j - 1$ elements of *S* already bought ■ $\geq \ell - j + 1$ elements of *S* not yet bought

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_j) \leq$

Proof. Iteration at which alg. buys $u_i \Rightarrow$

≤ *j* − 1 elements of *S* already bought
 ≥ *l* − *j* + 1 elements of *S* not yet bought
 per-element cost for *S*:

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_j) \leq d_j$

Proof. Iteration at which alg. buys $u_j \Rightarrow$

≤ *j* − 1 elements of *S* already bought
 ≥ *l* − *j* + 1 elements of *S* not yet bought
 per-element cost for *S*: ≤ *c*(*S*)/(*l* − *j* + 1)

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_j) \leq d_j$

Proof.

Iteration at which alg. buys $u_j \Rightarrow$

- $\leq j 1$ elements of *S* already bought
- $\geq \ell j + 1$ elements of *S* not yet bought
 - per-element cost for $S: \leq c(S)/(\ell j + 1)$ price by alg. no larger due to greedy choice

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_j) \leq c(S)/(\ell - j + 1)$.

Proof.

Iteration at which alg. buys $u_j \Rightarrow$

- $\leq j 1$ elements of *S* already bought
- $\ge \ell j + 1$ elements of *S* not yet bought
 - per-element cost for $S: \leq c(S)/(\ell j + 1)$ price by alg. no larger due to greedy choice

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_j) \leq c(S)/(\ell - j + 1)$.

Lemma. price(*S*) := $\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq$

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then price $(u_i) \leq c(S)/(\ell - j + 1)$.

Lemma. price(S) := $\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $price(u_j) \le c(S)/(\ell - j + 1)$.

Lemma. price(S) :=
$$\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$$
.

►Proof.

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. price(S) :=
$$\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$$
.
Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol.

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. price(S) :=
$$\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$$
.
Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^{m} c(S_i)$

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma.
$$\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. $\operatorname{OPT} = \sum_{i=1}^{m} c(S_i)$
 $\operatorname{price}(U) =$

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma.
$$\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \le c(S) \cdot \mathcal{H}_{\ell}.$$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. $\operatorname{OPT} = \sum_{i=1}^m c(S_i)$
 $\operatorname{price}(U) = \sum_{u \in U} \operatorname{price}(u)$

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma.
$$\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. $\operatorname{OPT} = \sum_{i=1}^m c(S_i)$
 $\operatorname{price}(U) = \sum_{u \in U} \operatorname{price}(u) \leq \sum_{i=1}^m \operatorname{price}(S_i)$
 \leq

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. price(S) :=
$$\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$$
.
Proof. Let $\{S_1, \dots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^{m} c(S_i)$
price(U) = $\sum_{u \in U} \operatorname{price}(u) \leq \sum_{i=1}^{m} \operatorname{price}(S_i)$
 $\leq \sum_{i=1}^{m} c(S_i) \cdot \mathcal{H}_k$ =

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

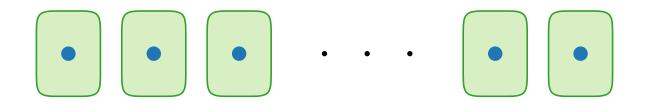
Lemma. price(S) :=
$$\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$$
.
Proof. Let $\{S_1, \dots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^{m} c(S_i)$
price(U) = $\sum_{u \in U} \operatorname{price}(u) \leq \sum_{i=1}^{m} \operatorname{price}(S_i)$
 $\leq \sum_{i=1}^{m} c(S_i) \cdot \mathcal{H}_k = \operatorname{OPT} \cdot \mathcal{H}_k$

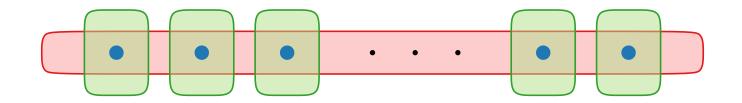
Analysis tight?

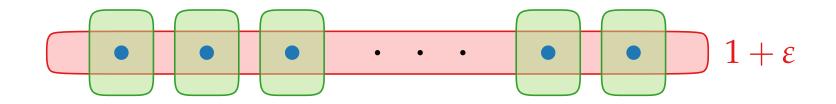
Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k.$

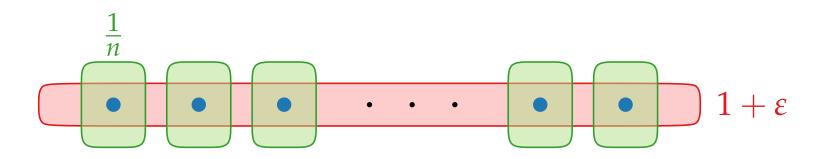
Analysis tight?

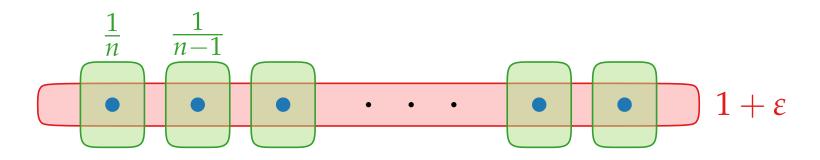
Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k.$

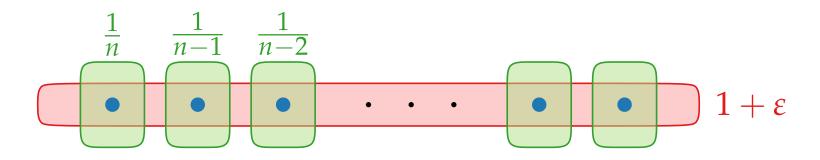


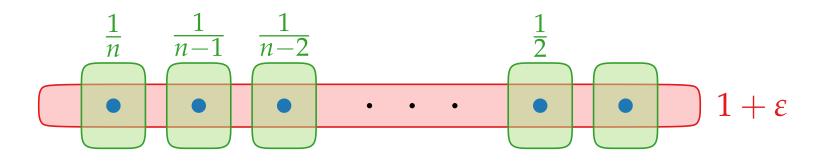


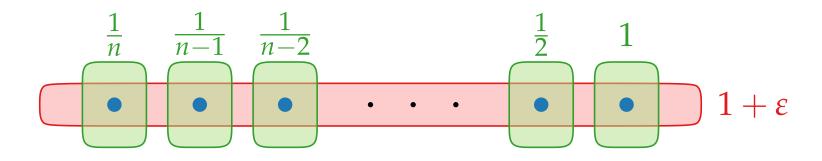






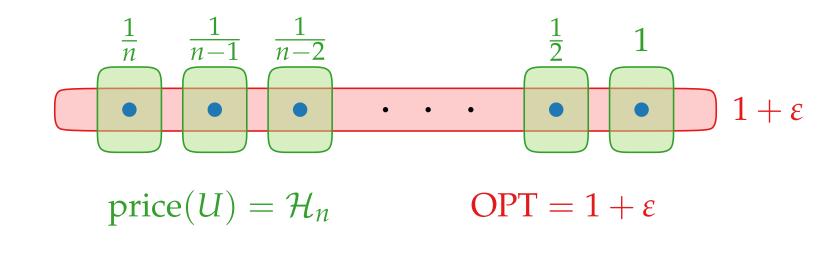






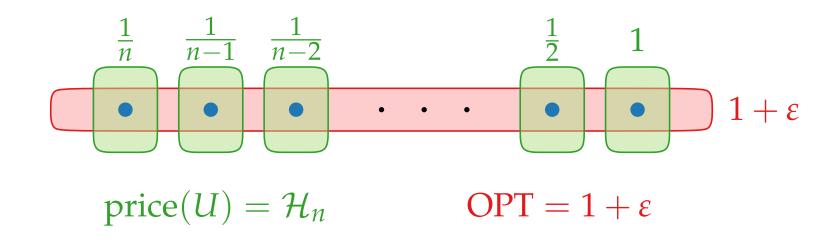


Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.



better?

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k.$

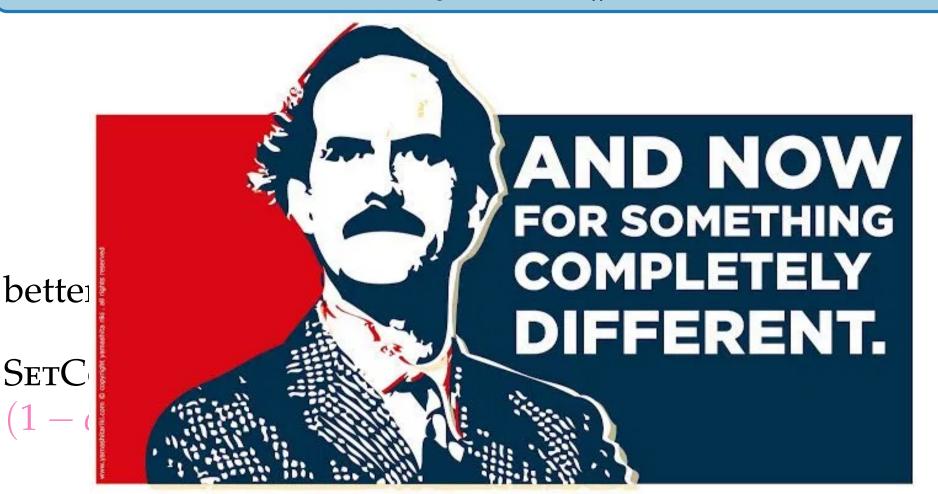


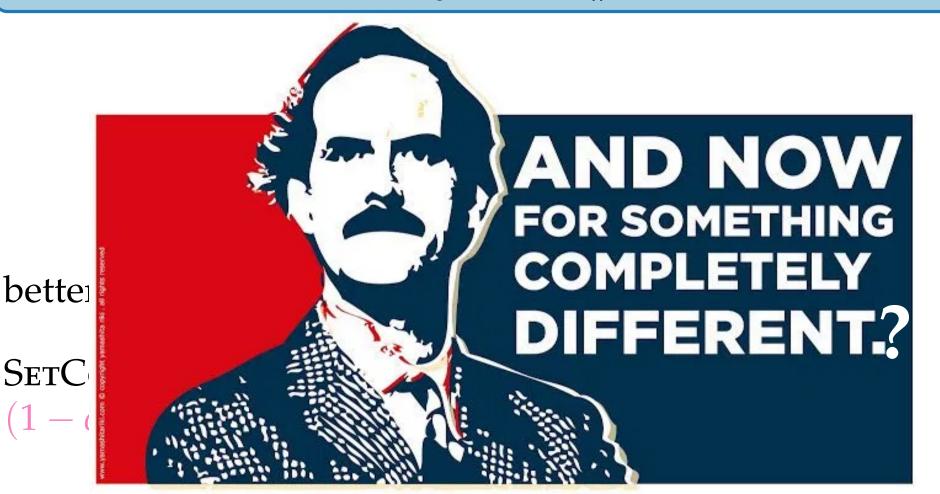
better?

SetCover cannot be approximated within factor $(1 - o(1)) \cdot \ln(n)$ (unless P=NP)

Theorem. GreedySetCover is a factor- \mathcal{H}_k -approximation algorithm for SETCOVER, where *k* is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

8 - 13





Approximation Algorithms

Lecture 2: SetCover and ShortestSuperString

Part IV: ShortestSuperString

Joachim Spoerhase

Winter 2021/22

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that each s_i , $i = 1, \ldots, n$ is a *substring* of *s*.

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that each s_i , $i = 1, \ldots, n$ is a *substring* of *s*.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that each s_i , $i = 1, \ldots, n$ is a *substring* of *s*.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb

abc

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that each s_i , $i = 1, \ldots, n$ is a *substring* of *s*.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb

abc bcb

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that each s_i , $i = 1, \ldots, n$ is a *substring* of *s*.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb

abc bcb cbaa

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that each s_i , $i = 1, \ldots, n$ is a *substring* of *s*.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb abcbaa abc bcbcbaa

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that each s_i , $i = 1, \ldots, n$ is a *substring* of *s*.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb $\int \int cbaabcb$ $u := \{cbaa, abc, bcb\}$ cbaabcb $u := \{cbaa, abc, bcb\}$ cbaabcb abcbaa bcbcbaa

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that each s_i , $i = 1, \ldots, n$ is a *substring* of *s*.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb \bigvee "covers" all strings in UW.l.o.g.: No string s_i is a substring of any
other string s_j .abc
bcb
cbaa

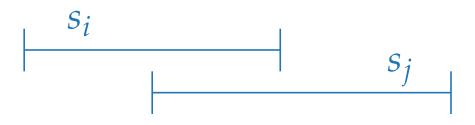
SETCOVER Instance: ground set U, set family S, costs c.

SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

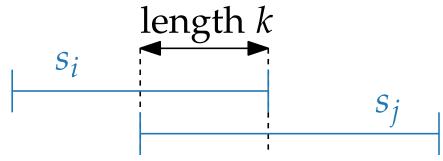
SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

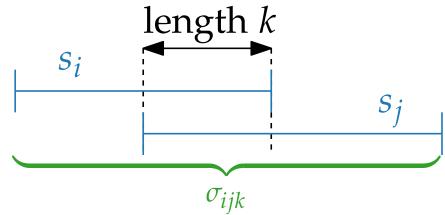
SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$



SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$



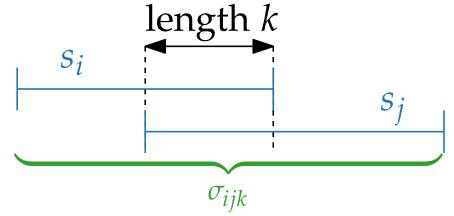
SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$



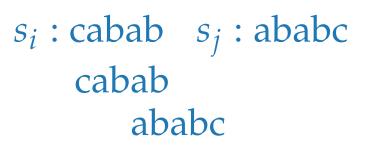
SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

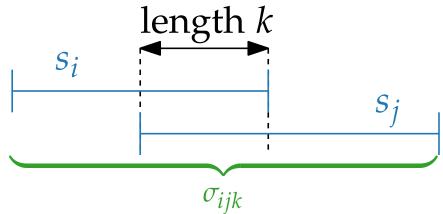
Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)

 s_i : cabab s_j : ababc

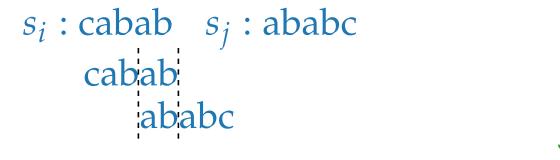


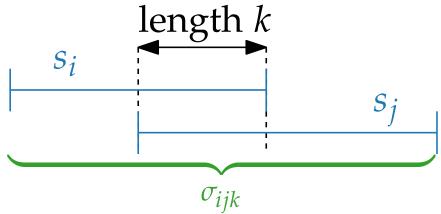
SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$





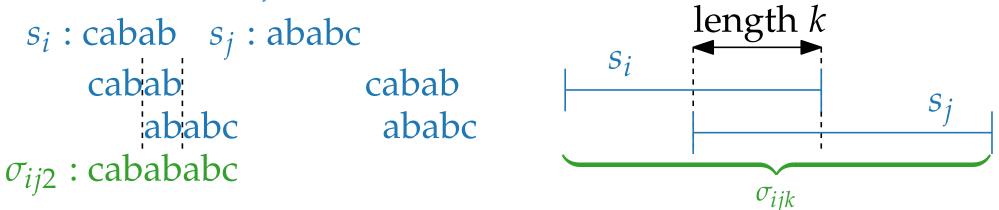
SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$



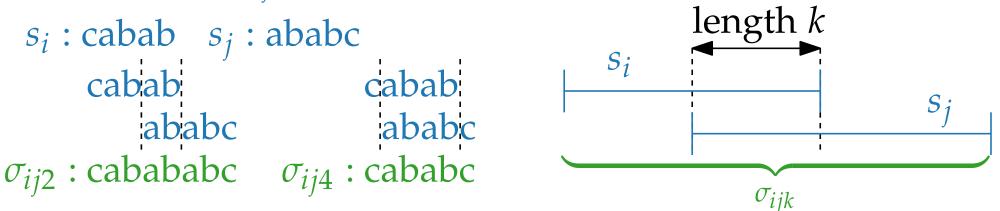


SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

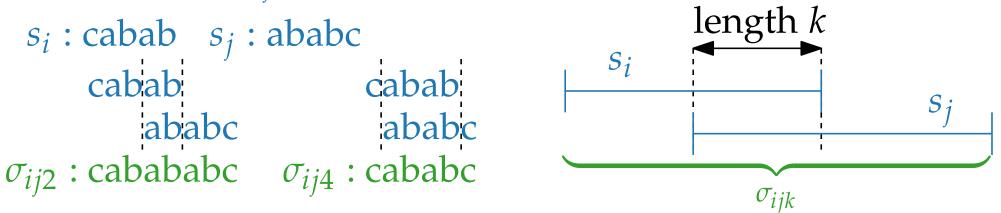


SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$



SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)

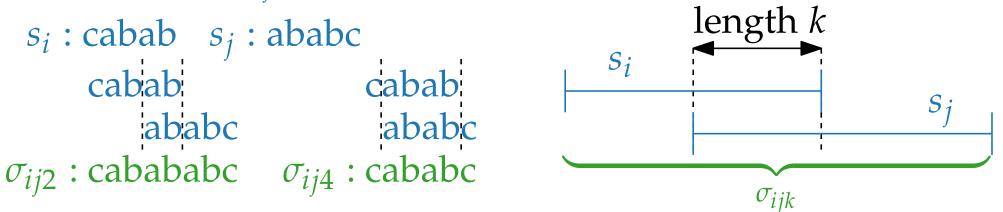


 $S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ contains the elements of the ground set covered by σ_{ijk} .

SSS as a SetCover Problem

SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)



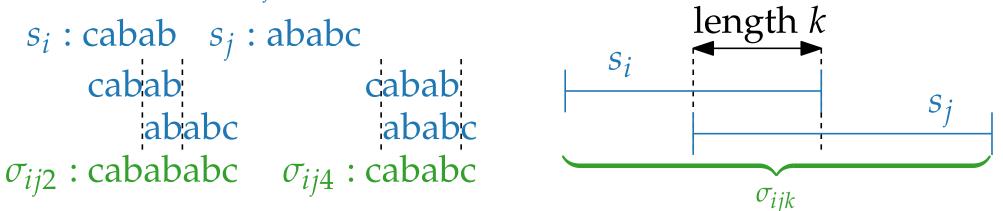
 $S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ contains the elements of the ground set covered by σ_{ijk} .

 $c\left(S(\sigma_{ijk})\right) = |\sigma_{ijk}|$ (number of characters in σ_{ijk})

SSS as a SetCover Problem

SETCOVER Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \dots, s_n\}$

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)



 $S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ contains the elements of the ground set covered by σ_{ijk} .

 $c\left(S(\sigma_{ijk})\right) = |\sigma_{ijk}| \quad \text{(number of characters in } \sigma_{ijk})$ $S = \{S(\sigma_{ijk}) \mid k > 0\} \quad \text{(possibly } i = j)$

Approximation Algorithms

Lecture 2: SetCover and ShortestSuperString

Part V: Solving ShortestSuperString via SetCover

Joachim Spoerhase

Winter 2021/22

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

 $OPT_{SSS} \leq OPT_{SC}$

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

 $OPT_{SSS} \leq OPT_{SC}$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of *U*.

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

 $OPT_{SSS} \leq OPT_{SC}$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of *U*. $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of *U* of length

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

 $OPT_{SSS} \leq OPT_{SC}$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of *U*.

 $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length $\sum_{i=1}^k |\pi_i| = \sum_{i=1}^k c(S(\pi_i)) = OPT_{SC}.$

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

 $OPT_{SSS} \leq OPT_{SC}$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of *U*.

 $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length $\sum_{i=1}^k |\pi_i| = \sum_{i=1}^k c(S(\pi_i)) = OPT_{SC}.$

Thus, $OPT_{SSS} \leq |s| = OPT_{SC}$.

Lemma.

$\text{OPT}_{\text{sc}} \leq 2 \cdot \text{OPT}_{\text{SSS}}$

Lemma. $OPT_{sc} \leq 2 \cdot OPT_{SSS}$

Proof. Consider optimal superstring *s*.

Lemma.	$OPT_{sc} \leq 2 \cdot OPT_{SSS}$
Proof.	Consider optimal superstring <i>s</i> .

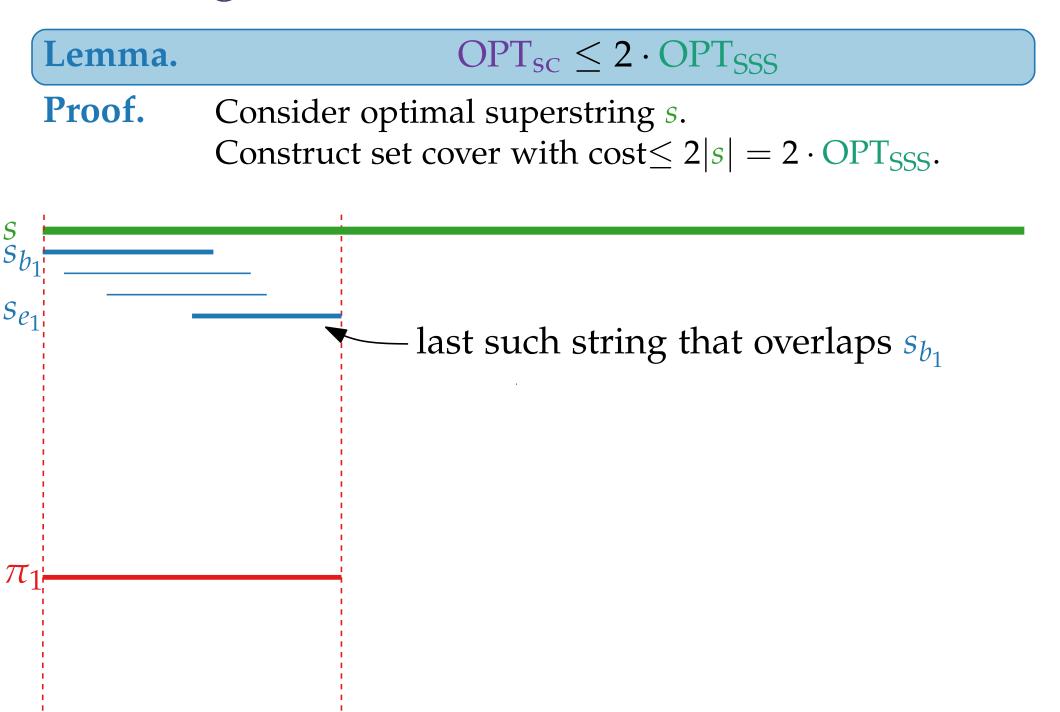
Lemma.	$OPT_{sc} \leq 2 \cdot OPT_{SSS}$
Proof.	Consider optimal superstring <i>s</i> . Construct set cover with $cost \le 2 s = 2 \cdot OPT_{SSS}$.

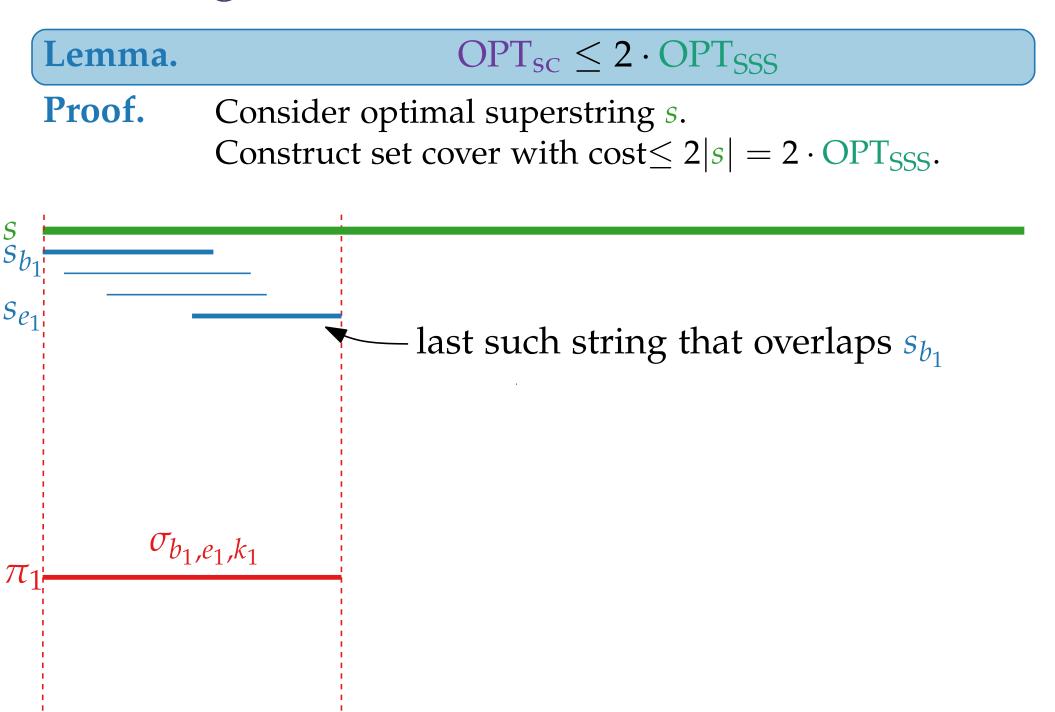
Lemma.	$OPT_{sc} \leq 2 \cdot OPT_{SSS}$
Proof.	Consider optimal superstring <i>s</i> . Construct set cover with $cost \le 2 s = 2 \cdot OPT_{SSS}$.
s _{b₁}	- leftmost occurence of a string $s_{b_1} \in U$.

Lemma.	$OPT_{sc} \leq 2 \cdot OPT_{SSS}$
Proof.	Consider optimal superstring <i>s</i> . Construct set cover with $cost \le 2 s = 2 \cdot OPT_{SSS}$.
s _{b1}	Ieftmost occurrence of <i>another</i> string in <i>U</i> .

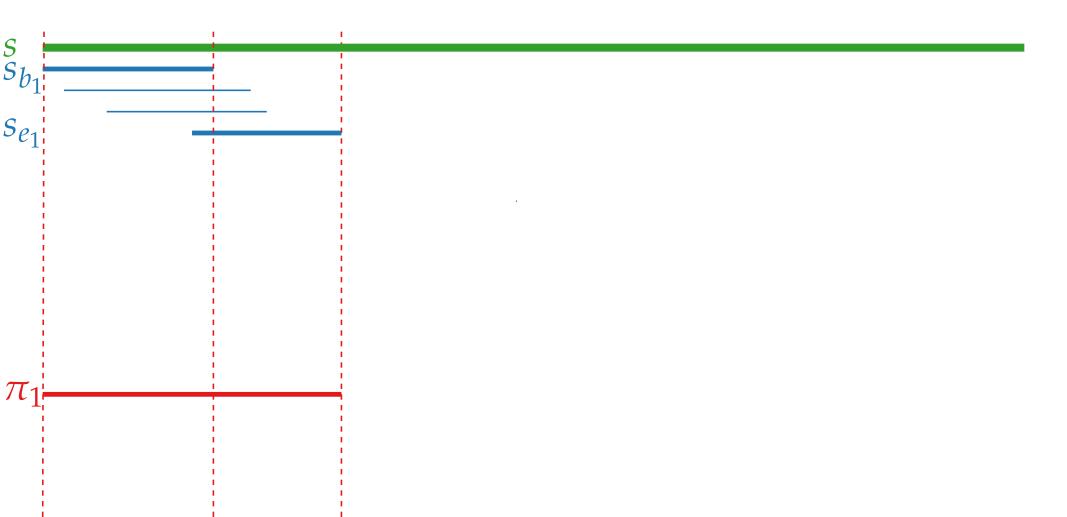
Lemma.	$OPT_{sc} \leq 2 \cdot OPT_{SSS}$
Proof.	Consider optimal superstring <i>s</i> . Construct set cover with $cost \le 2 s = 2 \cdot OPT_{SSS}$.
	$Construct set cover with cost \leq 2 b = 2 or 1555.$
s s _{b1}	
×	\bigcirc leftmost occurence of <i>another</i> string in <i>U</i> .

Lemma.	$OPT_{sc} \leq 2 \cdot OPT_{SSS}$
Proof.	Consider optimal superstring <i>s</i> . Construct set cover with $cost \le 2 s = 2 \cdot OPT_{SSS}$.
1	

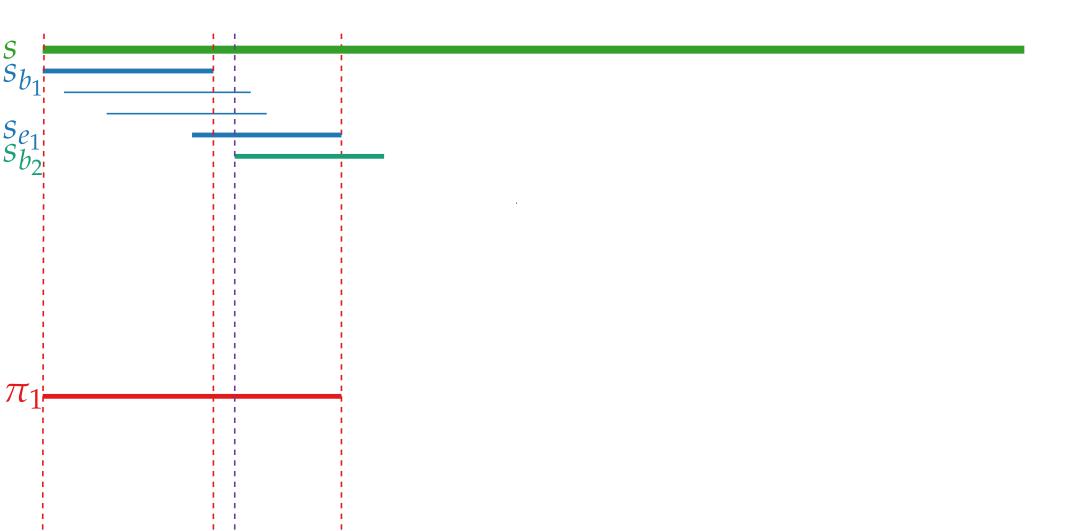




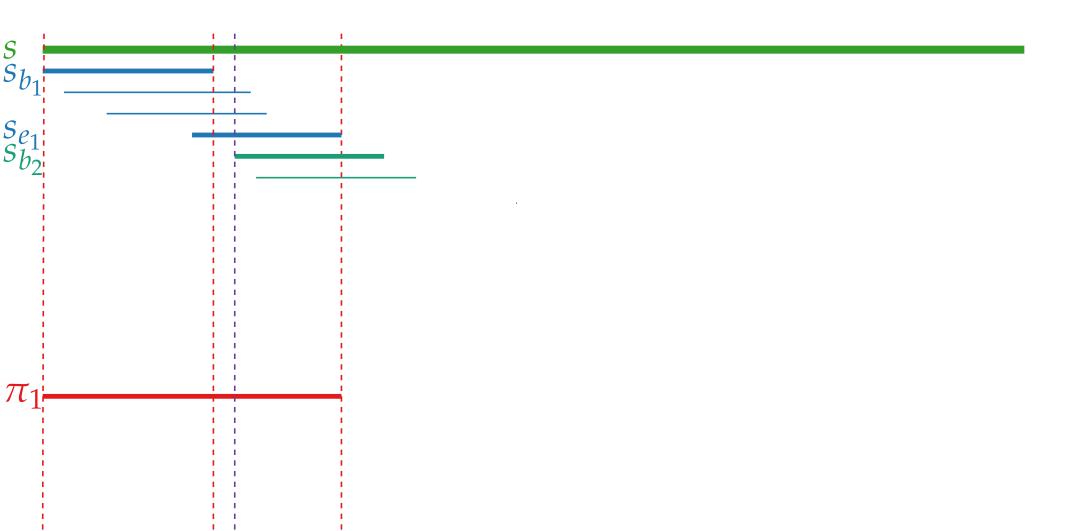
Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$



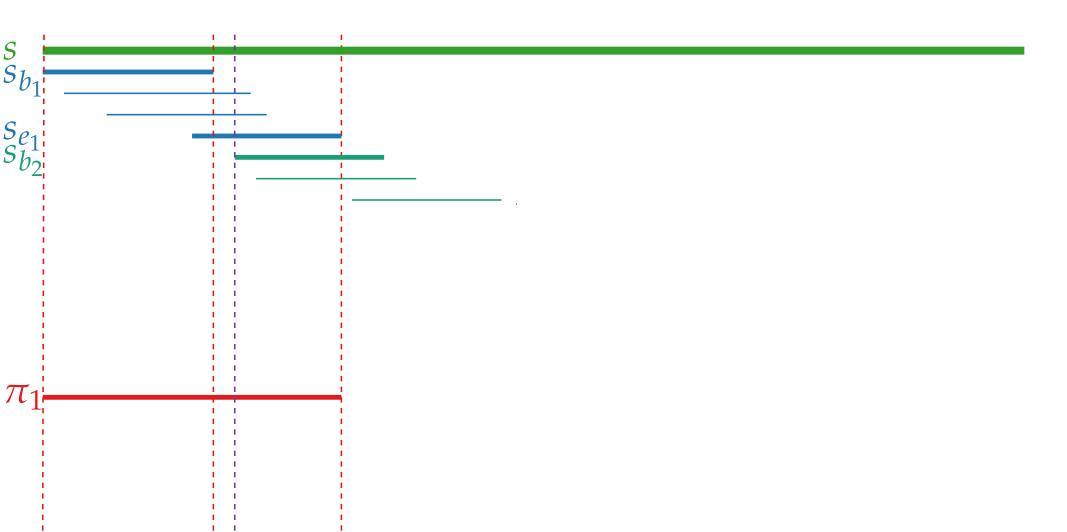
Lemma. $OPT_{sc} \leq 2 \cdot OPT_{SSS}$



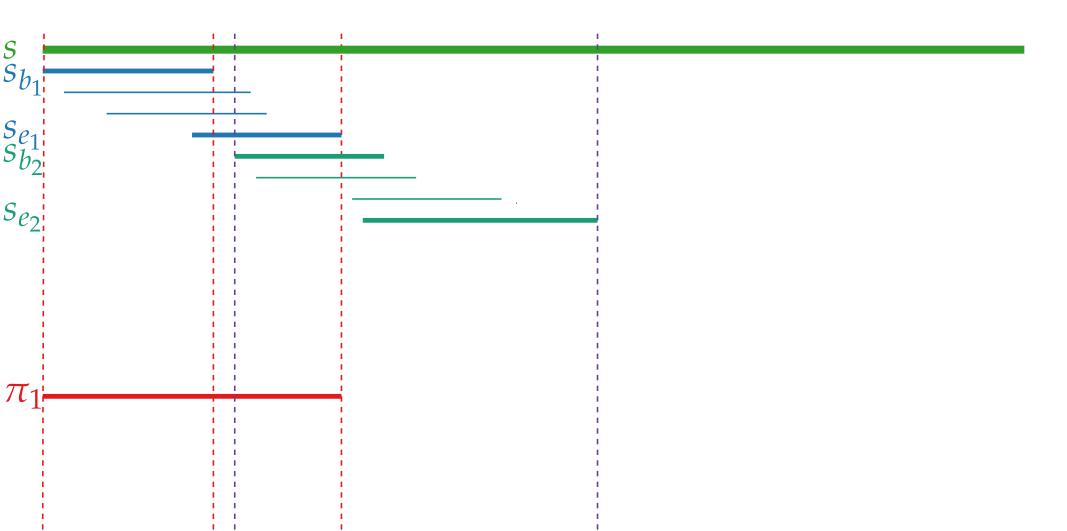
Lemma. $OPT_{sc} \leq 2 \cdot OPT_{SSS}$



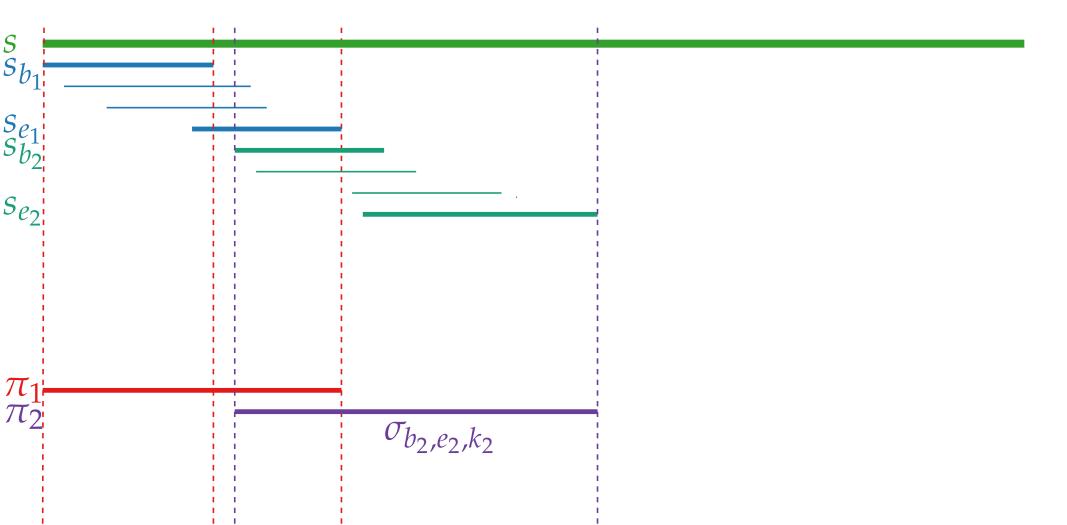
Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$



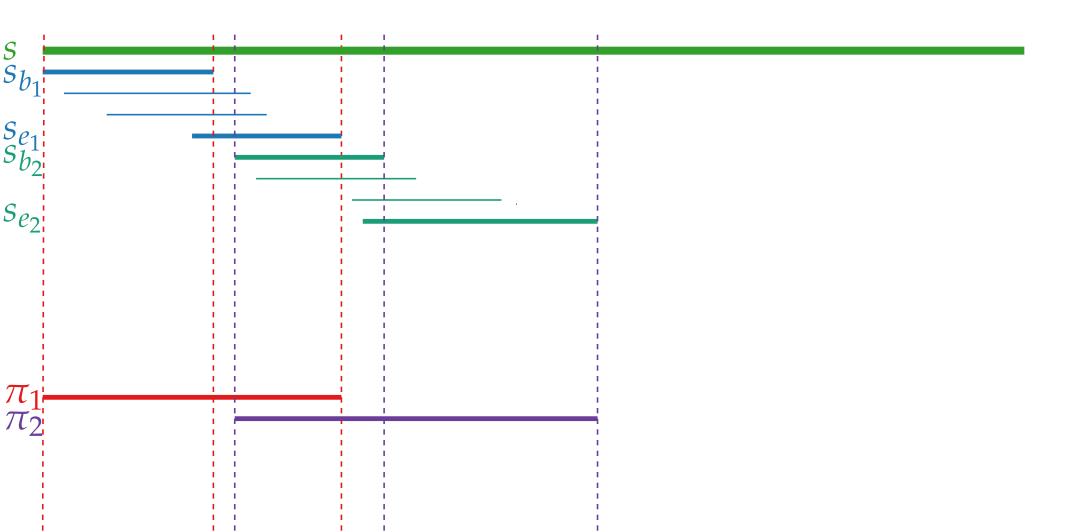
Lemma. $OPT_{sc} \leq 2 \cdot OPT_{SSS}$



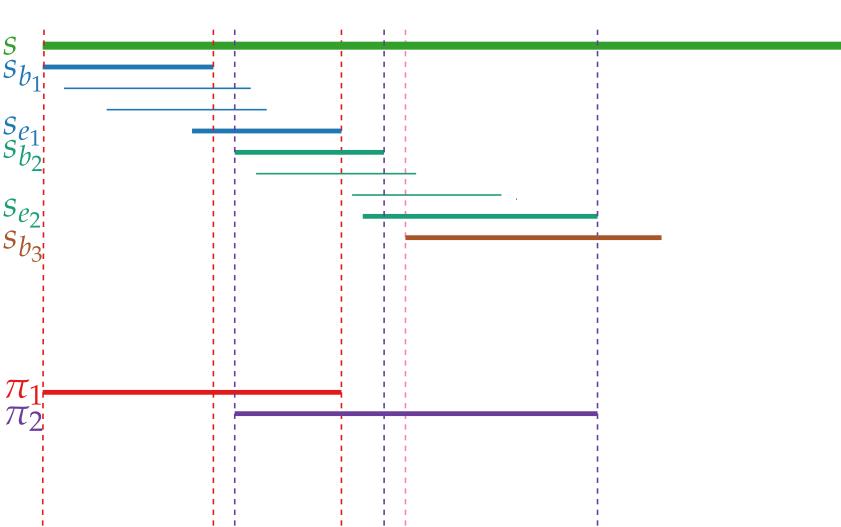
Lemma. $OPT_{sc} \leq 2 \cdot OPT_{SSS}$



$(Lemma. OPT_{sc} \le 2 \cdot OPT_{SSS})$



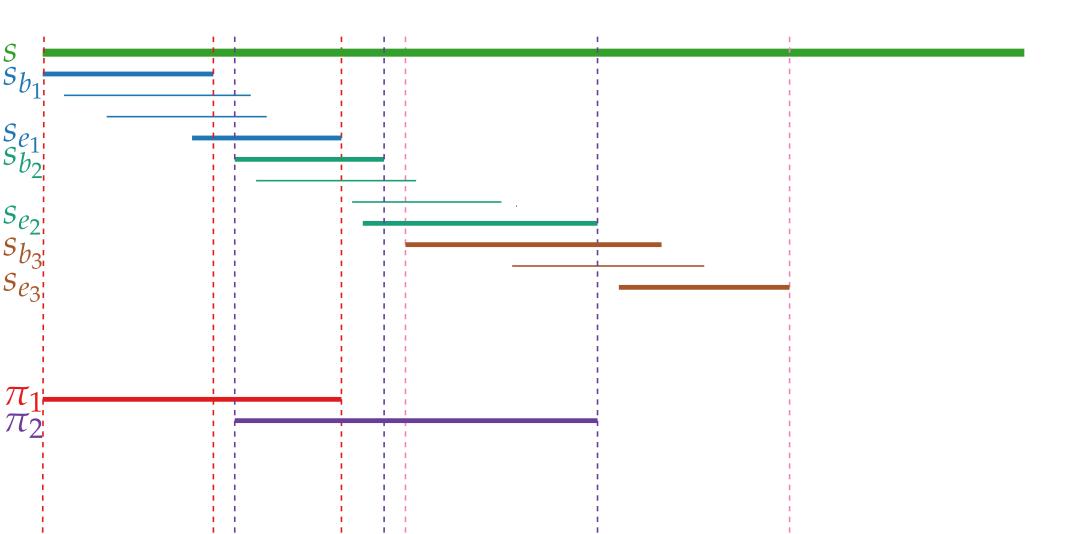
$(\text{Lemma.} \quad \text{OPT}_{\text{SC}} \leq 2 \cdot \text{OPT}_{\text{SSS}})$



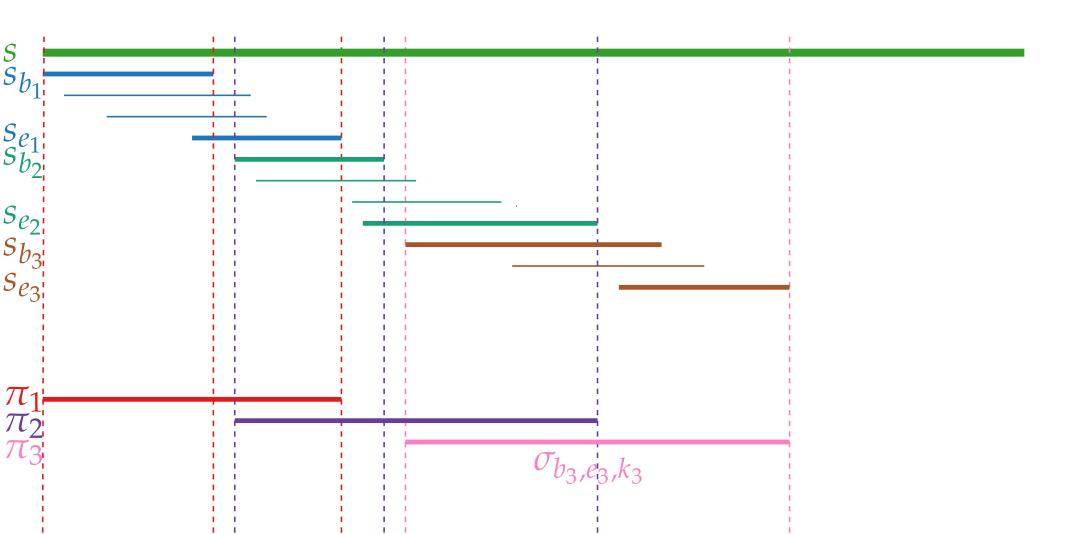
$(Lemma. OPT_{SC} \le 2 \cdot OPT_{SSS})$

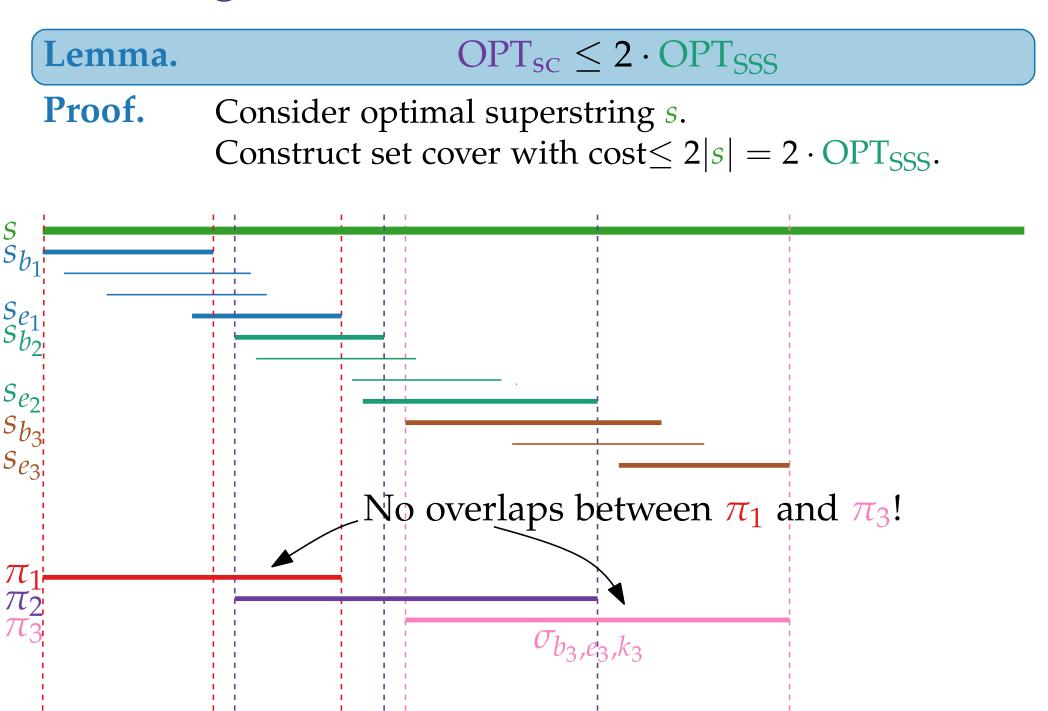


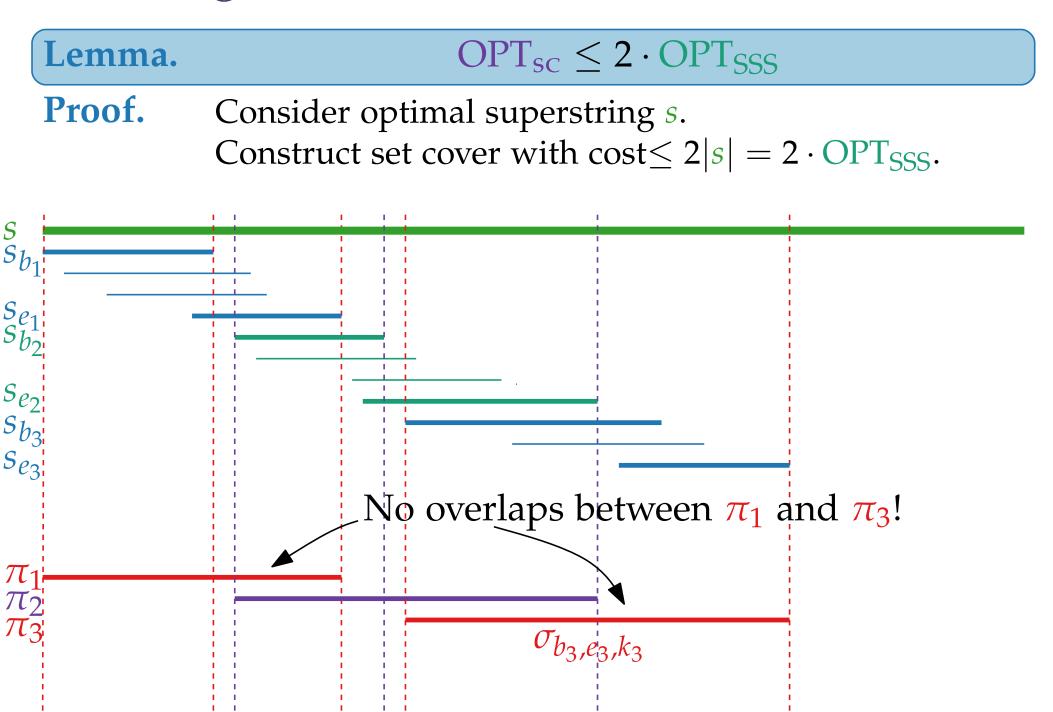
$(Lemma. OPT_{SC} \le 2 \cdot OPT_{SSS})$

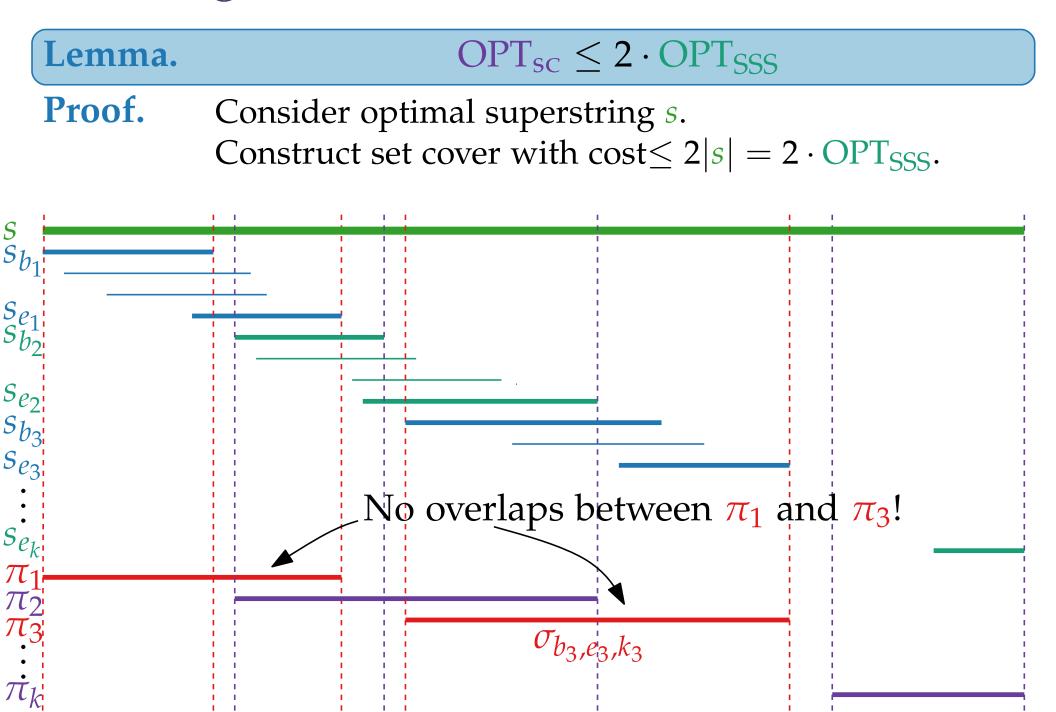


$(Lemma. OPT_{SC} \le 2 \cdot OPT_{SSS})$









$OPT_{sc} \leq 2 \cdot OPT_{SSS}$

Proof.

Lemma.

Each string $s_i \in U$ is a substring of some π_j .

$\text{OPT}_{\text{sc}} \leq 2 \cdot \text{OPT}_{\text{SSS}}$

Proof.

Lemma.

Each string $s_i \in U$ is a substring of some π_i .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

$\text{OPT}_{\text{sc}} \leq 2 \cdot \text{OPT}_{\text{SSS}}$

Proof.

Lemma.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Substrings π_i , π_{i+2} do not overlap.

Lemma.

$$OPT_{sc} \leq 2 \cdot OPT_{SSS}$$

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Substrings π_i , π_{i+2} do not overlap.

Each character in *s* lies in at most **two** (subsequent) substrings, namely π_i and π_{i+1} .

Lemma.

$$OPT_{SC} \leq 2 \cdot OPT_{SSS}$$

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Substrings π_i , π_{i+2} do not overlap.

Each character in *s* lies in at most **two** (subsequent) substrings, namely π_i and π_{i+1} .

 $\sum_i |\pi_i| \le 2|s| = 2 \cdot \text{OPT}_{\text{SSS}}$

1. Construct SetCover instance U, S, c.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithms is a factor- $2\mathcal{H}_n$ -approximation algorithm for SHORTESTSUPERSTRING.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithms is a factor- $2\mathcal{H}_n$ -approximation algorithm for SHORTESTSUPERSTRING.

better?

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithms is a factor- $2\mathcal{H}_n$ -approximation algorithm for SHORTESTSUPERSTRING.

better?

The best-known approximation factor for SHORTESTSUPERSTRING is $\frac{71}{30} \approx 2.367$.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithms is a factor- $2\mathcal{H}_n$ -approximation algorithm for SHORTESTSUPERSTRING.

better?

The best-known approximation factor for SHORTESTSUPERSTRING is $\frac{71}{30} \approx 2.367$.

SHORTESTSUPERSTRING cannot be approximation within factor $\frac{333}{332} \approx 1.003$ (unless P=NP).