FOKUS Life Sciences Single cell methods to study ion-transport in plant cells

Comparison of movements in animals and plants

https://www.research-news.org/2020/10/05/how-the-venus-flytrap-counts/

Comparison of movements in animals and plants

Plants

Osmotically driven movements

Light-induced stomatal opening in tobacco leaves

Stomata enable uptake of CO₂ and release of water vapor to the atmosphere

The development of stomata was important for land plant evolution

Light-induced stomatal opening in Asplenium scolopendrium

Control of stomatal movements

- 1. Biophysical background of stomatal movements.....
- 2. Voltage clamp with double barreled electrodes...
- 3. ABA and anion channels
- 4. Ca²⁺-signals and ABA response.....

()(+)

Uptake of K⁺ is facilitated by K⁺-channels, but K⁺ channels do not determine the direction of K⁺ flow

Activation of H⁺-ATPases drives the uptake of K⁺

Opening of anion channels causes the extrusion of K⁺

Light stimulates stomatal opening

Ion uptake during stomatal opening

Ion release during stomatal closure

Guard cell anion channels control stomatal movements

- 1. Biophysics of stomatal movements......
- 2. Voltage clamp with double barreled electrodes....
- 3. ABA and anion channels
- 4. Ca²⁺-signals and ABA response.....

Impalement experiments with double barreled micro electrodes

Recording the free running membrane potential (E_m)

Recording the free running membrane potential (E_m)

The Axon guide 3rd edition, Molecular devices

Measuring the free-running membrane potential:

The resistance of the amplifier has to be much higher (approximately 100 times), as the series resistance of the electrode and cell membrane.

Light-induced membrane potential changes

Kollist et al., 2014

Two-electrode voltage clamp technique

The Axon guide 3rd edition, Molecular devices

Conventional voltage clamp experiments are carried out with two electrodes, since the electrode resistance (ME1 and ME2) are unknown and can change during the experiment.

Voltage clamp with double barreled micro electrodes

Light-induced membrane current changes (V_m = -100 mV)

Light-induced membrane current changes (V_m = -100 mV)

Light-induced membrane current changes (V_m = -100 mV)

Voltage-clamp pulses to test ion channel activity

Guard cell anion channels control stomatal movements

- 1. Biophysics of stomatal movements......
- 2. Voltage clamp with double barreled electrodes...
- 3. ABA and anion channels
- 4. Ca²⁺-signals and ABA response.....

Abscisic acid-induced stomatal closure

Real time 30 min.

ABA-induced membrane potential changes in guard cells

ABA activates S-type anion channels in guard cells

Marten et al. Plant Phys. 2007

Voltage clamp with double barreled micro electrodes

Two S-type anion channels are active in guard cells

Electrical responses of a guard cell to the stress hormone ABA

Levchenko et al. PNAS, 2005

ABA-dependent activation of SLAC1 and SLAH3

What is the role of the cytosolic free Ca²⁺ concentration in ABA-responses?

https://en.wikipedia.org/wiki/Guard_cell (Jan2020)

Guard cell anion channels control stomatal movements

- 1. Biophysics of stomatal movements......
- 2. Voltage clamp with double barreled electrodes...
- 3. ABA and anion channels
- 4. Ca²⁺-signals and ABA response.....

Loading of guard cells with fluorescent dyes

Fluorescence based Ca²⁺-measurements with FURA2

Roger Tsien 1952-2016 Nobel prize 2008

BAPTA

FURA2

The excitation spectrum of changes when FURA2 binds Ca²⁺

Mechanically-induced changes in the cytosolic [Ca²⁺]

Excitation 355 nm

Excitation 380 nm

Mechanically-induced changes in the cytosolic [Ca²⁺]

Excitation 355 nm

Excitation 380 nm

FURA2 ratio

In Vicia faba, ABA activates S-type anion channels independent of cytosolic Ca²⁺ signals

Cytosolic Ca²⁺ signals detected with fluorescent proteins

Cytosolic Ca²⁺ signals measured with R-GECO1

cpEGFP was replaced by mApple red FP and fluorescence properties were enhanced **Zhao et al., Science 2011**

Arabidopsis plants generated by: M. Krebs, R Waadt and K. Schumacher, University of Heidelberg

ABA-induced Ca²⁺ signals in guard cells Shouguang Huang, New Phytologist 2019

Imaging of cytosolic [Ca²⁺] simultaneously with R-GECO1mTurquoise and FURA2

Collaboration with Rainer Waadt, Univ. of Heidelberg Huang et al., New Phytologist, 2019

In most guard cells ABA causes Ca²⁺ signals during stomatal closure

Huang et al., New Phytologist, 2019

Are ABA-induced Ca²⁺ signals due to changes in the osmotic value of the cytosol, during stomatal closure?

In 1 to 4 guard cells ABA causes Ca²⁺ signals before stomatal closure

Huang et al., New Phytologist, 2019

Are Ca²⁺ signals important for ABA-induced stomatal closure?

Huang et al., unpublished data

ABA neither triggers stomatal closure, nor Ca²⁺ signals in guard cells of the *ost1* mutant

Ca²⁺ signals enhance guard cell responses to Abscisic Acid (ABA), but are not required for stomatal closure

https://en.wikipedia.org/wiki/Guard_cell

ABA-dependent activation of SLAC1 and SLAH3

Ende