Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2021 /22
20. Vorlesung

Tiefensuche und topologische Sortierung

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Tiefensuche

Eingabe: (un)gerichteter Graph G

discovery finish
time time

Ausgabe: — Besuchsintervalle (u.d/u.f)
- DFS-Wald (27|
— Klassifizierung der Graphkanten: | Farbe Zielknoten:

® Baumkanten (Kanten von G.) | weiss
Kanten des DFS-Waldes (entgegen 7 gerichtet)

Riickwartskanten (R) grau

Nicht-Baumkanten zu einem Vorgangerknoten

Vorwartskanten (V) schwarz und
Nicht-Baumkanten zu einem Nachfolgerknoten start.d < ziel.d

® Kreuzkanten (K) schwarz und
Kanten, bei denen kein Endpunkt Vorgidnger des anderen ist. start.d > ziel.d

Tiefensuche — Pseudocode

DFS(Graph G = (V, E))
foreach u € V do
L u.color = white
u.m = nil
time =0 // globale Variable!
foreach u € V do

L if u.color == white then DFSVisit(G, u) Laufzeit
von DFS?
DFSVisit(Graph G, Vertex u) e DFSVisit wird nur fiir
time = time + 1 weiBe Knoten aufgerufen.
u.d = time; “-C_OZOT = gy e In DFSVisit wird der neue
fore.ach v € Adj[u] d? Knoten sofort grau gefirbt.
if v.color == white then = DFSVisit wird fiir jeden
| v.m = u; DFSVisit(G, v) Knoten genau 1x aufgerufen.
time = time + 1 e DFS ohne if O(V) Zeit
ut-
u.f = time; u.color = black DFSVisit ohne Rek. O(éloeg)u)

DFS gesamt O(V + E) Zeit

Tiefensuche — Eigenschaften

DFSVisit(Graph G, Vertex u)
time = time + 1

Tiefensuche — Analyse b ™
| T e,

Satz. (Klammerntheorem) time = time +1

u.f = time; u.color = black

Nach DFS(G) gilt fiir {u, v} € (\2/) genau eine der Bedingungen
(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [u.d,u.f] C [v.d, v.f] und Baumkanten enthalten v-u-Weg.
(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Fille.
1. Fall: u.d < v.d.

u.d u.f

Qe » A) v.d < u.f, d.h. v wurde entdeckt, als u noch grau war.
v.d
= v ist Nachfolger von u, d.h. es gibt einen u-v-Weg.

Wegen u.d < v.d gilt: v wurde spater als u entdeckt.

= alle Kanten, die v verlassen, sind erforscht:
v wird schwarz, bevor DFS zu u zuriickkehrt und u

schwarz macht = [v.d, v.f] C [u.d, u.f], d.h. (iii) /

DFSVisit(Graph G, Vertex u) §)
time = time + 1

Tiefensuche — Analyse b ™
| T

Satz. (Klammerntheorem) time = time +1

u.f = time; u.color = black

Nach DFS(G) gilt fiir {u, v} € (\2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [u.d,u.f] C [v.d, v.f] und Baumkanten enthalten v-u-Weg.
(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Fille.
1. Fall: ud < v.d. 2 Fall: v.d < u.d. Symmetrisch! /

u.dI , Iu.f A) vd < uf / (Vertausche im Beweis u <> v.)
v.d
W B) u.f <v.d.
v.d Laut Code gilt auBerdem uv.d < u.f <v.d < v.f
= [u.d,u.flN[v.d, v.f]=1 (i

= Keiner der beiden Knoten wurde entdeckt, wahrend 1}
der andere noch grau war, d.h. keiner Nachf. des anderen.

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei uv (kurz fiir {u, v}) eine beliebige Kante von G.

O.B.dA. gilt ud < v.d.

Dann entdeckt DFS v und farbt v schwarz,
bevor u schwarz gefarbt wird (da v € Adj[u]).

e Falls DFS uv zum ersten Mal von u nach v
Liberschreitet, Ist v zu diesem Zeitpunkt weiss.
Dann ist uv Baumkante.

e Andernfalls wird uv zum ersten Mal von v nach u
uberschritten. Dann ist uv R-Kante, da v dann
schon (und immer noch) grau ist.

Ablaufplanung

Kante bedeutet] Unterhose Socken
Unterhose vor i

Hose anziehen! / \

Hose » Schuhe
v
Gurtel Uhr
Schal T-Shirt

\ /

Anorak «<—— Pulli

Aufgabe: Finde Ablaufplan —

d.h. Reihenfolge der Knoten, so dass alle Ein-
schrankungen erfiillt sind (z.B. T-Shirt vor Pulli).

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

Ablaufplanung

Kante bedeutet] _ 1/8 Unterhose Socken 19/20
Unterhose vor

Hose anziehen! / \

>/7 Hose > Schuhe 3/4
)

5/6 Gurtel Uhr 9/10

14/15 Schal T-Shirt 11/18

T~ . }

13/16 'Anorak «——Pulli 12/17 =— DFS-Besuchsintervalle

Idee: Nutze Tiefensuche! = Alle Kanten sind nach rechts gerichtet.
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 ,"11/18 12/17 13/16 14/15

Socken T-Shirt— Pulli— Anorak — Schal
—_

4 A
Uhr Unterhose —Hose — Glirtel Schuhe

9/10 1/8 2/7 5/6 3/4

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

TopologicalSort(DirectedGraph G) Laufzeit?
[= new List()) O(V + E)
DFS(G) mit folgender Anderung:

Wenn ein Knoten schwarz gefarbt wird, Korrekt?

hing ihn vorne an die Liste L an. Wann f,Unk-
return L tioniert’s?

Def. Ein (gerichteter) Graph ist kreisfrei,
wenn er keinen (gerichteten) Kreis enthilt.

D:(]x <>/

10

Kreisfrei < keine R-Kanten

Lem. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. ,,="

4

1%
u

”¢

Vi_1 /
Vi

Sei G kreisfrei.
Angenommen DFS(G) liefert R-Kante (u, v).

Dann ist u Nachfolger von v im DFS-Wald.
D.h. G enthalt einen gerichteten v-u-Weg W.

Aber dann ist W & (u, v) ein gerichteter Kreis.ﬁ

DFS(G) liefere keine R-Kanten.
Ang. G enthilt trotzdem Kreis C = (vq, ..., Vi).

Sei v; der 1. Knoten in C, den DFS(G) erreicht.

Es gibt einen Weg von v; nach v;_1 in G.
= DFS gelangt zu v;_1, solange v; grau ist.
= (v;_1, vj) ist R-Kante.

11

Korrektheit von TopologicalSort

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TopologicalSort(G) eine topologische Sortierung von G.
Beweis. Sei L = (vp, Vy_1,...,v1) = TopologicalSort(G).
Dann gilt v,.f > --- > w.f > w.f.
Sei (v;, vj) Kante von G. Zu zeigen: v;@vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) iiberschreitet?

Vi &V : Widerspruch
I S - vj grau ~ (Vi' VJ) ist R-Kante Lelmma: l(J_? krzelijsfrei!
% - v weil} = Vv; Nachfolger von v; = vi.f > v;.f /
~—4e —Vjschwarz = v;.f noch nicht gesetzt, v;.f gesetzt
= v;.f > \/Jf\/

12

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E) O(V + E)
Ergebnis BFS-Baum, d- und f-Werte,

d.h. kiirzeste Wege z.B. fiir top. Sortierung
Datenstruktur Schlange Rekursion bzw. Stapel

Vorgehen nicht-lokal lokal

	Titel
	Tiefensuche
	Tiefensuche -- Pseudocode
	Tiefensuche -- Eigenschaften
	Tiefensuche -- Analyse
	Tiefensuche in ungerichteten Graphen
	Ablaufplanung
	Topologisch sortieren
	Kreisfrei \Leftrightarrow keine R-Kanten
	Korrektheit von TopologicalSort
	Vergleich Durchlaufstrategien für Graphen

