





## Algorithmen und Datenstrukturen

Wintersemester 2021/22 22. Vorlesung

- Inkrementell
- Rekursiv
- Teile und Herrsche
- Randomisiert

- Inkrementell
- Rekursiv
- Teile und Herrsche
- Randomisiert



- Inkrementell
- Rekursiv
- Teile und Herrsche
- Randomisiert



- Inkrementell
- Rekursiv
- Teile und Herrsche
- Randomisiert

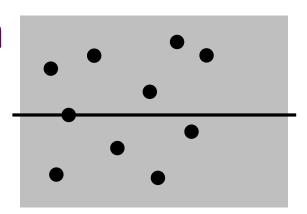


meint hier das Arbeiten mit einer Tabelle, nicht das Schreiben eines Computerprogramms.

Teile und Herrsche

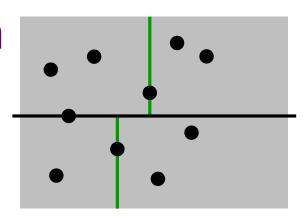
#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen



#### Teile und Herrsche

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen



#### Teile und Herrsche

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

# 

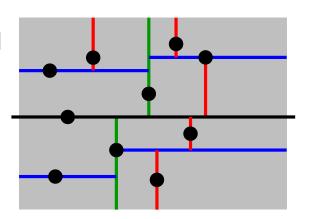
#### Teile und Herrsche

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

# Vergleich \_\_\_\_\_\_

#### Teile und Herrsche

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen



#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

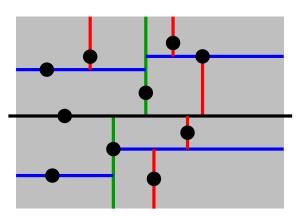
### **Dynamisches Programmieren**

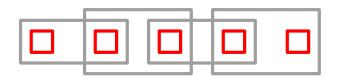
## **Dynamisches Programmieren**

 zerlegt Instanz in überlappende Teilinstanzen

#### Teile und Herrsche

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

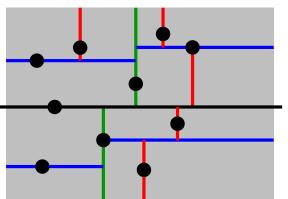


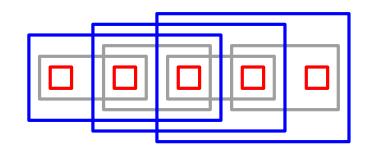


#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

### **Dynamisches Programmieren**

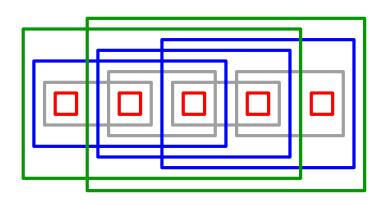




#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

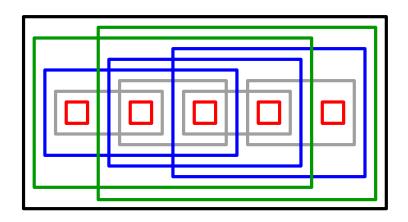
#### **Dynamisches Programmieren**



#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

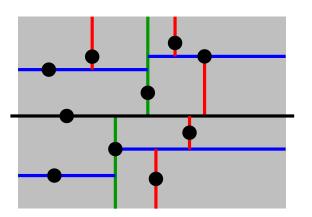
## **Dynamisches Programmieren**



#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

## **Dynamisches Programmieren**





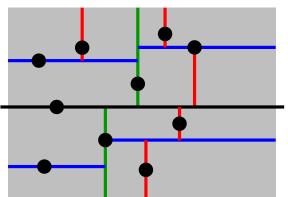
#### **Teile und Herrsche**

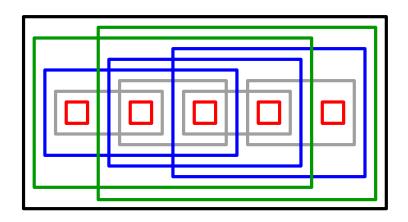
 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

#### **Dynamisches Programmieren**

 zerlegt Instanz in überlappende Teilinstanzen, d.h. Teilinstanzen haben z.T. dieselben Teilteilinstanzen.

## Vergleich |



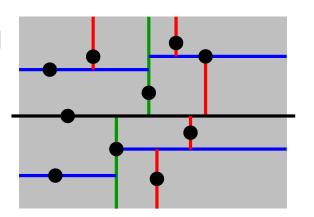


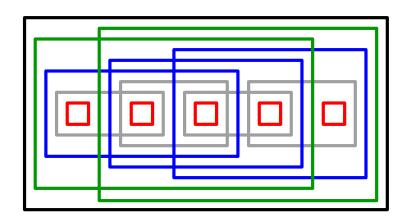
#### Teile und Herrsche

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

## **Dynamisches Programmieren**

 zerlegt Instanz in überlappende Teilinstanzen, d.h. Teilinstanzen haben z.T. dieselben Teilteilinstanzen. Lösungen von Teilinstanzen werden zwischengespeichert, nicht neu berechnet.





#### **Teile und Herrsche**

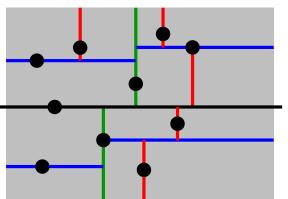
 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

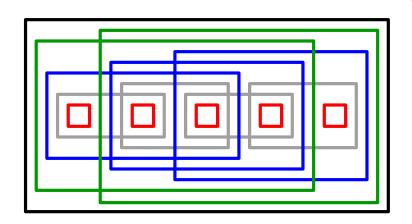
top-down

#### **Dynamisches Programmieren**

 zerlegt Instanz in überlappende Teilinstanzen, d.h. Teilinstanzen haben z.T. dieselben Teilteilinstanzen. Lösungen von Teilinstanzen werden zwischengespeichert, nicht neu berechnet.

## Vergleich |



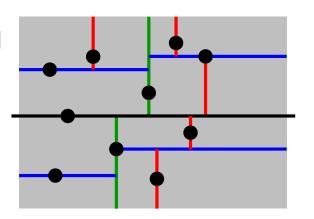


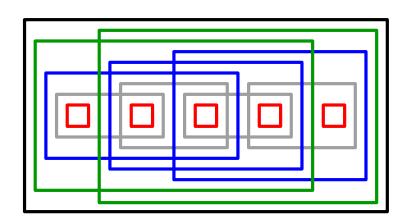
#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

• top-down

- zerlegt Instanz in überlappende Teilinstanzen, d.h. Teilinstanzen haben z.T. dieselben Teilteilinstanzen. Lösungen von Teilinstanzen werden zwischengespeichert, nicht neu berechnet.
- meist bottom-up



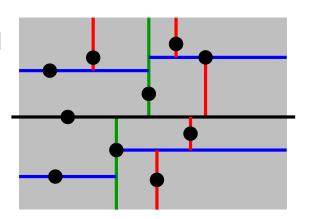


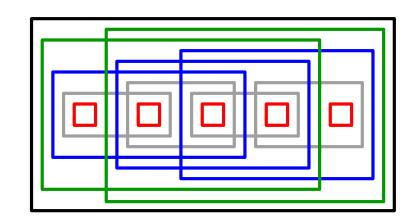
#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

- top-down
- eher für Entscheidungsoder Berechnungsprobleme

- zerlegt Instanz in überlappende Teilinstanzen, d.h. Teilinstanzen haben z.T. dieselben Teilteilinstanzen. Lösungen von Teilinstanzen werden zwischengespeichert, nicht neu berechnet.
- meist bottom-up





#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

- top-down
- eher für Entscheidungsoder Berechnungsprobleme

- zerlegt Instanz in überlappende Teilinstanzen, d.h. Teilinstanzen haben z.T. dieselben Teilteilinstanzen. Lösungen von Teilinstanzen werden zwischengespeichert, nicht neu berechnet.
- meist bottom-up
- meist fürOptimierungsprobleme

## Fahrplan

- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)
- 4. Optimale Lösung aus berechneter Information konstruieren

## Fahrplan

- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)
- 4. Optimale Lösung aus berechneter Information konstruieren

## Zerlegungsproblem

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .

## Zerlegungsproblem

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .



## Zerlegungsproblem

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .



|  | _ |  |  |
|--|---|--|--|
|  |   |  |  |
|  | _ |  |  |
|  |   |  |  |

## Zerlegungsproblem

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .



|  | _ | _ |
|--|---|---|
|  |   |   |

|  |  | ) |
|--|--|---|

| Länge <i>i</i>                    | 1 | 2 | 3 | 4 |
|-----------------------------------|---|---|---|---|
| Preis <i>p<sub>i</sub></i> [in €] | 1 | 5 | 8 | 9 |

## Zerlegungsproblem

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .



| 9€    | 7€ |
|-------|----|
| • • • |    |
| • • • |    |
| • • • |    |

| Länge <i>i</i>                    | 1 | 2 | 3 | 4 |
|-----------------------------------|---|---|---|---|
| Preis <i>p<sub>i</sub></i> [in €] | 1 | 5 | 8 | 9 |

## Zerlegungsproblem

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .



| 9€  | 7€ |
|-----|----|
| 9€  | 7€ |
| 10€ | 7€ |
| 9€  | 4€ |

| Länge <i>i</i>                    | 1 | 2 | 3 | 4 |
|-----------------------------------|---|---|---|---|
| Preis <i>p<sub>i</sub></i> [in €] | 1 | 5 | 8 | 9 |

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .

Beispiel: n = 4Länge i [in m] 1 2 3 4
Preis  $p_i$  [in  $\in$ ] 1 5 8 9

Welche Stabzerlegung maximiert den Ertrag?

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .

Beispiel: n = 4

Länge i [in m] 1 2 3 4

Preis  $p_i$  [in €] 1 5 8 9

Quotient [€/m] 1  $2\frac{1}{2}$   $2\frac{2}{3}$   $2\frac{1}{4}$ 

Welche Stabzerlegung maximiert den Ertrag?

## Ein/e ADSIer/in schlägt folgenden Greedy-Algorithmus vor:

- Berechne für  $i=1,\ldots,n$  den Preis pro Meter  $q_i=p_i/i$ .
- Zerlege Stab in möglichst viele Stücke der Länge i mit  $q_i$  max.
- Streiche alle Stablängen  $\geq i$  aus der Tabelle und wiederhole den Prozess mit dem Stabrest (falls > 0).

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .

Beispiel: n = 4

Länge i [in m] 1 2 3 4

Preis  $p_i$  [in €] 1 5 8 9

Quotient [€/m] 1  $2\frac{1}{2}$   $2\frac{2}{3}$   $2\frac{1}{4}$ 

Welche Stabzerlegung maximiert den Ertrag?

## Ein/e ADSIer/in schlägt folgenden Greedy-Algorithmus vor:

- Berechne für  $i=1,\ldots,n$  den Preis pro Meter  $q_i=p_i/i$ .
- Zerlege Stab in möglichst viele Stücke der Länge i mit  $q_i$  max.
- Streiche alle Stablängen  $\geq i$  aus der Tabelle und wiederhole den Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .

Beispiel: n = 4

Länge i [in m] 1 2 3 4

Preis  $p_i$  [in €] 1 5 8 9

Quotient [€/m] 1  $2\frac{1}{2}$   $2\frac{2}{3}$   $2\frac{1}{4}$ 

Welche Stabzerlegung maximiert den Ertrag?

## Ein/e ADSIer/in schlägt folgenden Greedy-Algorithmus vor:

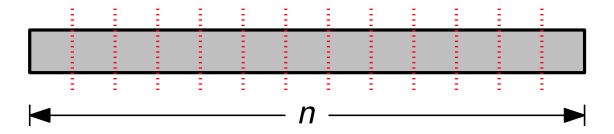
- Berechne für  $i=1,\ldots,n$  den Preis pro Meter  $q_i=p_i/i$ .
- ullet Zerlege Stab in möglichst viele Stücke der Länge i mit  $q_i$  max.
- Streiche alle Stablängen  $\geq i$  aus der Tabelle und wiederhole den Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

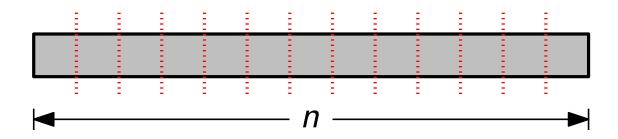
Ja? Beweisen!

Nein? Gegenbeispiel!

**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?

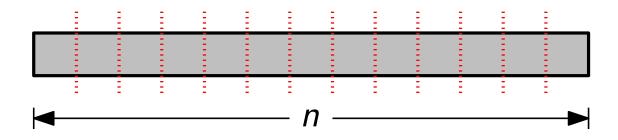


**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?



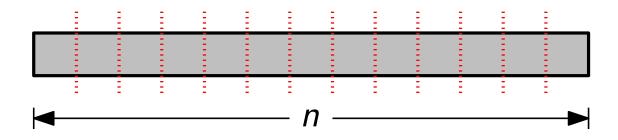
**Antw.:** Können n-1 mal entscheiden: schneiden oder nicht.

**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?



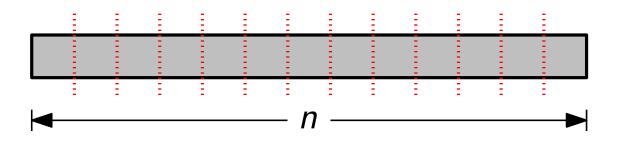
Antw.: Können n-1 mal entscheiden: schneiden oder nicht.  $\Rightarrow 2^{n-1}$  verschiedene Zerlegungen

**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?



Antw.: Können n-1 mal entscheiden: schneiden oder nicht.  $\Rightarrow 2^{n-1}$  verschiedene Zerlegungen

**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?



Antw.: Können n-1 mal entscheiden: schneiden oder nicht.

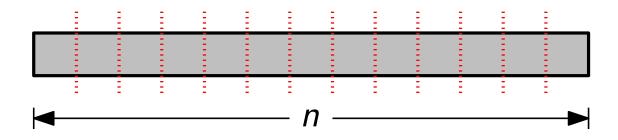
 $\Rightarrow$   $2^{n-1}$  verschiedene Zerlegungen

Oh, mein Gott!

Das ist ja **exponentiel!!** 



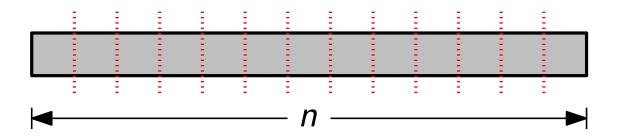
**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?



Antw.: Können n-1 mal entscheiden: schneiden oder nicht.  $\Rightarrow 2^{n-1}$  verschiedene Zerlegungen

Also können wir es uns nicht leisten alle Zerlegungen durchzugehen und für jede ihren Ertrag zu berechnen.

**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?

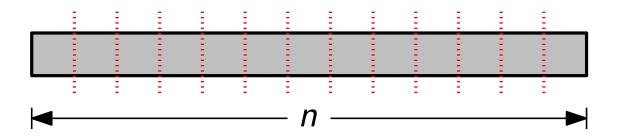


Antw.: Können n-1 mal entscheiden: schneiden oder nicht.  $\Rightarrow 2^{n-1}$  verschiedene\* Zerlegungen

Also können wir es uns nicht leisten alle Zerlegungen durchzugehen und für jede ihren Ertrag zu berechnen.

<sup>\*)</sup> Genauer: die gesuchte Anzahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natürlichen Zahlen schreiben kann. Es gilt  $p(n) \approx e^{\pi \sqrt{2n/3}} / (4n\sqrt{3})$ 

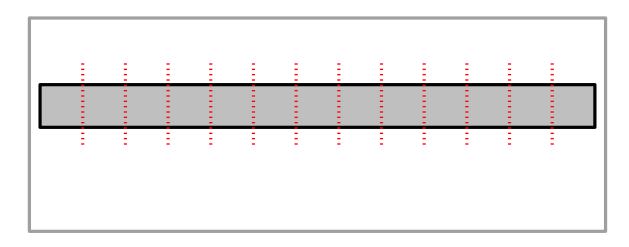
**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?

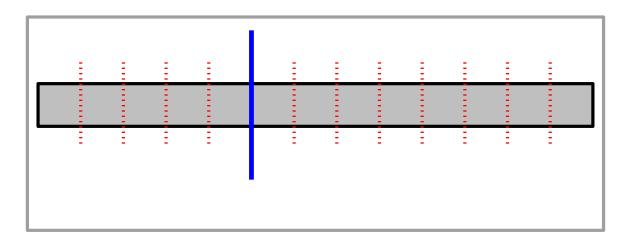


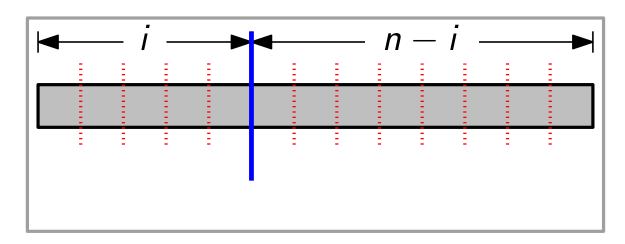
Antw.: Können n-1 mal entscheiden: schneiden oder nicht.  $\Rightarrow 2^{n-1}$  verschiedene\* Zerlegungen

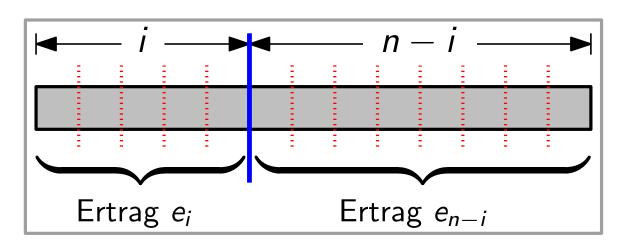
Also können wir es uns nicht leisten alle Zerlegungen durchzugehen und für jede ihren Ertrag zu berechnen.

<sup>\*)</sup> Genauer: die gesuchte Anzahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natürlichen Zahlen schreiben kann. Es gilt  $p(n) \approx e^{\pi \sqrt{2n/3}} / (4n\sqrt{3}) \in \Theta^* \left( (13,00195...)^{\sqrt{n}} \right)$ .

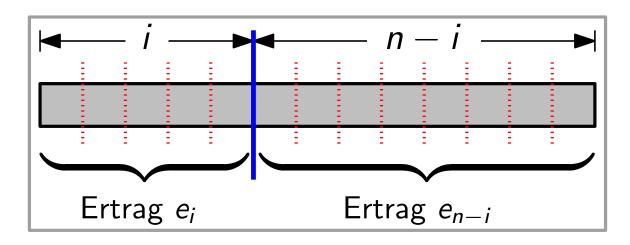






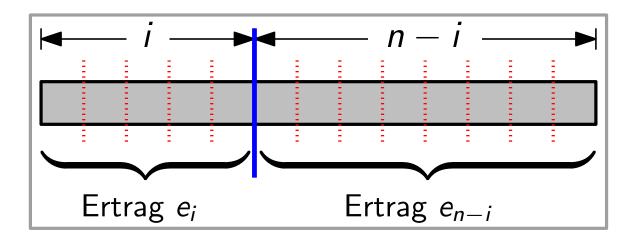


Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



Beob. Ein Schnitt zerlegt das Problem in *unabh.* Teilprobleme.

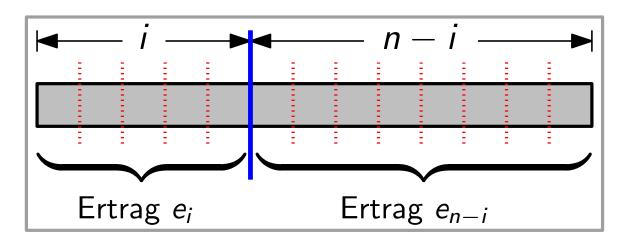
**Def.** Für i = 1, ..., n sei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in *unabh.* Teilprobleme.

Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.

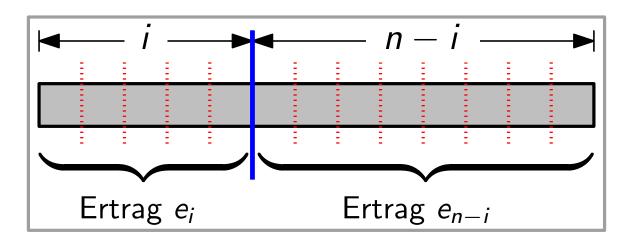


Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in *unabh.* Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



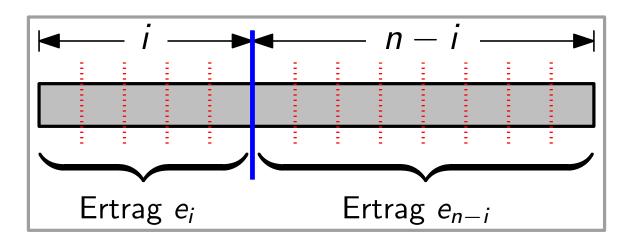
Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in *unabh.* Teilprobleme.

## 2. Wert einer optimalen Lösung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

**Def.** Für i = 1, ..., n sei  $e_i$  der maximale Ertrag für einen Stab der Länge i.

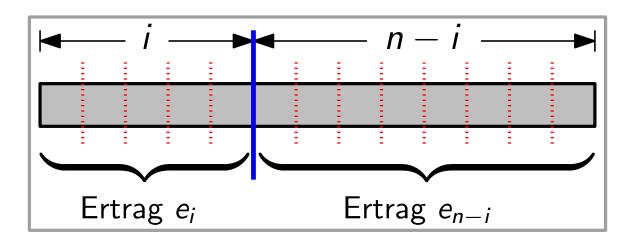


Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in *unabh.* Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



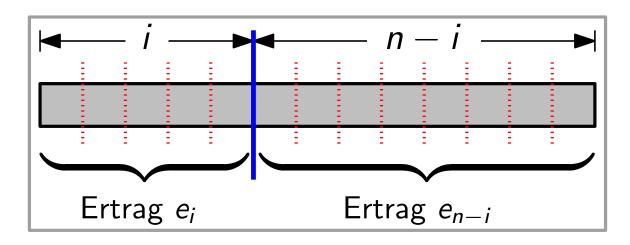
Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in *unabh.* Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

$$e_n =$$

Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



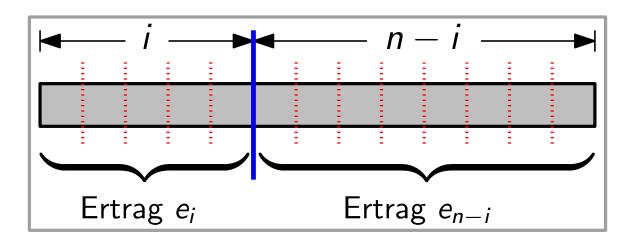
Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in *unabh.* Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

$$e_n = \max\{$$

Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



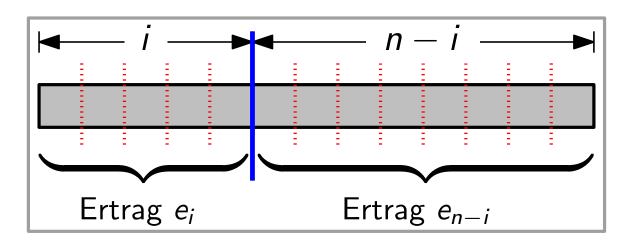
Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in *unabh.* Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

$$e_n = \max\{p_n,$$

Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



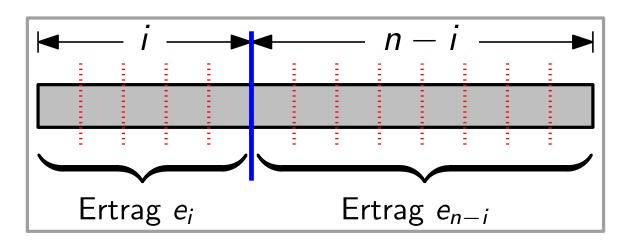
Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in unabh. Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

$$e_n = \max\{p_n, e_1 + e_{n-1},$$

Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



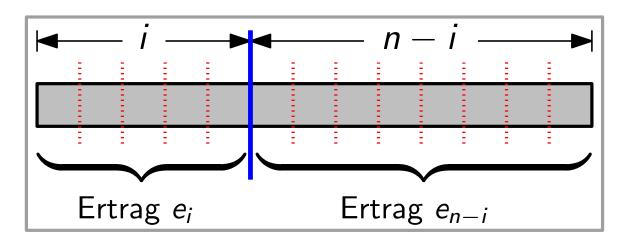
Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in unabh. Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2},$$

**Def.** Für i = 1, ..., n sei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



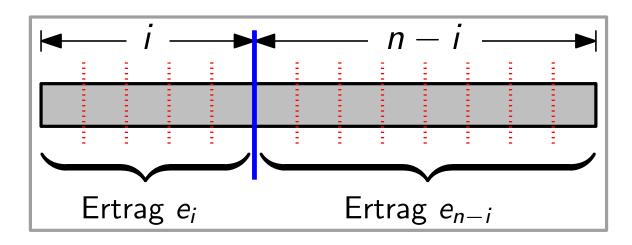
Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in unabh. Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \ldots, \}$$

Def. Für i = 1, ..., nsei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in unabh. Teilprobleme.

# 2. Wert einer optimalen Lösung rekursiv definieren

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

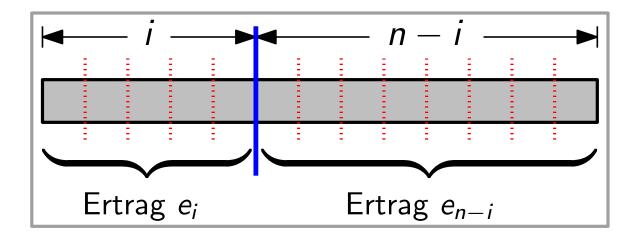
 $e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \ldots, e_{n-1} + e_1 \}$ 

 $e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$ 

Kleine Verbesserung:

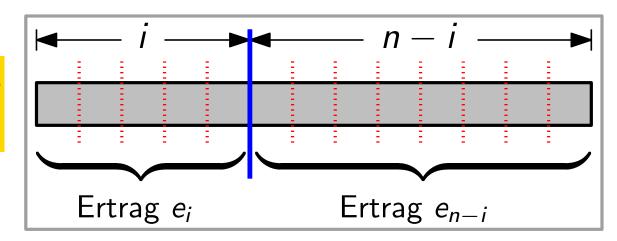
$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

Kleine Verbesserung:



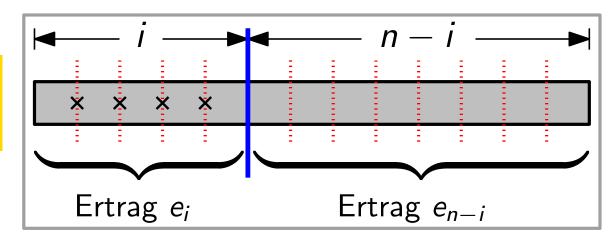
$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:



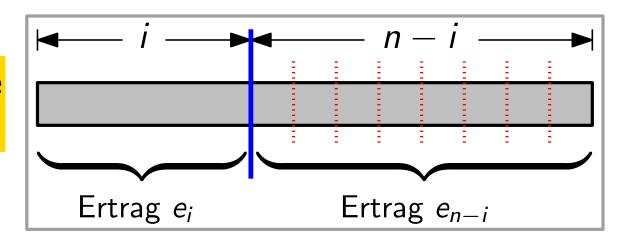
$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:



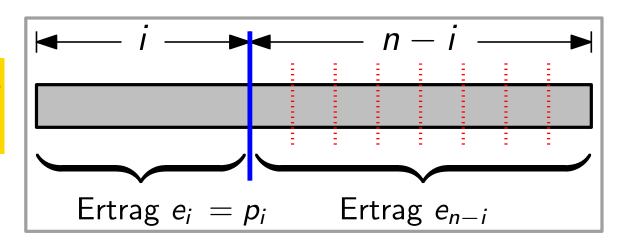
$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:



$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

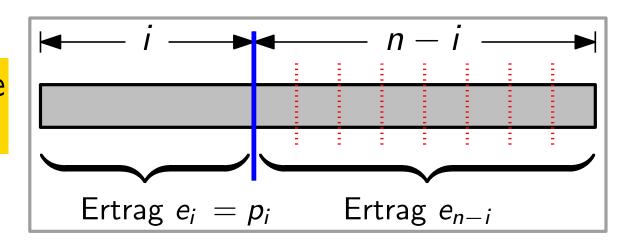
#### Kleine Verbesserung:



$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!



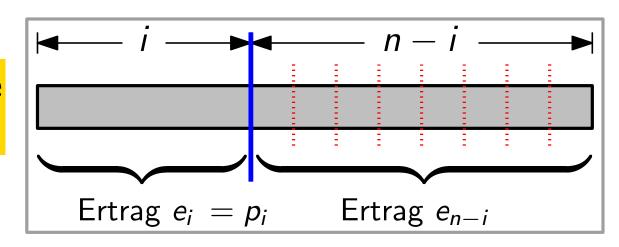
Also gilt:

$$e_n =$$

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!



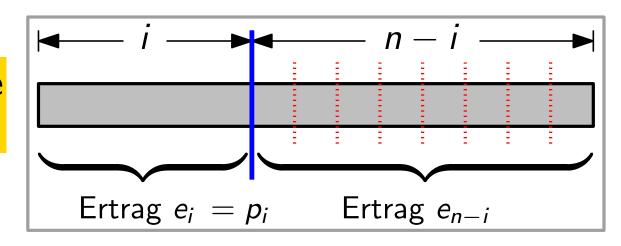
Also gilt: 
$$e_n = \max\{$$

ł

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!



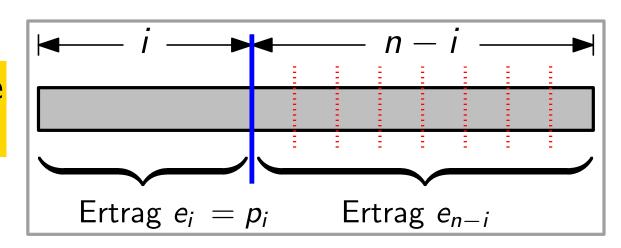
Also gilt:

$$e_n = \max\{p_n,$$

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!



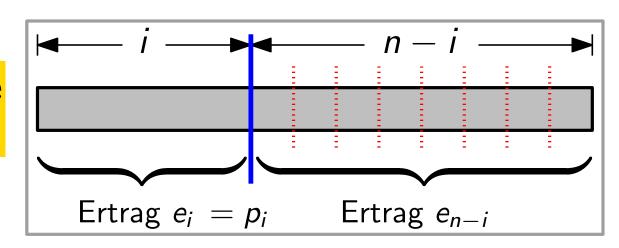
Also gilt:

$$e_n = \max\{p_n, p_1 + e_{n-1},$$

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!

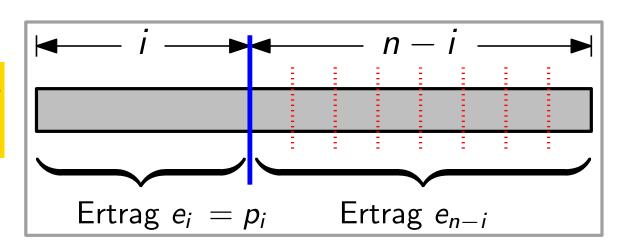


$$e_n = \max\{ p_n, p_1 + e_{n-1}, p_2 + e_{n-2}, \ldots, \}$$

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!

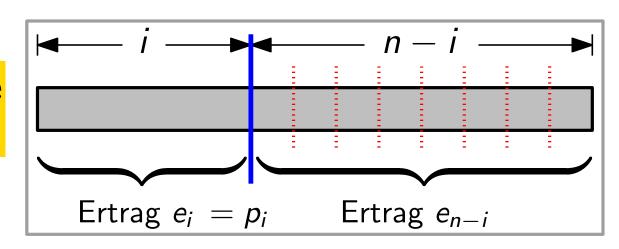


$$e_n = \max\{ p_n, p_1 + e_{n-1}, p_2 + e_{n-2}, \dots, p_{n-1} + e_1 \}$$

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!

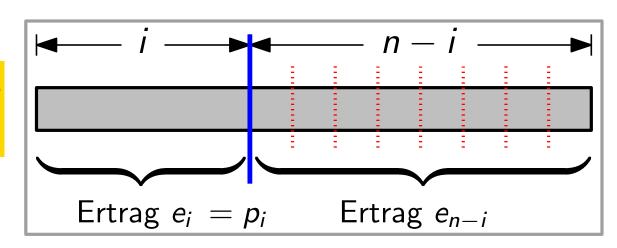


$$e_n = \max\{ p_n, p_1 + e_{n-1}, p_2 + e_{n-2}, \dots, p_{n-1} + e_1 \}$$
  
=  $\max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ 

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!

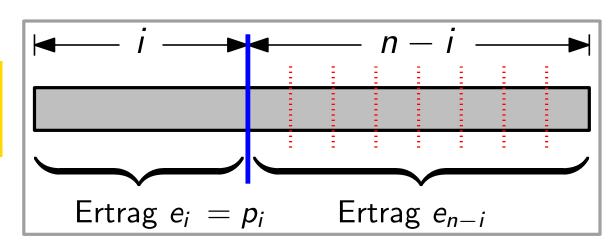


$$e_n = \max\{ p_n, p_1 + e_{n-1}, p_2 + e_{n-2}, \dots, p_{n-1} + e_1 \}$$
  
=  $\max_{1 \le i \le n} \{ p_i + e_{n-i} \}, \text{ wobei } e_0 := 0.$ 

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

#### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!



#### Also gilt:

$$e_n = \max\{ p_n, p_1 + e_{n-1}, p_2 + e_{n-2}, \dots, p_{n-1} + e_1 \}$$
  
=  $\max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

Vorteil: Wert einer opt. Lösung ist Summe aus einer Zahl der Eingabe und *einem* Wert einer opt. Teillösung.

Wir wissen:  $e_n = \max_{1 \le i \le n} \{p_i + e_{n-i}\}$ , wobei  $e_0 := 0$ .

Wir wissen:  $e_n = \max_{1 \le i \le n} \{p_i + e_{n-i}\}$ , wobei  $e_0 := 0$ .

```
StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0

for i = 1 to n do

q = \max\{q, p[i] + \text{StangenZerlegung}(p, n - i)\}

return q
```

Wir wissen:  $e_n = \max_{1 \le i \le n} \{p_i + e_{n-i}\}$ , wobei  $e_0 := 0$ .

```
StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0

q = -\infty

for i = 1 to n do

p = \max\{q, p[i] + \text{StangenZerlegung}(p, n - i)\}

return q
```

Wir wissen:  $e_n = \max_{1 \le i \le n} \{p_i + e_{n-i}\}$ , wobei  $e_0 := 0$ .

```
StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0

q = -\infty

for i = 1 to n do

p = \max\{q, p[i] + \text{StangenZerlegung}(p, n - i)\}

return q
```

#### Laufzeit:

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

```
StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0

q = -\infty

for i = 1 to n do

p = \max\{q, p[i] + \text{StangenZerlegung}(p, n - i)\}

return q
```

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

```
StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0

q = -\infty

for i = 1 to n do

p = \max\{q, p[i] + \text{StangenZerlegung}(p, n - i)\}

return q
```

$$\Rightarrow A(0) =$$

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

```
StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0

q = -\infty

for i = 1 to n do

p = \max\{q, p[i] + \text{StangenZerlegung}(p, n - i)\}

return q
```

$$\Rightarrow A(0) = 1$$

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

```
StangenZerlegung(int[] p, int n=p.length)

if n==0 then return 0

q=-\infty

for i=1 to n do

q=\max\{q,\;p[i]+\text{StangenZerlegung}(p,n-i)\}

return q
```

$$\Rightarrow A(0) = 1$$
 und  $A(n) =$ 

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0  $q = -\infty$ for i = 1 to n do  $p = \max\{q, p[i] + \text{StangenZerlegung}(p, n - i)\}$ return q

$$\Rightarrow A(0) = 1$$
und  $A(n) = 1 + \sum_{i=1}^{n} A(n-i)$ 

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

```
StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0

q = -\infty

for i = 1 to n do

plocup q = \max\{q, p[i] + \text{StangenZerlegung}(p, \frac{n-i}{n-i})\}

return q
```

$$\Rightarrow A(0) = 1$$
und  $A(n) = 1 + \sum_{i=1}^{n} A(n-i)$ 

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0  $q = -\infty$ for i = 1 to n do  $p = \max\{q, p[i] + \text{StangenZerlegung}(p, \frac{n-i}{n-i})\}$ return q

$$\Rightarrow A(0) = 1$$
  
und  $A(n) = 1 + \sum_{i=1}^{n} A(n-i) = 1 + \sum_{j=0}^{n-1} A(j)$ 

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0  $q = -\infty$ for i = 1 to n do  $p = \max\{q, p[i] + \text{StangenZerlegung}(p, \frac{n-i}{n-i})\}$ return q

$$\Rightarrow A(0) = 1$$
  
und  $A(n) = 1 + \sum_{i=1}^{n} A(n-i) = 1 + \sum_{j=0}^{n-1} A(j) = 2^{n}$ 

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0  $q = -\infty$ for i = 1 to n do  $p = \max\{q, p[i] + \text{StangenZerlegung}(p, \frac{n-i}{n-i})\}$ return q

$$\Rightarrow A(0) = 1$$
  
und  $A(n) = 1 + \sum_{i=1}^{n} A(n-i) = 1 + \sum_{j=0}^{n-1} A(j) = 2^{n}$ 

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0  $q = -\infty$ for i = 1 to n do  $p = \max\{q, p[i] + \text{StangenZerlegung}(p, \frac{n-i}{n-i})\}$ return q

$$\Rightarrow A(0) = 1$$
  
und  $A(n) = 1 + \sum_{i=1}^{n} A(n-i) = 1 + \sum_{j=0}^{n-1} A(j) \stackrel{Beweis?!}{=} 2^{n}$ 

**Zeit-Speicher-Tausch** (engl. *time-memory trade-off* )

**Zeit-Speicher-Tausch** (engl. *time-memory trade-off*)

MemoStangenZerlegung(int[] p, int n = p.length)

Zeit-Speicher-Tausch (engl. time-memory trade-off)

```
egin{align*} \mathsf{MemoStangenZerlegung(int[]} & p, \ int \ n = p.length) \ & e = \mathbf{new} \ \mathrm{int[0..}n] \ & e[0] = 0 \ & \mathbf{for} \ i = 1 \ \mathbf{to} \ n \ \mathbf{do} \ & igsqcup e[i] = -\infty \ & \mathbf{return} \ \mathsf{HauptStangenZerlegung}(p, n, e) \end{aligned}
```

Zeit-Speicher-Tausch (engl. time-memory trade-off)

```
MemoStangenZerlegung(int[] p, int n = p.length) e = \mathbf{new} int[0..n] e[0] = 0 for i = 1 to n do e[i] = -\infty return HauptStangenZerlegung(p, n, e)
```

HauptStangenZerlegung(int[] p, int n, int[] e)

Zeit-Speicher-Tausch (engl. time-memory trade-off)

```
[MemoStangenZerlegung(int[] p, int n = p.length)]
  e = \mathbf{new} \text{ int}[0..n]
  e[0] = 0
  for i = 1 to n do
  e[i] = -\infty
  return HauptStangenZerlegung(p, n, e)
[HauptStangenZerlegung(int[] p, int n, int[] e]
  if e[n] > -\infty then return e[n]
  q=-\infty
  for i = 1 to n do
   q = \max\{q, p[i] + \text{HauptStangenZerlegung}(p, n-i, e)\}
  e[n] = q; return q
```

Zeit-Speicher-Tausch (engl. time-memory trade-off)

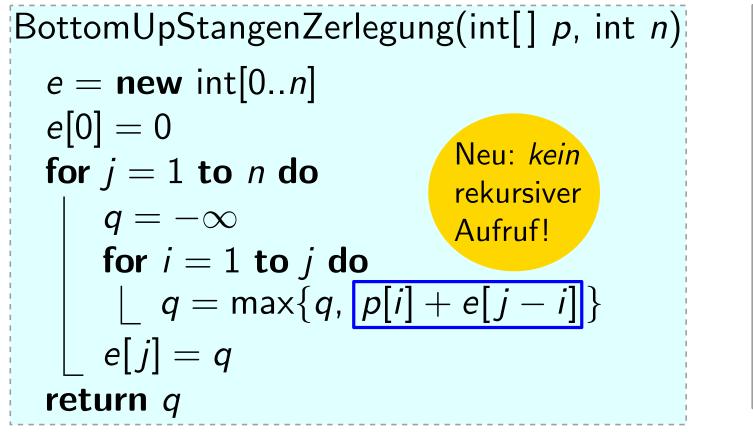
```
[MemoStangenZerlegung(int[] p, int n = p.length)]
  e = \mathbf{new} \text{ int}[0..n]
  e[0] = 0
  for i = 1 to n do
  e[i] = -\infty
  return HauptStangenZerlegung(p, n, e)
[HauptStangenZerlegung(int[] p, int n, int[] e]
  if e[n] > -\infty then return e[n]
  q=-\infty
  for i = 1 to n do
   q = \max\{q, p[i] + \text{HauptStangenZerlegung}(p, n-i, e)\}
  e[n] = q; return q
```

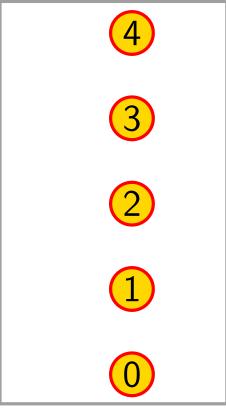
**Laufzeit?** – Wie letzte Folie? – Asymptotisch schneller?

BottomUpStangenZerlegung(int[] p, int n)

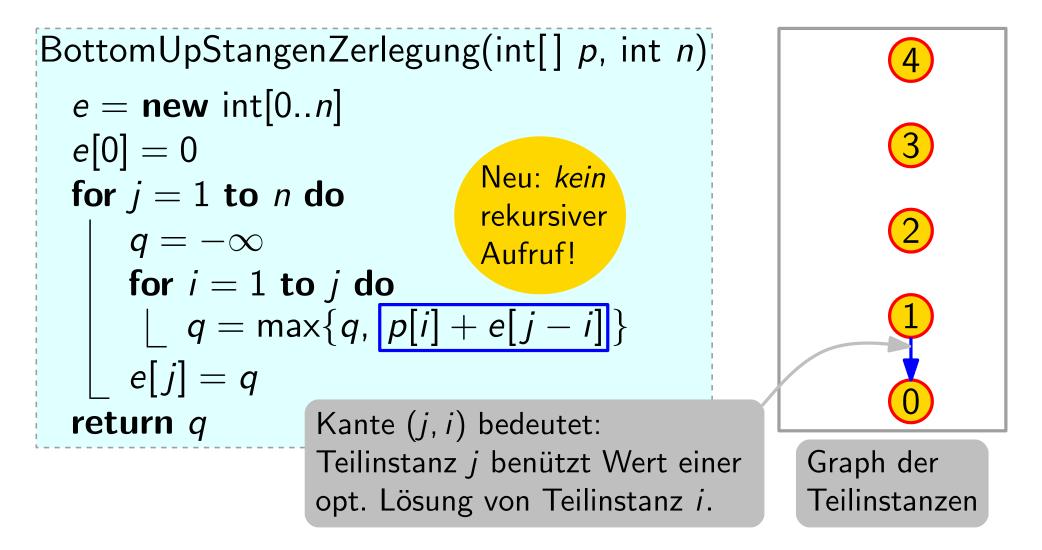
```
BottomUpStangenZerlegung(int[] p, int n)
  e = \mathbf{new} \text{ int}[0..n]
  e[0] = 0
  for j = 1 to n do
      q=-\infty
     for i = 1 to j do
      | q = \max\{q, p[i] + e[j-i]\}
     e[j] = q
  return q
```

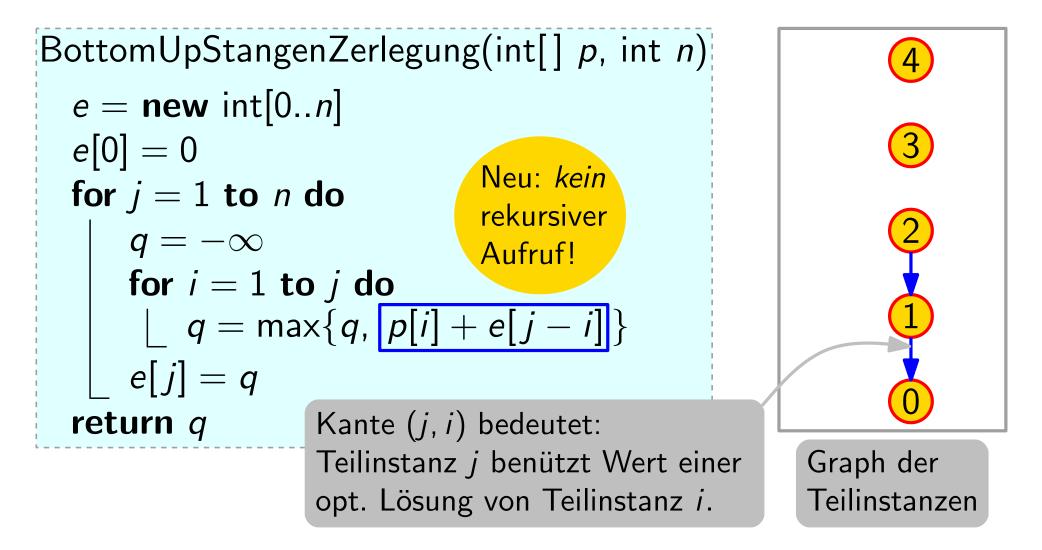
```
BottomUpStangenZerlegung(int[] p, int n)
  e = \mathbf{new} \text{ int}[0..n]
  e[0] = 0
                               Neu: kein
  for j = 1 to n do
                               rekursiver
      q=-\infty
                               Aufruf!
      for i = 1 to j do
       q = \max\{q, p[i] + e[j-i]\}
      e[j] = q
  return q
```

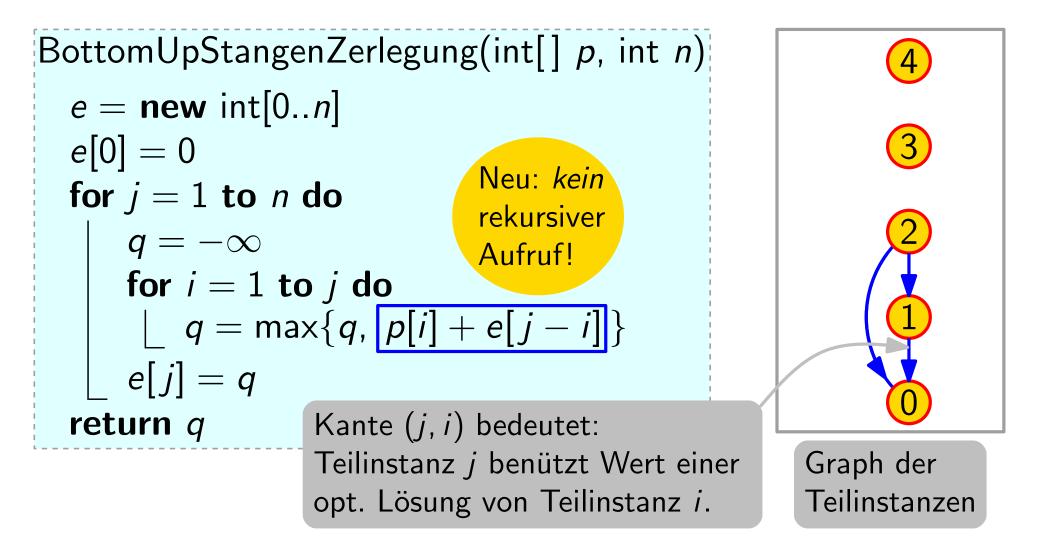


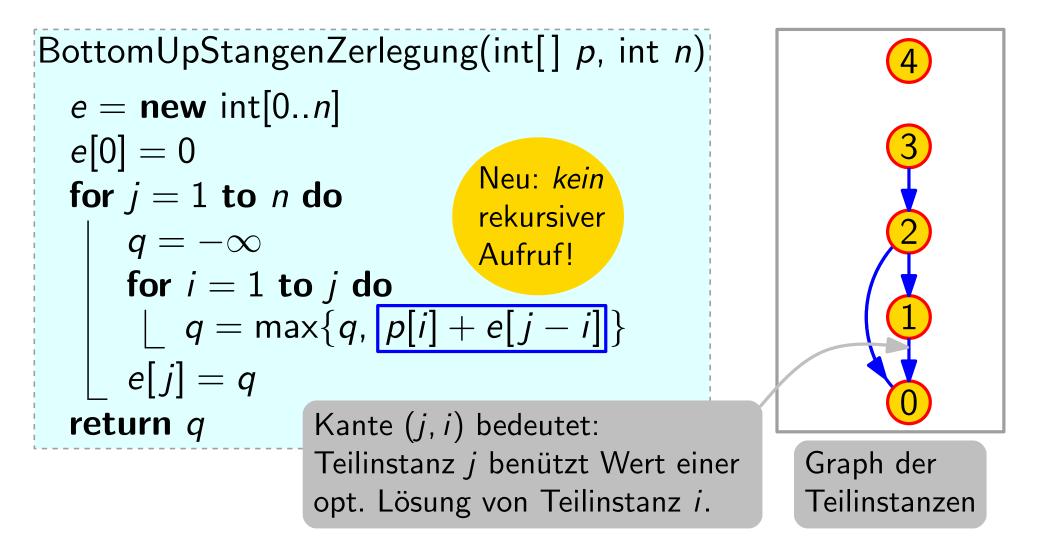


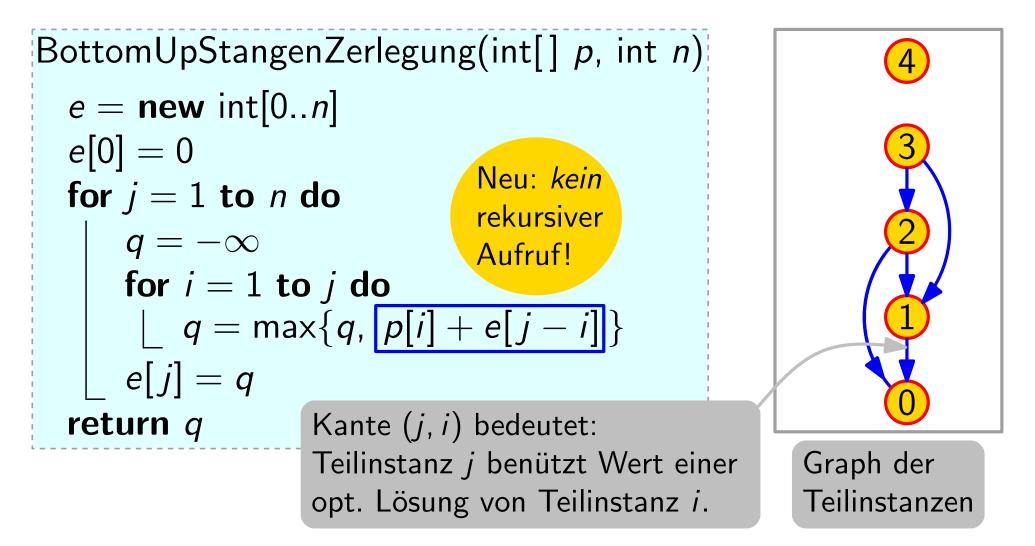
Graph der Teilinstanzen

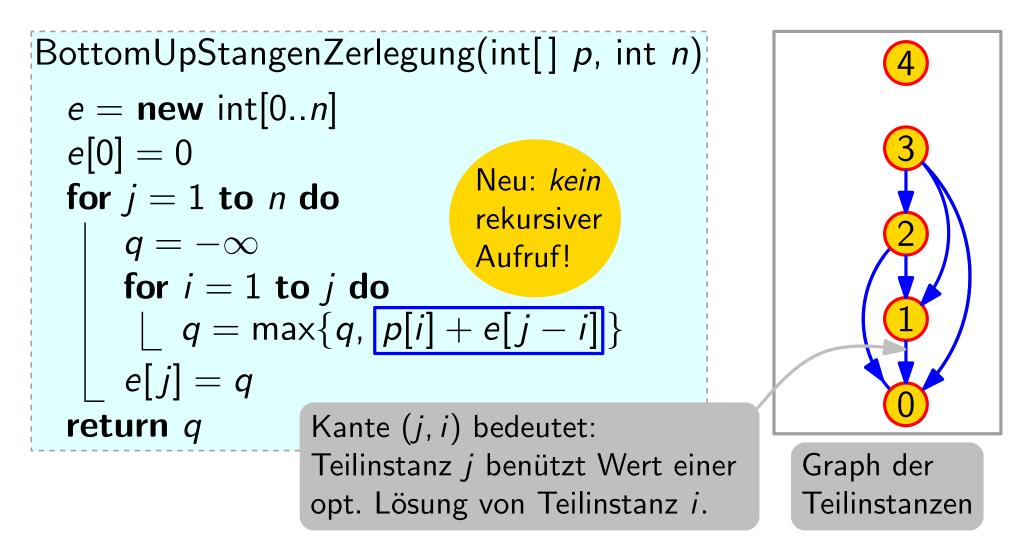










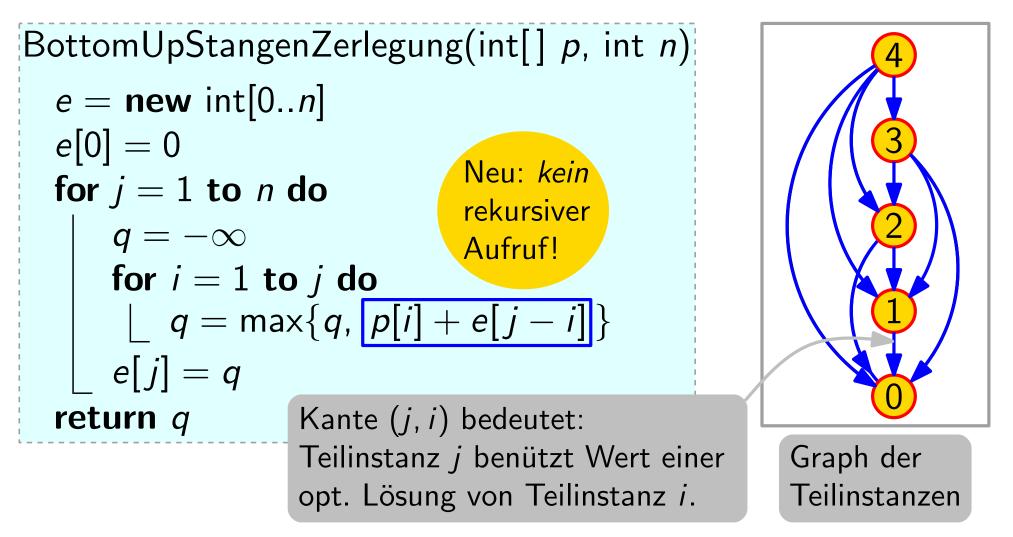


BottomUpStangenZerlegung(int[] p, int n)  $e = \mathbf{new} \text{ int}[0..n]$ e[0] = 0Neu: kein for j = 1 to n do rekursiver  $q=-\infty$ Aufruf! for i = 1 to j do  $q = \max\{q, p[i] + e[j-i]\}$ e[j] = qreturn q Kante (j, i) bedeutet: Teilinstanz j benützt Wert einer Graph der Teilinstanzen opt. Lösung von Teilinstanz i.

BottomUpStangenZerlegung(int[] p, int n)  $e = \mathbf{new} \text{ int}[0..n]$ e[0] = 0Neu: kein for j = 1 to n do rekursiver  $q=-\infty$ Aufruf! for i = 1 to j do  $q = \max\{q, p[i] + e[j-i]\}$ e[j] = qreturn q Kante (j, i) bedeutet: Teilinstanz j benützt Wert einer Graph der Teilinstanzen opt. Lösung von Teilinstanz i.

BottomUpStangenZerlegung(int[] p, int n)  $e = \mathbf{new} \text{ int}[0..n]$ e[0] = 0Neu: kein for j = 1 to n do rekursiver  $q=-\infty$ Aufruf! for i = 1 to j do  $q = \max\{q, p[i] + e[j-i]\}$ e[j] = qreturn q Kante (j, i) bedeutet: Teilinstanz j benützt Wert einer Graph der Teilinstanzen opt. Lösung von Teilinstanz i.

BottomUpStangenZerlegung(int[] p, int n)  $e = \mathbf{new} \text{ int}[0..n]$ e[0] = 0Neu: kein for j = 1 to n do rekursiver  $q=-\infty$ Aufruf! for i = 1 to j do e[j] = qreturn q Kante (j, i) bedeutet: Teilinstanz j benützt Wert einer Graph der Teilinstanzen opt. Lösung von Teilinstanz i.



Beob. Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP (Anz. Additionen).

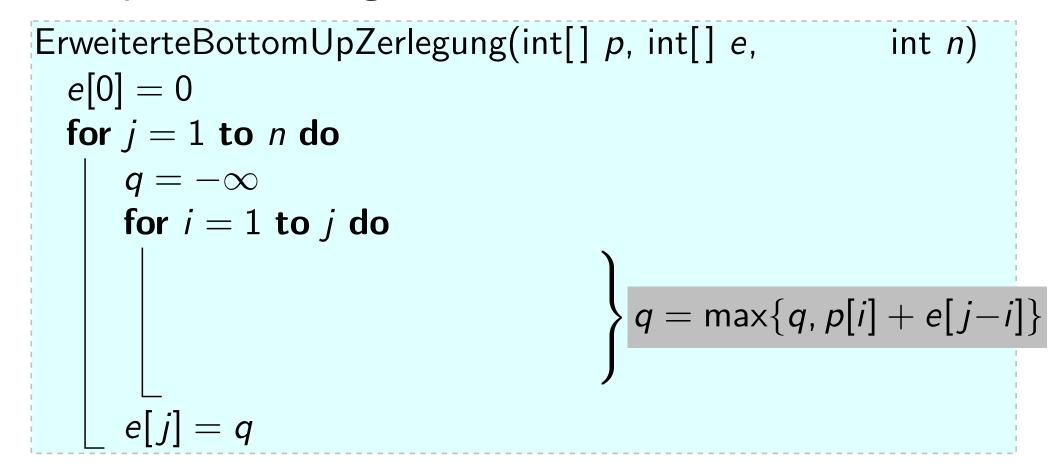
BottomUpStangenZerlegung(int[] p, int n)  $e = \mathbf{new} \text{ int}[0..n]$ e[0] = 0Neu: kein for j = 1 to n do rekursiver  $q=-\infty$ Aufruf! for i = 1 to j do e[j] = qreturn q Kante (j, i) bedeutet: Teilinstanz j benützt Wert einer Graph der Teilinstanzen opt. Lösung von Teilinstanz i.

- Beob. Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP (Anz. Additionen).
- <code>Satz.</code> BottUpSZerl() und MemoSZerl() laufen in  $O(\quad)$  Zeit.

BottomUpStangenZerlegung(int[] p, int n)  $e = \mathbf{new} \text{ int}[0..n]$ e[0] = 0Neu: kein for j = 1 to n do rekursiver  $q=-\infty$ Aufruf! for i = 1 to j do e[j] = qreturn q Kante (j, i) bedeutet: Teilinstanz j benützt Wert einer Graph der Teilinstanzen opt. Lösung von Teilinstanz i.

- Beob. Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP (Anz. Additionen).
- Satz. BottUpSZerl() und MemoSZerl() laufen in  $O(n^2)$  Zeit.

```
ErweiterteBottomUpZerlegung(int[] p, int[] e,
                                                        int n)
  e[0] = 0
 for j = 1 to n do
     q=-\infty
     for i = 1 to j do
         q = \max\{q, p[i] + e[j-i]\}
     e[j] = q
```



```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
 for j = 1 to n do
     q=-\infty
     for i = 1 to j do
         if q < p[i] + e[j-i] then
           q = p[i] + e[j - i] q = \max\{q, p[i] + e[j - i]\}
     e[j] = q
```

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
      for i = 1 to j do
          if q < p[i] + e[j - i] then
              q = p[i] + e[j - i]
  \begin{cases} q = \max\{q, p[i] + e[j - i]\} \end{cases} 
                                  // merke Länge des 1. Teilstücks
      e[j] = q
```

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
     q=-\infty
     for i = 1 to j do
         if q < p[i] + e[j - i] then)
            q = p[i] + e[j-i] q = \max\{q, p[i] + e[j-i]\}
                              // merke Länge des 1. Teilstücks
     e[j] = q
```

```
GibZerlegungAus(int[] p, int n)
\frac{\ell = \text{new int}[0..n]}{\ell = \text{new int}[0..n]}; e = \text{new int}[0..n]
ErweiterteBottomUpZerlegung(p, e, \ell, n)
```

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
     for i = 1 to j do
         if q < p[i] + e[j-i] then
            q = p[i] + e[j - i] q = \max\{q, p[i] + e[j - i]\}
                              // merke Länge des 1. Teilstücks
     e[j] = q
GibZerlegungAus(int[] p, int n)
```

```
Let p_i interesting p_i i
```

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
      for i = 1 to j do
          if q < p[i] + e[j - i] then)
             q = p[i] + e[j - i] q = \max\{q, p[i] + e[j - i]\}
                               // merke Länge des 1. Teilstücks
      e[j] = q
GibZerlegungAus(int[] p, int n)
  \ell = \text{new int}[0..n]; e = \text{new int}[0..n]
  ErweiterteBottomUpZerlegung(p, e, \ell, n)
  while n > 0 do // gib wiederholt Länge des 1. Teilstücks aus
     print \ell[n]; n = n - \ell[n]
```

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
      for i = 1 to j do
          if q < p[i] + e[j - i] then)
             q = p[i] + e[j-i] q = \max\{q, p[i] + e[j-i]\}
                               // merke Länge des 1. Teilstücks
      e[j] = q
GibZerlegungAus(int[] p, int n)
  \ell = \text{new int}[0..n]; e = \text{new int}[0..n]
  ErweiterteBottomUpZerlegung(p, e, \ell, n)
  while n > 0 do // gib wiederholt Länge des 1. Teilstücks aus
     print \ell[n]; n = n - \ell[n]
```

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
      for i = 1 to j do
          if q < p[i] + e[j - i] then)
             q = p[i] + e[j-i] q = \max\{q, p[i] + e[j-i]\}
                               // merke Länge des 1. Teilstücks
      e[j] = q
GibZerlegungAus(int[] p, int n)
  \ell = \text{new int}[0..n]; e = \text{new int}[0..n]
  ErweiterteBottomUpZerlegung(p, e, \ell, n)
  while n > 0 do // gib wiederholt Länge des 1. Teilstücks aus
     print \ell[n]; n = n - \ell[n]
```

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
      for i = 1 to j do
          if q < p[i] + e[j - i] then)
             q = p[i] + e[j-i] q = \max\{q, p[i] + e[j-i]\}
                                // merke Länge des 1. Teilstücks
      e[j] = q
GibZerlegungAus(int[] p, int n)
  \ell = \text{new int}[0..n]; e = \text{new int}[0..n]
                                                 \ell[7] = 3
  ErweiterteBottomUpZerlegung(p, e, \ell, n)
  while n > 0 do
                     // gib wiederholt Länge des 1. Teilstücks aus
     print \ell[n]; n = n - \ell[n]
```

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
      for i = 1 to j do
          if q < p[i] + e[j - i] then)
             q = p[i] + e[j - i] q = \max\{q, p[i] + e[j - i]\}
                                // merke Länge des 1. Teilstücks
      e[j] = q
GibZerlegungAus(int[] p, int n)
  \ell = \text{new int}[0..n]; e = \text{new int}[0..n]
                                                 \ell[7]=3 \ell[4]=2
  ErweiterteBottomUpZerlegung(p, e, \ell, n)
  while n > 0 do
                     // gib wiederholt Länge des 1. Teilstücks aus
```

print  $\ell[n]$ ;  $n = n - \ell[n]$ 

```
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
      for i = 1 to j do
          if q < p[i] + e[j - i] then
              q = p[i] + e[j-i] q = \max\{q, p[i] + e[j-i]\}
                                // merke Länge des 1. Teilstücks
      e[j] = q
GibZerlegungAus(int[] p, int n)
  \ell = \text{new int}[0..n]; e = \text{new int}[0..n]
                                                 \ell[7]=3 \ell[4]=2 \ell[2]
```

ErweiterteBottomUpZerlegung $(p, e, \ell, n)$  while n > 0 do // gib wiederholt Länge des 1. Teilstücks aus  $\ell$  print  $\ell[n]$ ;  $n = n - \ell[n]$ 

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V, s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_i$  (für  $i \neq j$ ) und k maximal.

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.

- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_i$  (für  $i \neq j$ ) und k maximal.

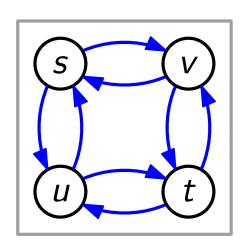
- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.



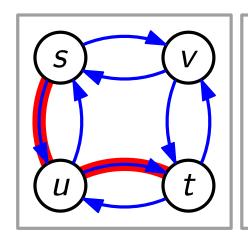
- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.



 $\langle s, u, t \rangle$  ist ein längster einfacher s-t-Weg.

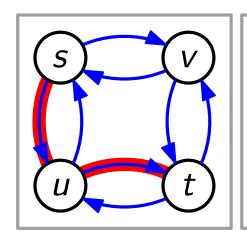
- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.



 $\langle s, u, t \rangle$  ist ein längster einfacher s-t-Weg.

Aber:

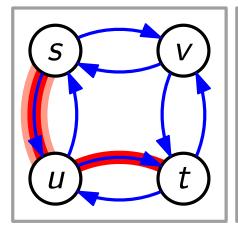
- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.



 $\langle s, u, t \rangle$  ist ein längster einfacher s-t-Weg.

Aber:

 $\langle s, u \rangle$  ist *kein* längster einfacher *s-u*-Weg;

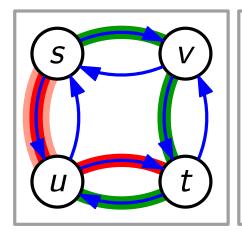
- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.



 $\langle s, u, t \rangle$  ist ein längster einfacher s-t-Weg.

Aber:

 $\langle s, u \rangle$  ist *kein* längster einfacher *s-u-*Weg;

 $\langle s, v, t, u \rangle$  ist ein längster einfacher s-u-Weg!

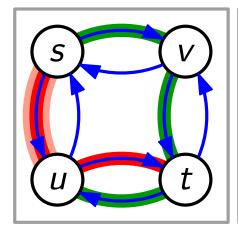
- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.



 $|\langle s, u, t \rangle|$  ist ein längster einfacher s-t-Weg.

Aber:

 $\langle s, u \rangle$  ist *kein* längster einfacher *s-u-*Weg;

 $\langle s, v, t, u \rangle$  ist ein längster einfacher s-u-Weg!

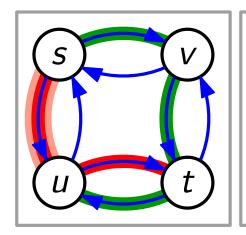
- 1. Struktur einer optimalen Lösung charakterisieren
- 4
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.



 $\langle s, u, t \rangle$  ist ein längster einfacher s-t-Weg.

Aber:

 $\langle s, u \rangle$  ist *kein* längster einfacher *s-u-*Weg;

 $\langle s, v, t, u \rangle$  ist ein längster einfacher s-u-Weg!

### **Fahrplan**

1. Struktur einer optimalen Lösung charakterisieren



- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

\*) Es ist NP-schwer für (G, s, t, k) zu entscheiden, ob G einen einfachen s-t-Weg der Länge k enthält. (Vgl. Hamilton-Weg!)

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w) mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w)

mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster s-t-Weg.

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w)

mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster *s-t*-Weg.

**Beob**<sub>1</sub> In kreisfreien Graphen sind alle Wege einfach.

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w)

mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster s-t-Weg.

Beob<sub>1</sub> In kreisfreien Graphen sind alle Wege einfach.

Beob<sub>2</sub> Dieses Problem hat optimale Teilstruktur, denn:

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w)

mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster s-t-Weg.

Beob<sub>1</sub> In kreisfreien Graphen sind alle Wege einfach.

Beob<sub>2</sub> Dieses Problem hat optimale Teilstruktur, denn:

Ein längster s-t-Weg  $\pi$  gehe durch u, d.h.

$$\pi = s \xrightarrow{\pi_{su}} u \xrightarrow{\pi_{ut}} t$$
.

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w)

mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster s-t-Weg.

Beob<sub>1</sub> In kreisfreien Graphen sind alle Wege einfach.

Beob<sub>2</sub> Dieses Problem hat optimale Teilstruktur, denn:

Ein längster s-t-Weg  $\pi$  gehe durch u, d.h.

$$\pi = s \xrightarrow{\pi_{su}} u \xrightarrow{\pi_{ut}} t$$
.

Dann gilt:

 $\pi_{su}$  ist längster s-u-Weg;  $\pi_{ut}$  ist längster u-t-Weg –

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w)

mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster s-t-Weg.

Beob<sub>1</sub> In kreisfreien Graphen sind alle Wege einfach.

Beob<sub>2</sub> Dieses Problem hat optimale Teilstruktur, denn:

Ein längster s-t-Weg  $\pi$  gehe durch u, d.h.

$$\pi = s \xrightarrow{\pi_{su}} u \xrightarrow{\pi_{ut}} t$$
.

Dann gilt:

 $\pi_{su}$  ist längster s-u-Weg;  $\pi_{ut}$  ist längster u-t-Weg – sonst wäre  $\pi$  kein längster s-t-Weg.

## Längste Wege in azyklischen Graphen

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w)

mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster s-t-Weg.

Beob<sub>1</sub> In kreisfreien Graphen sind alle Wege einfach.

Beob<sub>2</sub> Dieses Problem hat optimale Teilstruktur, denn:

Ein längster s-t-Weg  $\pi$  gehe durch u, d.h.

$$\pi = s \xrightarrow{\pi_{su}} u \xrightarrow{\pi_{ut}} t$$
.

Dann gilt:

 $\pi_{su}$  ist längster s-u-Weg;  $\pi_{ut}$  ist längster u-t-Weg – sonst wäre  $\pi$  kein längster s-t-Weg.

Außerdem gilt  $V(\pi_{su}) \cap V(\pi_{ut}) = \{u\}$ ; sonst gäbe es einen Kreis!

1. Struktur einer optimalen Lösung charakterisieren



1. Struktur einer optimalen Lösung charakterisieren



1. Struktur einer optimalen Lösung charakterisieren



```
d_{\rm v}= // Länge eines längsten s-v-Wegs
```

1. Struktur einer optimalen Lösung charakterisieren



$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

1. Struktur einer optimalen Lösung charakterisieren



2. Wert einer optimalen Lösung rekursiv definieren

$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

1. Struktur einer optimalen Lösung charakterisieren



$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

- 3. Wert einer optimalen Lösung berechnen (hier bottom-up)
  - G topologisch sortieren

1. Struktur einer optimalen Lösung charakterisieren



$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

- 3. Wert einer optimalen Lösung berechnen (hier bottom-up)
  - G topologisch sortieren
  - d-Werte initialisieren:  $d_s=0$  und  $d_v=-\infty$  für alle  $v\neq s$

1. Struktur einer optimalen Lösung charakterisieren



$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

- 3. Wert einer optimalen Lösung berechnen (hier bottom-up)
  - G topologisch sortieren
  - d-Werte initialisieren:  $d_s=0$  und  $d_v=-\infty$  für alle  $v\neq s$
  - for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

1. Struktur einer optimalen Lösung charakterisieren



$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

- 3. Wert einer optimalen Lösung berechnen (hier bottom-up)
  - G topologisch sortieren
  - d-Werte initialisieren:  $d_s=0$  und  $d_v=-\infty$  für alle  $v\neq s$
  - for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

1. Struktur einer optimalen Lösung charakterisieren



2. Wert einer optimalen Lösung rekursiv definieren

$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

- 3. Wert einer optimalen Lösung berechnen (hier bottom-up)
  - G topologisch sortieren
  - d-Werte initialisieren:  $d_s=0$  und  $d_v=-\infty$  für alle  $v\neq s$
  - for-Schleife durch Knoten v.l.n.r. d-Werte berechnen -

Übrigens: Kürzeste Wege in kreisfreien Graphen

1. Struktur einer optimalen Lösung charakterisieren



2. Wert einer optimalen Lösung rekursiv definieren

$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

- 3. Wert einer optimalen Lösung berechnen (hier bottom-up)
  - G topologisch sortieren
  - d-Werte initialisieren:  $d_s=0$  und  $d_v=-\infty$  für alle  $v\neq s$
  - for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

**Übrigens:** Kürzeste Wege in kreisfreien Graphen kann man genauso berechnen (mit min statt max und  $+\infty$  statt  $-\infty$ ).

1. Struktur einer optimalen Lösung charakterisieren



2. Wert einer optimalen Lösung rekursiv definieren

$$d_v = \max_{u: uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

- 3. Wert einer optimalen Lösung berechnen (hier bottom-up)
  - G topologisch sortieren
  - d-Werte initialisieren:  $d_s=0$  und  $d_v=-\infty$  für alle  $v\neq s$
  - for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Übrigens: Kürzeste Wege in kreisfreien Graphen kann man genauso berechnen (mit min statt max und  $+\infty$  statt  $-\infty$ ). Genauso kann man auch das SMS-Problem lösen ( $\cdot$  statt +).

# Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit dynamischem Programmieren gelöst:

## Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit dynamischem Programmieren gelöst:

- Ketten von Matrixmultiplikationen
- Längste gemeinsame Teilfolge (in Zeichenketten)
- Optimale binäre Suchbäume

## Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit dynamischem Programmieren gelöst:

- Ketten von Matrixmultiplikationen
- Längste gemeinsame Teilfolge (in Zeichenketten)
- Optimale binäre Suchbäume

Lesen Sie Kapitel 15.2-5!!!