Lecture 1: Introduction and Vertex Cover

Part I: Organizational

Joachim Spoerhase

Winter 2021/22

Lectures: Zoom (in German or English)

Lectures: Zoom (in German or English) Synchronous (key material)

Lectures: Zoom (in German or English) Synchronous (key material) More technical lectures via inverted classroom Tutorials: One exercise sheet per lecture

Lectures: Zoom (in German or English) Synchronous (key material) More technical lectures via inverted classroom Tutorials: One exercise sheet per lecture Solving assignments and presenting solutions Tuesdays 10:15 - 11:45 (SE I)

Lectures: Zoom (in German or English) Synchronous (key material) More technical lectures via inverted classroom Tutorials: One exercise sheet per lecture Solving assignments and presenting solutions Tuesdays 10:15 - 11:45 (SE I) Bonus (+0.3 on final grade) for \geq 50% points

Lectures: Zoom (in German or English) Synchronous (key material) More technical lectures via inverted classroom Tutorials: One exercise sheet per lecture Solving assignments and presenting solutions Tuesdays 10:15 - 11:45 (SE I) Bonus (+0.3 on final grade) for \geq 50% points

Questions/Tasks during the lecture

Textbooks

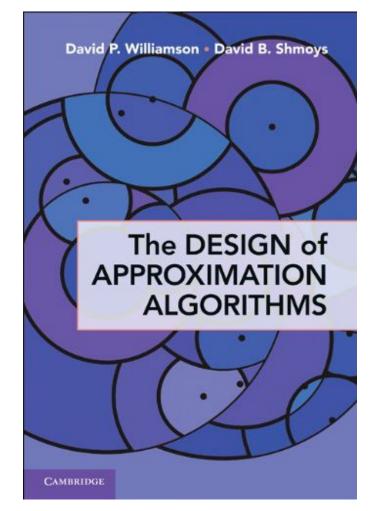
VIJAY V. VAZIRANI Approximation Algorithms Springer

Vijay V. Vazirani: Approximation Algorithms Springer-Verlag, 2003.

Textbooks

VIJAY V. VAZIRAN Approximation Algorithms Springer

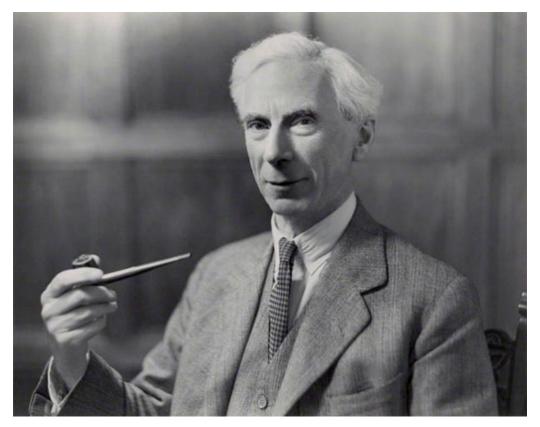
Vijay V. Vazirani: Approximation Algorithms Springer-Verlag, 2003.



D. P. Williamson & D. B. Shmoys: The Design of Approximation Algorithms Cambridge-Verlag, 2011. http://www.designofapproxalgs.com/

"All exact science is dominated by the idea of approximation." – Bertrand Russell

(1872 - 1970)



 Many optimization problems are NP-hard (e.g. the traveling salesperson problem)

- Many optimization problems are NP-hard (e.g. the traveling salesperson problem)
 - \sim an optimal solution cannot be efficiently computed unless P=NP.

- Many optimization problems are NP-hard (e.g. the traveling salesperson problem)
 - \sim an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!

- Many optimization problems are NP-hard (e.g. the traveling salesperson problem)
- \rightarrow an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise from studying specific optimization problems.

Overview

Combinatorial Algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
- Steiner Tree via MST
- Multiway Cut via Greedy
- k-Center via param. Pruning
- Min-Deg-Spanning-Tree & local search
- Knapsack via DP & Scaling
- Euclidean TSP via Quadtrees

Overview

Combinatorial Algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
- Steiner Tree via MST
- Multiway Cut via Greedy
- k-Center via param. Pruning
- Min-Deg-Spanning-Tree & local search
- Knapsack via DP & Scaling
- Euclidean TSP via Quadtrees

LP-based Algorithms

- introduction to LP-Duality
- Set Cover via LP Rounding
- Set Cover via Primal-Dual Schema
- Maximum Satisfiability
- Scheduling und Extreme Point Solutions
- Steiner Forest via Primal-Dual

Lecture 1: Introduction and Vertex Cover

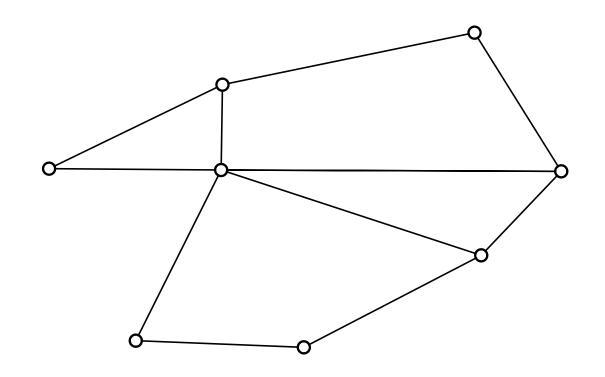
Part II: Vertex Cover (card.)

Joachim Spoerhase

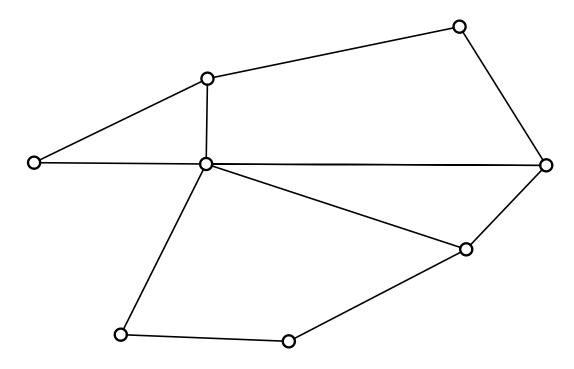
Winter 2021/22

In: Graph G = (V, E)

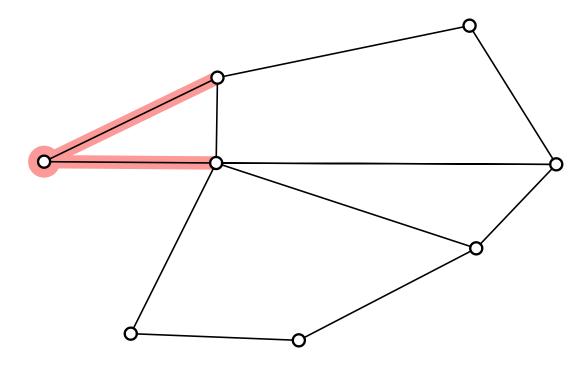
Out:



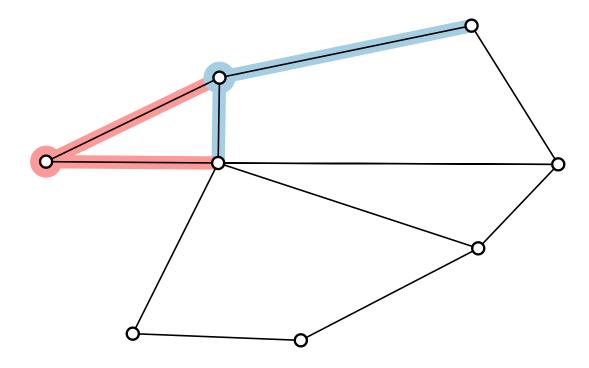
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



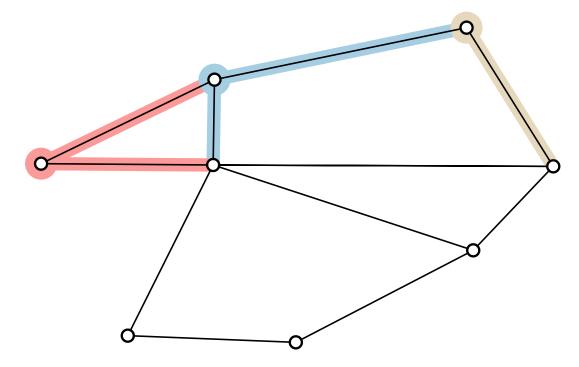
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



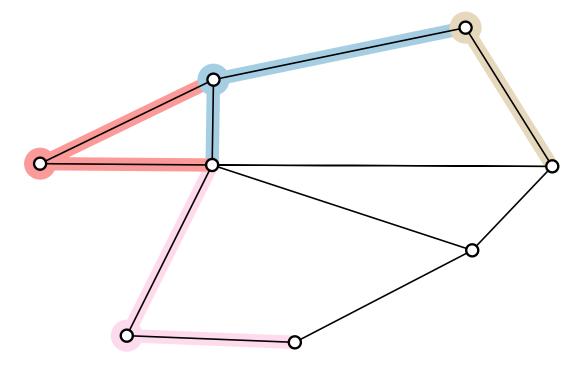
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



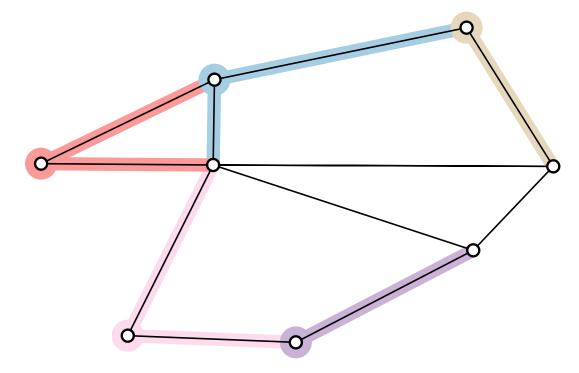
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



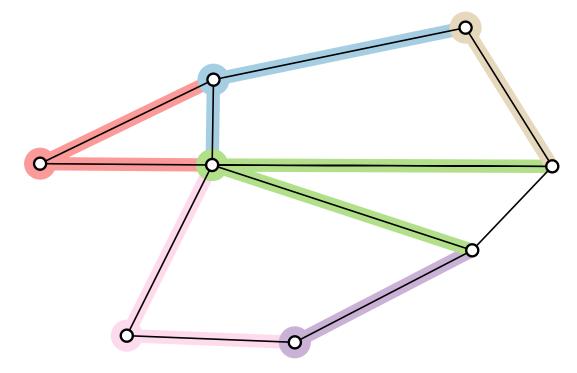
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



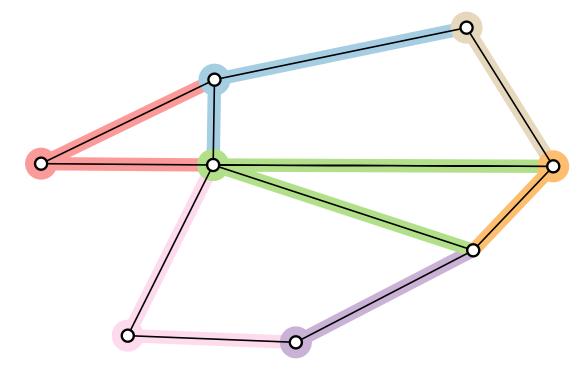
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



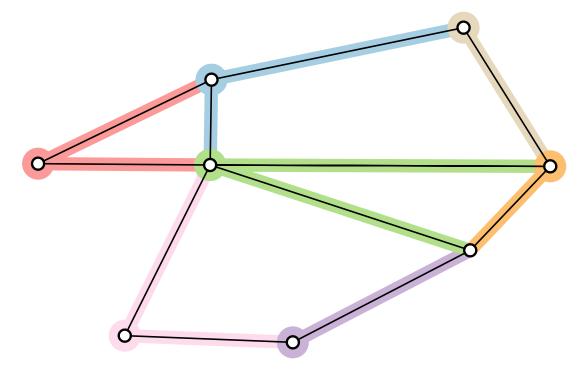
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



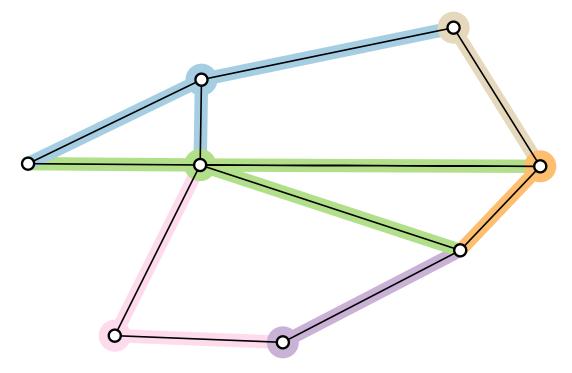
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



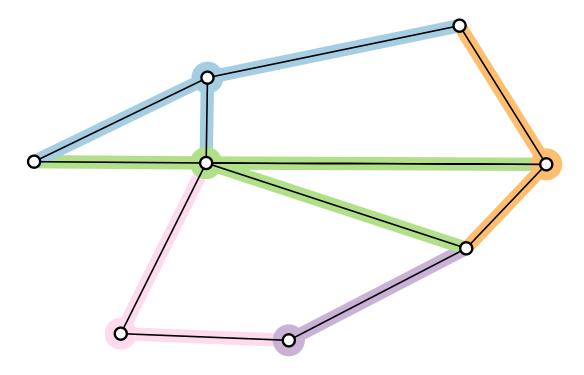
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



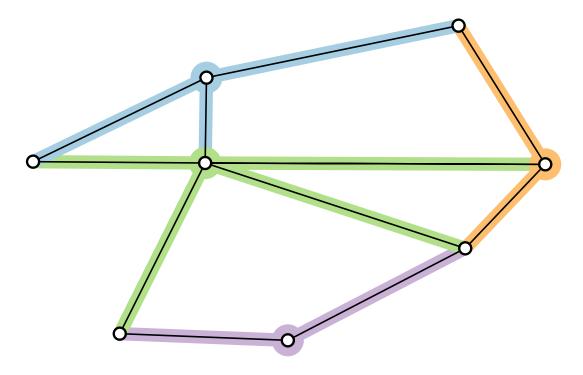
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



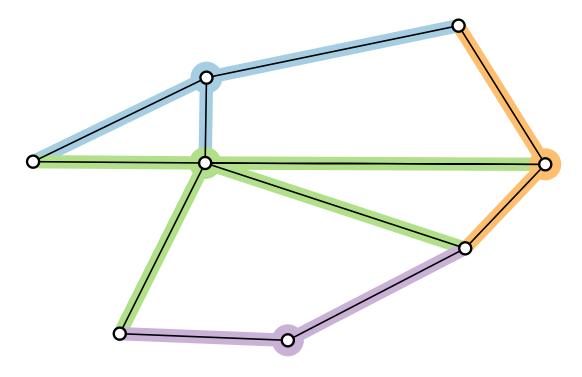
- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

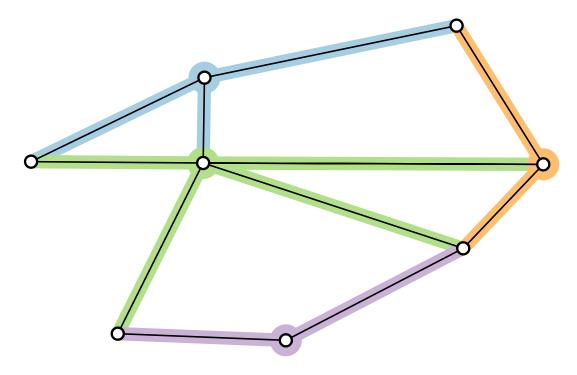


- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



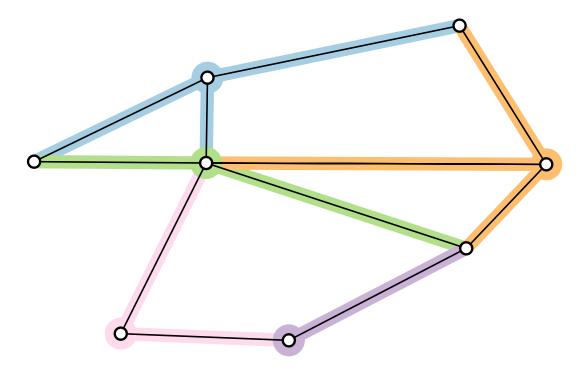
Optimum (OPT = 4)

- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



Optimum (OPT = 4) – but in general NP-hard to find :-(

- In: Graph G = (V, E)
- **Out:** a minimum **vertex cover**: a minimum vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



"good" approximate solution (5/4-approximation)

Lecture 1: Introduction and Vertex Cover

Part III: NP-Optimization Problem

Joachim Spoerhase

Winter 2021/22

NP-Optimization Problem

An **NP-optimization problem** Π is given by:

NP-Optimization Problem

An **NP-optimization problem** Π is given by:

• A set D_{Π} of instances.

We denote the size of an instance $I \in D_{\Pi}$ by |I|.

An **NP-optimization problem** Π is given by:

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for *I* such that:

An **NP-optimization problem** Π is given by:

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for *I* such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and

An **NP-optimization problem** Π is given by:

A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.

- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for *I* such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - for each pair (*s*, *I*), there is a polynomial time algorithm to decide whether $s \in S_{\Pi}(I)$.

An **NP-optimization problem** Π is given by:

A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.

- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for *I* such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - for each pair (*s*, *I*), there is a polynomial time algorithm to decide whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value $obj_{\Pi}(I,s) \ge 0$ to any given pair (s, I) with $s \in S_{\Pi}(I)$.

An **NP-optimization problem** Π is given by:

A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.

- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for *I* such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - for each pair (*s*, *I*), there is a polynomial time algorithm to decide whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value $obj_{\Pi}(I,s) \ge 0$ to any given pair (s, I) with $s \in S_{\Pi}(I)$.
- \blacksquare Π is either a minimization or maximization problem.

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

 $D_{\Pi} =$

For $I \in D_{\Pi}$: $|I| = S_{\Pi}(I) =$

• Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?

For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

 $\operatorname{obj}_{\Pi}(I,s) =$

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

- D_{Π} = Set of all graphs
- For $I \in D_{\Pi}$: $|I| = S_{\Pi}(I) =$
 - Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
 - For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

 $\operatorname{obj}_{\Pi}(I,s) =$

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

 D_{Π} = Set of all graphs

- For $I \in D_{\Pi}$: |I| = G = (V, E) $S_{\Pi}(I) =$
 - Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
 - For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

 $\operatorname{obj}_{\Pi}(I,s) =$

- Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.
- D_{Π} = Set of all graphs

For $I \in D_{\Pi}$: |I| = Number of vertices |V|G = (V, E) $S_{\Pi}(I) =$

• Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?

For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

 $\operatorname{obj}_{\Pi}(I,s) =$

- Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.
- D_{Π} = Set of all graphs

For $I \in D_{\Pi}$: |I| = Number of vertices |V|G = (V, E) $S_{\Pi}(I) =$ Set of all vertex covers of G

• Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?

For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

 $\operatorname{obj}_{\Pi}(I,s) =$

- Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.
- D_{Π} = Set of all graphs

For $I \in D_{\Pi}$: |I| = Number of vertices |V|G = (V, E) $S_{\Pi}(I) =$ Set of all vertex covers of G

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

 $\operatorname{obj}_{\Pi}(I,s) =$

- Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.
- D_{Π} = Set of all graphs

For $I \in D_{\Pi}$: |I| = Number of vertices |V|G = (V, E) $S_{\Pi}(I) =$ Set of all vertex covers of G

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

 $\operatorname{obj}_{\Pi}(I,s) =$

- Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.
- D_{Π} = Set of all graphs

For $I \in D_{\Pi}$: |I| = Number of vertices |V|G = (V, E) $S_{\Pi}(I) =$ Set of all vertex covers of G

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

 $\operatorname{obj}_{\Pi}(I,s) = |s|$

- Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.
- D_{Π} = Set of all graphs

For $I \in D_{\Pi}$: |I| = Number of vertices |V|G = (V, E) $S_{\Pi}(I) =$ Set of all vertex covers of G

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

 $\operatorname{obj}_{\Pi}(I,s) = |s|$

 Π is M in imization problem.

Let Π be a minimization problem and $I \in D_{\Pi}$ be an instance of Π .

Let Π be a minimization problem and $I \in D_{\Pi}$ be an instance of Π . A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $obj_{\Pi}(I, s^*)$ is minimal among objective values

attained by the feasible solutions of *I*.

maximization problem

Let Π be a minimization problem and $I \in D_{\Pi}$ be an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $obj_{\Pi}(I, s^*)$ is minimal among objective values attained by the feasible solutions of *I*.

maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ be an instance of Π . A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $obj_{\Pi}(I, s^*)$ is minimal among objective values attained by the feasible solutions of I.

The optimal value $obj_{\Pi}(I, s^*)$ of the objective function is also denoted by $OPT_{\Pi}(I)$ or simply OPT in context.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

 $\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)}$

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

 $\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \leq \alpha.$

 $\alpha \colon \mathbb{N} \to \mathbb{Q}$ Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

 $\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \leq \mathscr{P} (|I|)$

maximization problem $\alpha : \mathbb{N} \to \mathbb{Q}$ Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

 $\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \stackrel{\geq}{\leq} \mathscr{P} \ \alpha(|I|)$

Lecture 1: Introduction and Vertex Cover

Part IV: Approximation Algorithm for VERTEXCOVER

Joachim Spoerhase

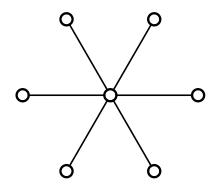
Winter 2021/22

Ideas?

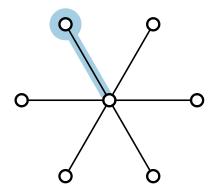
Edge-Greedy

- Edge-Greedy
- Vertex-Greedy

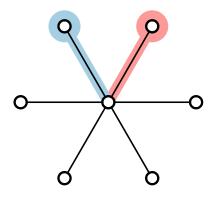
- Edge-Greedy
- Vertex-Greedy



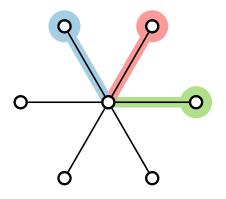
- Edge-Greedy
- Vertex-Greedy



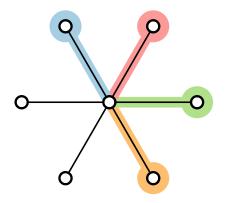
- Edge-Greedy
- Vertex-Greedy



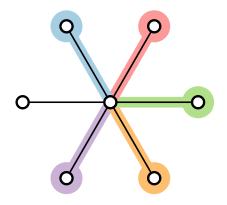
- Edge-Greedy
- Vertex-Greedy



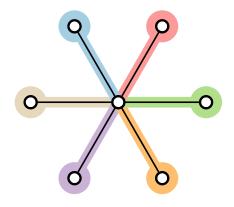
- Edge-Greedy
- Vertex-Greedy



- Edge-Greedy
- Vertex-Greedy

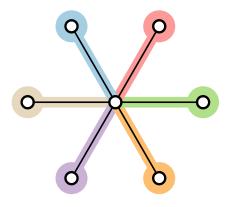


- Edge-Greedy
- Vertex-Greedy



Ideas?

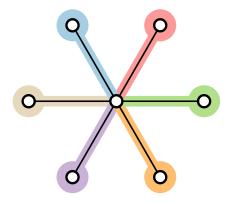
- Edge-Greedy
- Vertex-Greedy



Quality?

Ideas?

- Edge-Greedy
- Vertex-Greedy

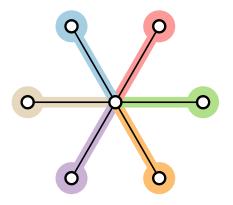


Quality?

Problem: How can we estimate $obj_{\Pi}(I,s)/OPT$, when it is hard to calculate OPT?

Ideas?

- Edge-Greedy
- Vertex-Greedy



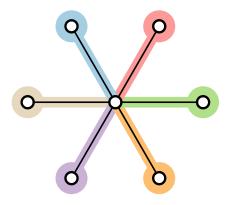
Quality?

Problem: How can we estimate $obj_{\Pi}(I,s)/OPT$, when it is hard to calculate OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and compare it to our approximate solution.

Ideas?

- Edge-Greedy
- Vertex-Greedy

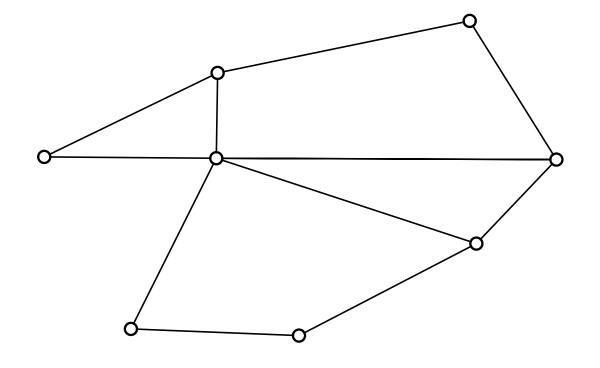


Quality?

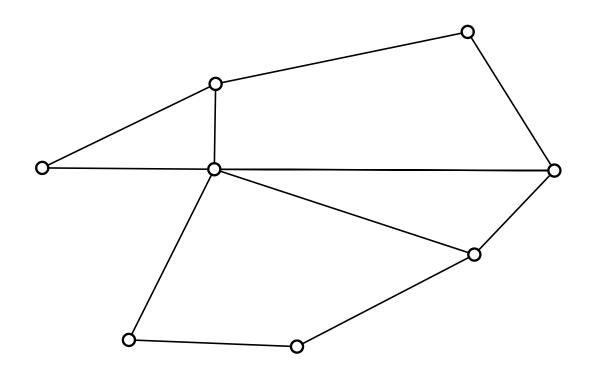
Problem: How can we estimate $obj_{\Pi}(I,s)/OPT$, when it is hard to calculate OPT?

Idea:Find a "good" lower bound $L \leq OPT$ for OPTand compare it to our approximate solution.

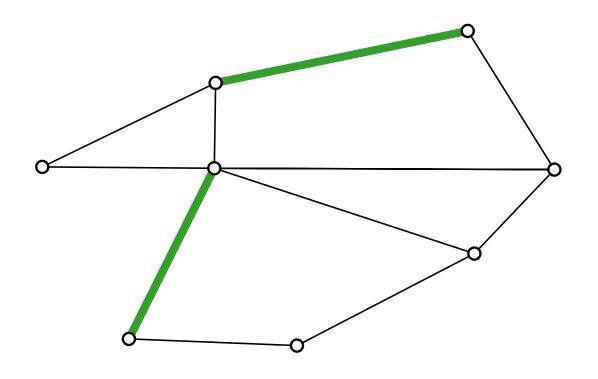
$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \le \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$



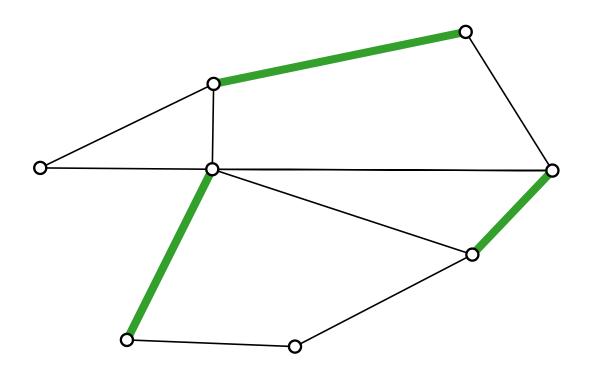
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



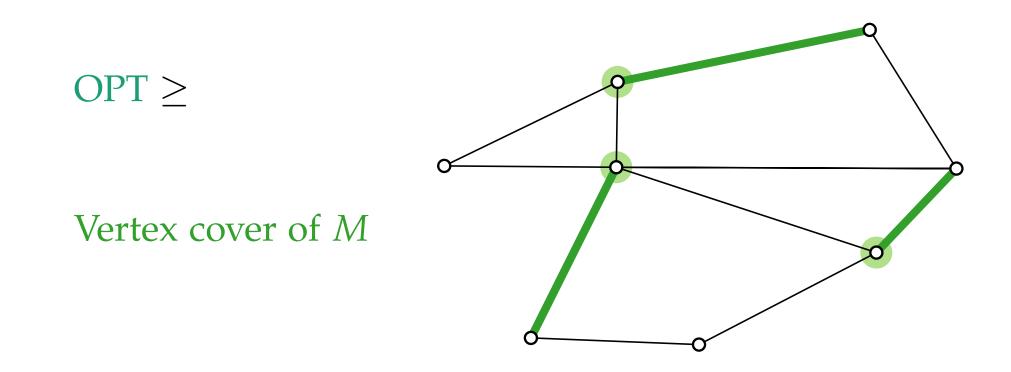
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



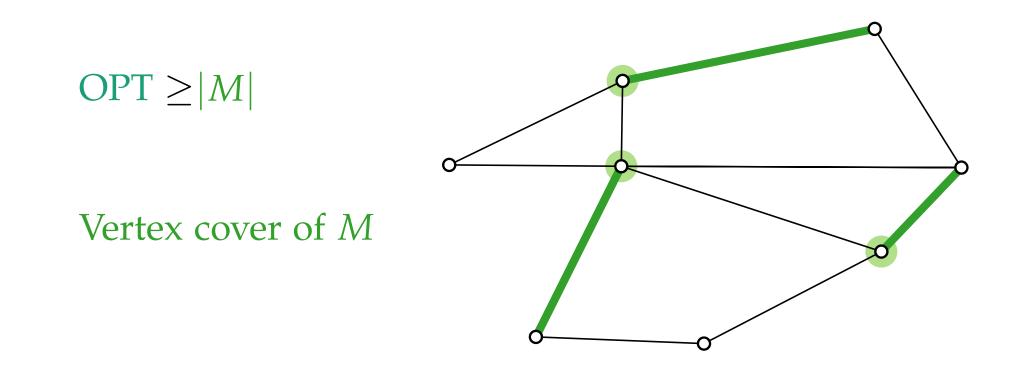
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



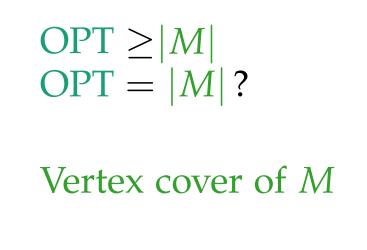
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

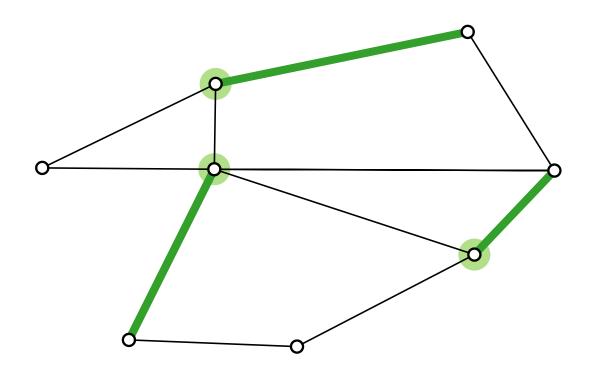


An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

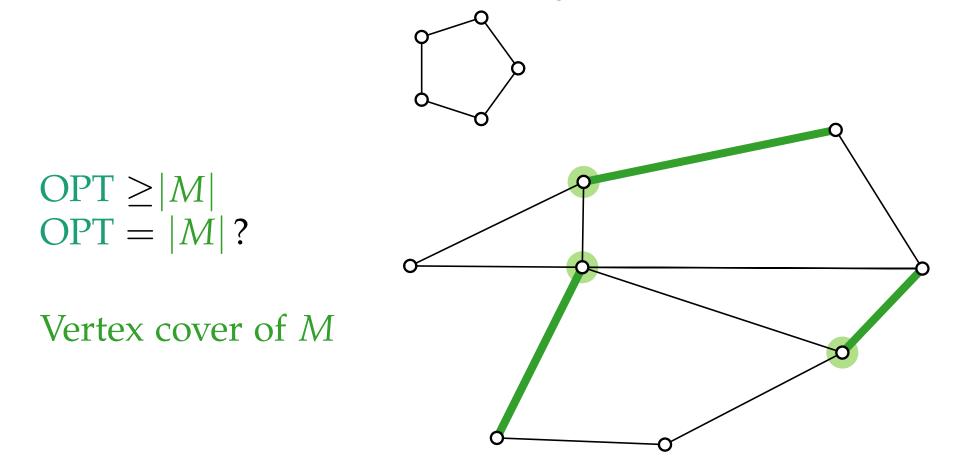


An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

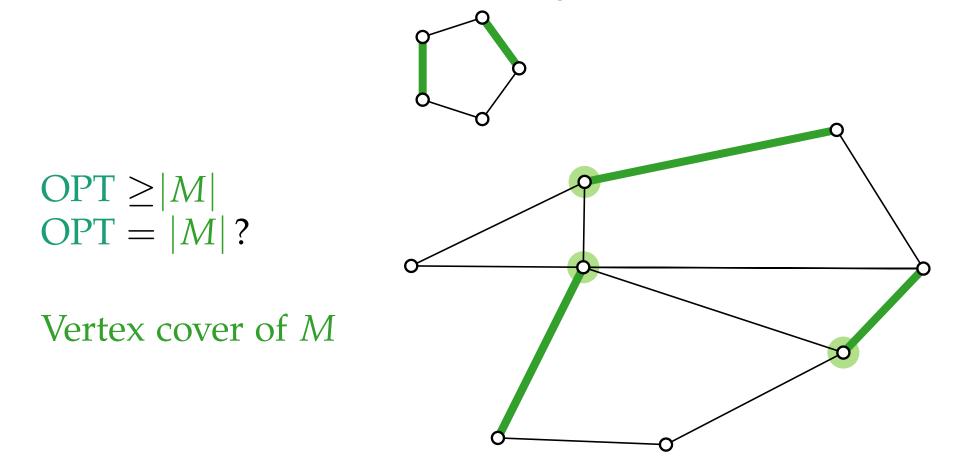




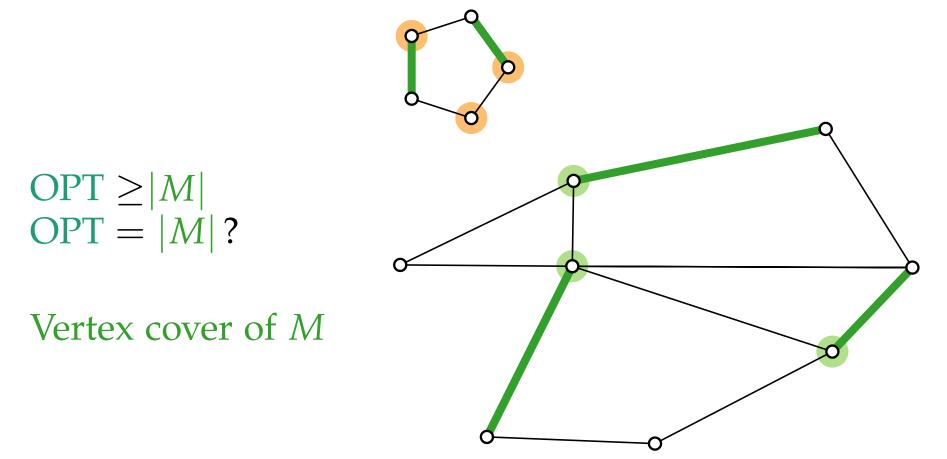
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



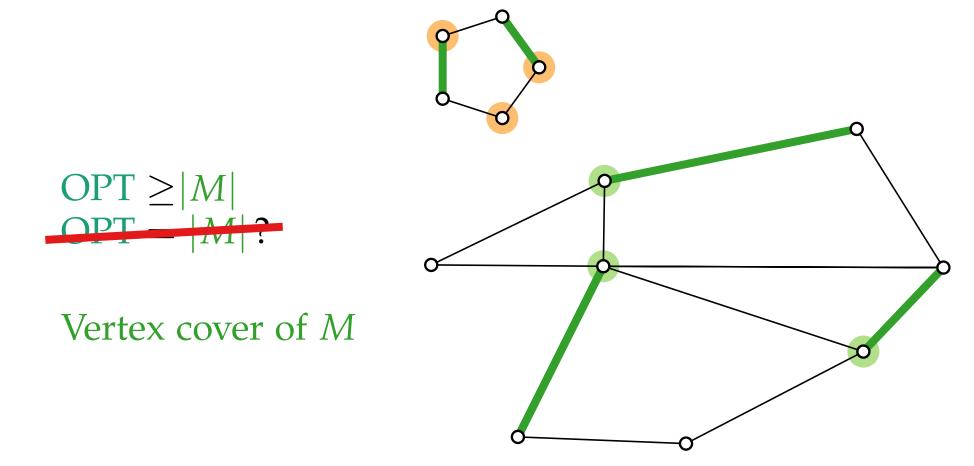
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



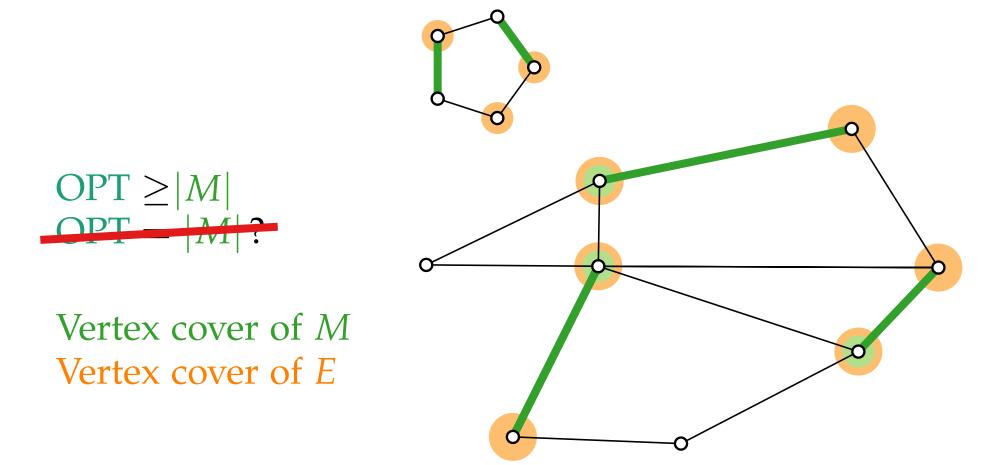
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



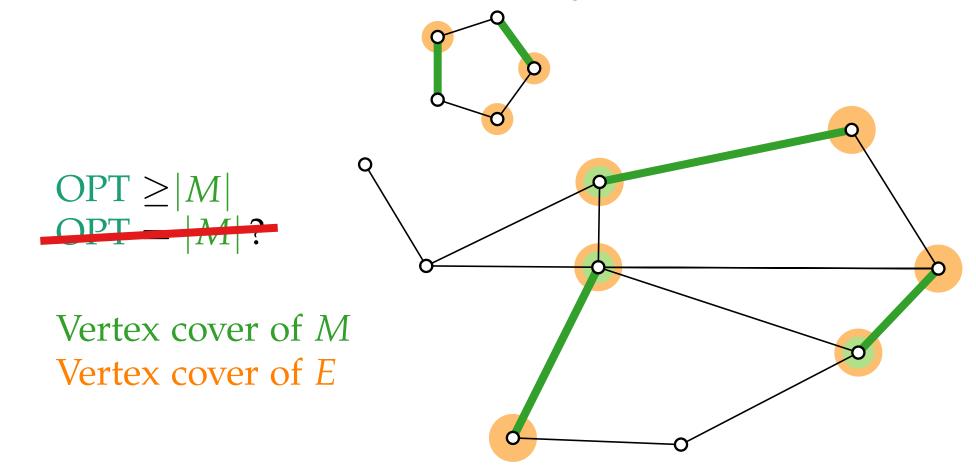
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



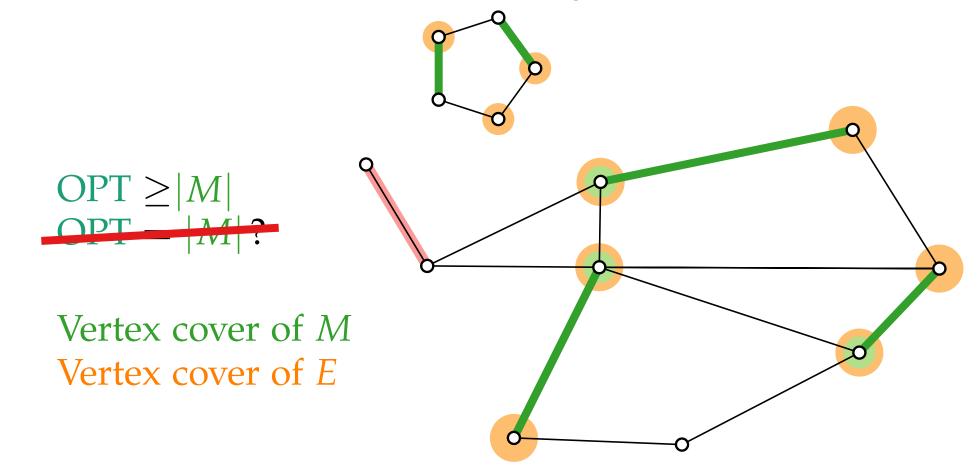
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



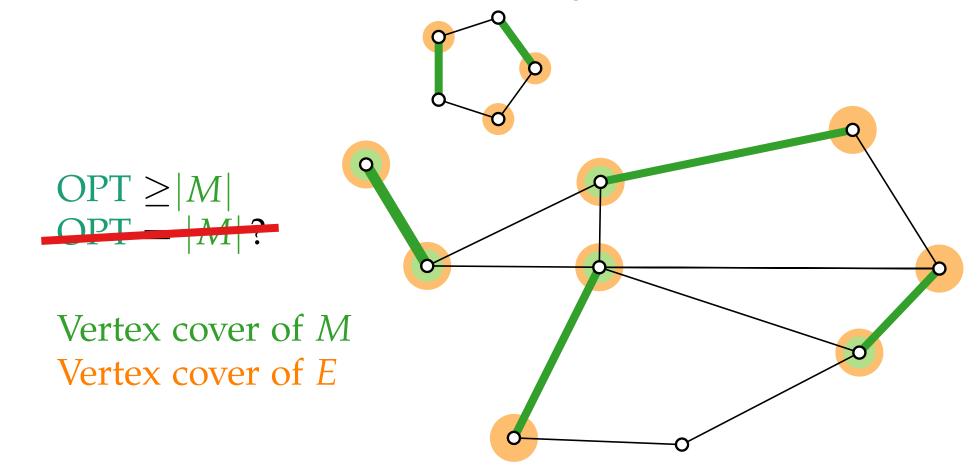
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



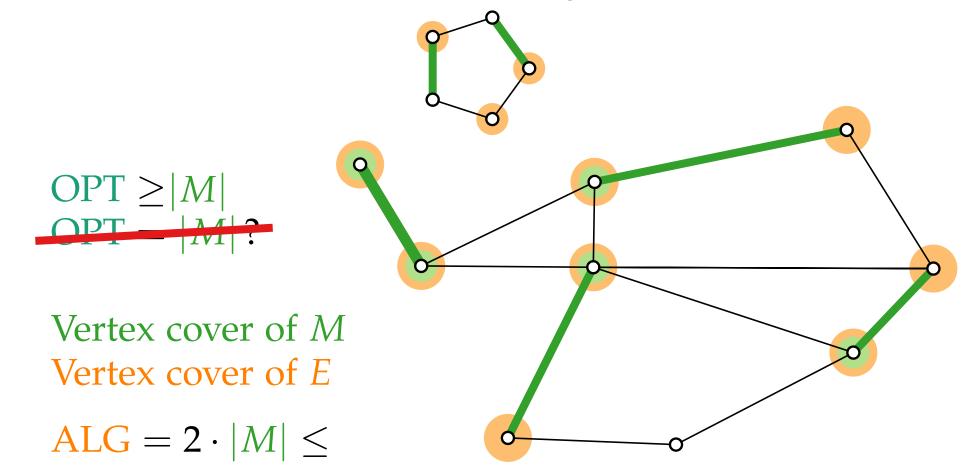
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



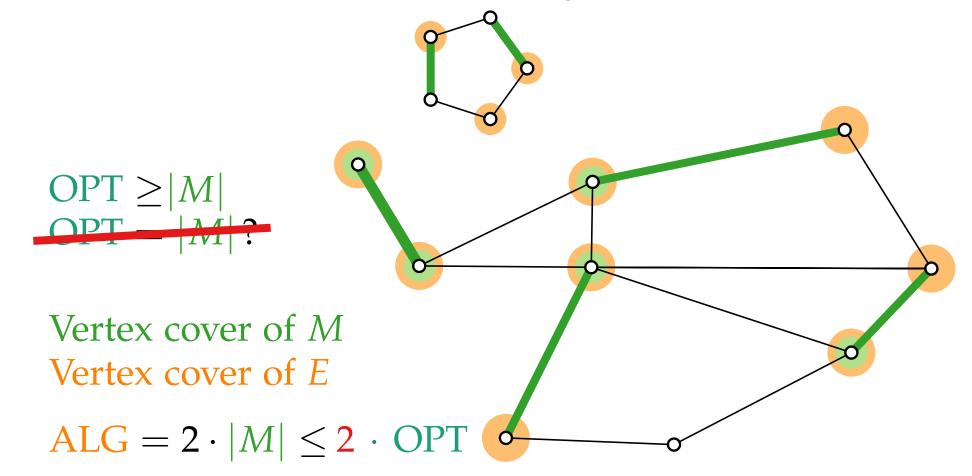
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



Algorithm VertexCover(*G*)

 $M \leftarrow \emptyset$

Algorithm VertexCover(*G*)

 $M \leftarrow \emptyset$

foreach $e \in E(G)$ do

Algorithm VertexCover(*G*)

```
M \leftarrow \emptyset
```

foreach $e \in E(G)$ do

if *e* not adjacent to edge in *M* then

Algorithm VertexCover(*G*)

Algorithm VertexCover(*G*)

 $M \leftarrow \emptyset$
foreach $e \in E(G)$ do
if e not adjacent to edge in M then
 $M \leftarrow M \cup \{e\}$
return $\{ u, v \mid uv \in M \}$

Algorithm VertexCover(*G*)

 $M \leftarrow \emptyset$
foreach $e \in E(G)$ do
if e not adjacent to edge in M then
 $M \leftarrow M \cup \{e\}$

return $\{u, v \mid uv \in M\}$

Theorem. The above algorithm is a factor-2-approximation algorithm for VERTEXCOVER.

Algorithm VertexCover(*G*)

 $M \leftarrow \emptyset$

foreach $e \in E(G)$ do

if *e* not adjacent to edge in *M* then

return $\{ u, v \mid uv \in M \}$

Theorem. The above algorithm is a factor-2-approximation algorithm for VERTEXCOVER.

The best-known approximation factor for VERTEXCOVER is

Algorithm VertexCover(*G*)

 $M \leftarrow \emptyset$

foreach $e \in E(G)$ do

if *e* not adjacent to edge in *M* then

return $\{u, v \mid uv \in M\}$

Theorem. The above algorithm is a factor-2-approximation algorithm for VERTEXCOVER.

The best-known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$

Algorithm VertexCover(G)

 $M \leftarrow \emptyset$

foreach $e \in E(G)$ do

if *e* not adjacent to edge in *M* then

return $\{ u, v \mid uv \in M \}$

Theorem. The above algorithm is a factor-2-approximation algorithm for VERTEXCOVER.

The best-known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$ VERTEXCOVER cannot be approximated within factor 1.3606 (unless P=NP)

Algorithm VertexCover(*G*)

 $M \leftarrow \emptyset$

foreach $e \in E(G)$ do

if *e* not adjacent to edge in *M* then

 $\ \ \, M \leftarrow M \cup \{e\}$

return $\{ u, v \mid uv \in M \}$

Theorem. The above algorithm is a factor-2-approximation algorithm for VERTEXCOVER.

The best-known approximation factor for V_{1}

VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$

VERTEXCOVER cannot be approximated within factor 1.3606 (unless P=NP)

VERTEXCOVER cannot be approximated within factor $2 - \Theta(1)$, if "Unique Games Conjecture" holds.