
1

Algorithmen und Datenstrukturen

Wintersemester 2021/22

20. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Tiefensuche und topologische Sortierung

2

?

”
Maze-01 Grüningen hedge maze 1576 (destroyed)“

von RTH – Eigenes Werk. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons

$

3

Tiefensuche
u v w

x y z

1/–
π

2/–

3/–4/–

R

4/5

Eingabe:

Ausgabe:

(un)gerichteter Graph G

– Besuchsintervalle (u.d/u.f)

– DFS-Wald
()

– Klassifizierung der Graphkanten:

• Baumkanten (Kanten von Gπ)

• Rückwärtskanten (R)

3/6

2/71/8

V

• Vorwärtskanten (V)

9/–

K

• Kreuzkanten (K)

10/–

R
10/11

9/12

Kanten, bei denen kein Endpunkt Vorgänger des anderen ist.

Nicht-Baumkanten zu einem Nachfolgerknoten

Nicht-Baumkanten zu einem Vorgängerknoten

Kanten des DFS-Waldes (entgegen π gerichtet)

weiss

grau

schwarz

Farbe Zielknoten:

schwarz

start.d < ziel.d
und

start.d > ziel.d
und

π

discovery
time

finish
time

4

Tiefensuche – Pseudocode

DFS(Graph G = (V ,E))

foreach u ∈ V do
u.color = white
u.π = nil

time = 0 // globale Variable!
foreach u ∈ V do

if u.color == white then DFSVisit(G , u)

DFSVisit(Graph G , Vertex u)

time = time + 1
u.d = time; u.color = gray
foreach v ∈ Adj[u] do

if v .color == white then
v .π = u; DFSVisit(G , v)

time = time + 1
u.f = time; u.color = black

u v w

x y z

R

4/5 3/6

2/71/8

V K

R
10/11

9/12

Laufzeit
von DFS?

DFSVisit wird für jeden
Knoten genau 1× aufgerufen.

⇒

• DFS ohne if O(V) Zeit

DFSVisit ohne Rek. O(deg u)

• DFSVisit wird nur für
weiße Knoten aufgerufen.

• In DFSVisit wird der neue
Knoten sofort grau gefärbt.

DFS gesamt O(V + E) Zeit

(out-)

5

Tiefensuche – Eigenschaften

1/102/93/6

12/137/84/5

1 2 5 10 15

(
s
(
z
(
y (x x) y

) (
w w

)
z
)

s

) (
t
(
v v

) (
u u

)
t

)

y z s t

x uvw

s

z

y

x

w

uv

t

time

11/16

B

R

14/15

V

K

R

6

Tiefensuche – Analyse

Nach DFS(G) gilt für {u, v} ∈
(

V
2

)
genau eine der Bedingungen

Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v - noch v -u-Weg.

(i)

[u.d , u.f] ⊂ [v .d , v .f] und Baumkanten enthalten v -u-Weg.(ii)

(iii) Wie (ii), nur umgekehrt.

(Klammerntheorem)Satz.

Beweis. Wir betrachten zwei Fälle.

1. Fall: u.d < v .d .

, d.h. v wurde entdeckt, als u noch grau war.

⇒ v ist Nachfolger von u , d.h. es gibt einen u-v -Weg.

Wegen u.d < v .d gilt:

⇒ alle Kanten, die v verlassen, sind erforscht;
v wird schwarz, bevor DFS zu u zurückkehrt und u
schwarz macht ⇒ [v .d , v .f] ⊂ [u.d , u.f], X

A) v .d < u.f .

v wurde später als u entdeckt.

DFSVisit(Graph G , Vertex u)

time = time + 1
u.d = time; u.color = gray
foreach v ∈ Adj[u] do

if v .color == white then
v .π = u; DFSVisit(G , v)

time = time + 1
u.f = time; u.color = black

d.h. (iii)

u.d

v .d

u.f

6

Tiefensuche – Analyse

Nach DFS(G) gilt für {u, v} ∈
(

V
2

)
genau eine der Bedingungen

Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v - noch v -u-Weg.

(i)

[u.d , u.f] ⊂ [v .d , v .f] und Baumkanten enthalten v -u-Weg.(ii)

(iii) Wie (ii), nur umgekehrt.

(Klammerntheorem)Satz.

Beweis. Wir betrachten zwei Fälle.

1. Fall: u.d < v .d .

A) v .d < u.f .X
B) u.f < v .d .

Laut Code gilt außerdem u.f < v .d < v .f

[u.d , u.f] ∩ [v .d , v .f] = ∅⇒

⇒ Keiner der beiden Knoten wurde entdeckt, während
der andere noch grau war., d.h. keiner Nachf. des anderen.

X

X 2. Fall: v .d < u.d . Symmetrisch!
(Vertausche im Beweis u ↔ v .)

X

DFSVisit(Graph G , Vertex u)

time = time + 1
u.d = time; u.color = gray
foreach v ∈ Adj[u] do

if v .color == white then
v .π = u; DFSVisit(G , v)

time = time + 1
u.f = time; u.color = black

⇑
(i)

u.d

v .d

u.f

u.d

v .d

u.f

u.d <

7

Tiefensuche in ungerichteten Graphen

Beweis. Sei uv (kurz für {u, v}) eine beliebige Kante von G .

O.B.d.A. gilt u.d < v .d .

Dann entdeckt DFS v und färbt v schwarz,
bevor u schwarz gefärbt wird (da v ∈ Adj[u]).

• Falls DFS uv zum ersten Mal von u nach v
überschreitet, ist v zu diesem Zeitpunkt weiss.

• Andernfalls wird uv zum ersten Mal von v nach u
überschritten. Dann ist uv R-Kante, da u dann
schon (und immer noch) grau ist.

Dann ist uv Baumkante.

�

G ungerichtet
⇒ G hat nur Baum- und Rückwärtskanten.

Satz.

u vB

u vR

8

Ablaufplanung
Unterhose

Hose

Socken

Schuhe

UhrGürtel

PulliAnorak

T-ShirtSchal

Kante bedeutet:
Unterhose vor
Hose anziehen!

Aufgabe: Finde Ablaufplan –

d.h. Reihenfolge der Knoten, so dass alle Ein-
schränkungen erfüllt sind (z.B. T-Shirt vor Pulli).

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) ∈ E folgt: u kommt vor v .

8

Ablaufplanung
Unterhose

Hose

Socken

Schuhe

UhrGürtel

PulliAnorak

T-ShirtSchal

1/8

2/7 3/4

5/6 9/10

11/18

12/1713/16

14/15

19/20

Socken

19/20

T-Shirt

11/18

Pulli

12/17

Anorak

13/16

Schal

14/15

Uhr
9/10

Unterhose
1/8

Hose
2/7

Gürtel
5/6

Schuhe
3/4

Idee: Nutze Tiefensuche! nach rechts gerichtet.

Kante bedeutet:
Unterhose vor
Hose anziehen!

DFS-Besuchsintervalle

⇒ Alle Kanten sind
Sortiere Knoten nach absteigenden f -Zeiten.

9

Topologisch sortieren

TopologicalSort(DirectedGraph G)
L = new List()
DFS(G) mit folgender Änderung:

Wenn ein Knoten schwarz gefärbt wird,
häng ihn vorne an die Liste L an.

return L

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) ∈ E folgt: u kommt vor v .

Def.

Laufzeit?
O(V + E)

Korrekt?
Wann funk-
tioniert’s?

Ein (gerichteter) Graph ist kreisfrei,
wenn er keinen (gerichteten) Kreis enthält.

X

10

Kreisfrei ⇔ keine R-Kanten

Lem.

Beweis.
”
⇒“

”
⇐“

Sei G kreisfrei.
Angenommen DFS(G) liefert R-Kante (u, v).

Dann ist u Nachfolger von v im DFS-Wald.

D.h. G enthält einen gerichteten v -u-Weg W .

Aber dann ist W ⊕ (u, v) ein gerichteter Kreis.

DFS(G) liefere keine R-Kanten.

Ang. G enthält trotzdem Kreis C = 〈v1, . . . , vk〉.
Sei vi der 1. Knoten in C , den DFS(G) erreicht.

Es gibt einen Weg von vi nach vi−1 in G .

⇒ DFS gelangt zu vi−1, solange vi grau ist.

⇒ (vi−1, vi) ist R-Kante. �

u

v

W

Ein gerichteter Graph G ist kreisfrei
⇔ DFS(G) liefert keine Rückwärtskanten.

vi

vi−1

R

11

Korrektheit von TopologicalSort

Satz.

Beweis. Sei L = 〈vn, vn−1, . . . , v1〉 = TopologicalSort(G).

Dann gilt vn.f > · · · > v2.f > v1.f .

Sei (vi , vj) Kante von G . Zu zeigen:

Welche Farbe hat vj , wenn DFS (vi , vj) überschreitet?

– vj grau

– vj weiß

– vj schwarz

⇒ (vi , vj) ist R-Kante
Widerspruch zu
Lemma: G kreisfrei!

⇒ vj Nachfolger von vi ⇒ vi .f > vj .fX
⇒ vi .f noch nicht gesetzt, vj .f gesetzt
⇒ vi .f > vj .fX

�

Sei G ein gerichteter kreisfreier Graph. Dann liefert
TopologicalSort(G) eine topologische Sortierung vonG .

vi vj

vi .f > vj .f

12

Vergleich Durchlaufstrategien für Graphen

Breitensuche Tiefensuche

Laufzeit O(V + E) O(V + E)

Ergebnis BFS-Baum,
d.h. kürzeste Wege

d- und f -Werte,
z.B. für top. Sortierung

Datenstruktur Schlange Rekursion bzw. Stapel

Vorgehen nicht-lokal lokal

	Titel
	Tiefensuche
	Tiefensuche -- Pseudocode
	Tiefensuche -- Eigenschaften
	Tiefensuche -- Analyse
	Tiefensuche in ungerichteten Graphen
	Ablaufplanung
	Topologisch sortieren
	Kreisfrei \Leftrightarrow keine R-Kanten
	Korrektheit von TopologicalSort
	Vergleich Durchlaufstrategien für Graphen

