FOKUS methods lecture

CRISPR-Cas systems

Prof. Dr. Chase Beisel

18 January, 2022

HIRI: the first institute for RNA-based infection research

Lars Barquist

Integrative Informatics for Infection Biology

Mathias Munschauer

Viral-host interactions

Jörg Vogel

RNA Biology of **Bacterial Infections**

Chase Beisel

RNA Synthetic Biology

Emmanuel Saliba

Single-Cell Analysis

Viruses

Alexander Westermann

Host-Pathogen-Microbiota Interactions

Neva Caliskan

Recoding Mechanisms in Infections

Redmond Smyth

Genome Architecture and Evolution of RNA

In this lecture...

- Discovery of CRISPR
- Types and mechanisms
- Cas9 and the sgRNA

Learning objectives

- Define CRISPR, Cas, and other basic terms
- Identify the three steps of adaptive immunity by CRISPR-Cas systems
- Explain how a CRISPR nuclease selects its target
- Explain why CRISPR-Cas systems were readily coopted as genome-editing technologies

What have you heard about CRISPR?

(Comment using chat function)

CRISPR for genome surgery

Home / News & Opinion US Companies Launch CRISPR Clinical Trial

The Germany-based study will test an ex vivo genome-editing therapy for the inherited blood disorder β -thalassemia.

Sep 3, 2018 CATHERINE OFFORD

2017

NEWS & TECHNOLOGY 30 May 2017, updated 7 June

Boom in human gene editing as 20 CRISPR trials gear up

NewScientist

Scientists Precisely Edit DNA In Human Embryos To Fix A Disease Gene

August 2, 2017 · 1:09 PM ET Heard on All Things Considered

AUG 4, 2017 @ 11:37 AM 8,821 @

12 Stocks to Buy I

Gene Editing Breakthrough: How Far Are We From Fixing And Designing Babies?

European court ruling raises hurdles for CRISPR crops

By Erik Stokstad | Jul. 25, 2018 , 4:40 PM

How will we keep controversial gene drive technology in check?

By Kelly Servick | Jul. 19, 2017, 4:00 PM

The Nobel prize for CRISPR

Emmanuelle Charpentier (Max Planck)

Jennifer Doudna (UC Berkeley)

The mystery of CRISPR and Cas

CRISPR – Clustered Regularly Interspaced Short Palindromic Repeats **Cas** – CRISPR associated

E. coli MG1655

Spacers match invader sequences

Other ID*	Species	No. of phage-matching spacers§							
		Sfi11 (AF158600)	Sfi19 (AF115102)	Sfi21 (AF115103)	DT1 (AF085222)	O1205 (U88974·1)	7201 (AF145054)		
CNRZ1066	S. thermophilus	7	6	7	4	9	0		
LMG18311	S. thermophilus	4	4	3	1	4	5		
CNRZ302	S. thermophilus	2	0	0	1	2	1		
CNRZ388	S. thermophilus	2	6	5	5	2	6		
CNRZ389	S. thermophilus	3	2	1	2	2	5		
CNRZ1100	S. thermophilus	2	4	2	2	2	2		
CNRZ1202	S. thermophilus	2	5	8	4	3	2		
CNRZ703	S. thermophilus	1	2	5	1	0	1		
CNRZ1575	S. thermophilus	2	2	1	1	1	0		
CNRZ385	S. thermophilus	0	3	3	2	1	3		
JIM8229	S. vestibularis	0	0	0	0	0	0		
JIM8230	S. vestibularis	1	1	1	0	1	0		
JIM1567	S. thermophilus	3	4	1	1	3	2		
JIM1560	S. thermophilus	1	1	2	0	2	0		
JIM1575	S. thermophilus	1	1	2	0	2	0		
JIM1584	S. thermophilus	1	1	1	1	0	0		
JIM1588	S. thermophilus	1	1	2	0	2	0		
JIM70	S. thermophilus	2	1	1	1	1	2		
JIM71	S. thermophilus	1	1	1	1	0	0		
JIM72	S. thermophilus	2	2	2	2	1	3		
JIM76	S. thermophilus	10	8	9	6	12	0		

Blocks infection of targeted bacteriophages...

Blocks infection of targeted bacteriophages...

...and conjugated plasmids

Barrangou et al. *Science* (2007) Marraffini & Sontheimer. *Science* (2008)

Plasmids

Bacteriophages

3 steps: Acquisition, Expression, Interference

Step 1: Acquisition

Step 2: Expression

CRISPR vocabulary

CRISPR array: set of alternating identical repeats and distinct spacers

CRISPR RNA (crRNA): final, processed form of a CRISPR array

Guide sequence: sequence used for DNA targeting. Sometimes interchanged with spacer.

Guide RNA: engineered or natural CRISPR RNA

Protospacer: target sequence that is complementary to spacer

PAM: protospacer-adjacent motif, required for targeting by many CRISPR effector proteins

Classes and types of CRISPR-Cas systems

See Makarova et al. Nat Rev Microbiol (2020)

Class (2) – encompasses all systems with a multi-protein effector complex (**Class 1**) or single effector protein (**Class 2**)

Type (6) – defined by the effector complex or single-effector protein

Subtype (>30) – defined by set and configuration of accessory proteins

Prevalence of system types, sub-types varies widely

Differentiating self from non-self

How does CRISPR recognize the target, but not its own array?

DNA target recognition for Type I, II, IV, V systems

- PAM protospacer-adjacent motif
- Sequence recognized by Cas protein to initiate DNA interrogation
- PAM sequence, size, and location depends on nuclease

S. pyogenes Cas9: **NGG PAM** on **3' end** of matching target *F. novicida* Cas12a: **TTTV PAM** on **5' end** of matching target

RNA target recognition for Type III, VI systems

Marraffini & Sontheimer. Nature (2010)

A spacer "seed" sequence is sensitive to mismatches

Semenova et al. PNAS (2011)

- Helps helps ensure sequence-specificity of targeting
- Some mismatches can be accommodated, particularly outside of the seed
- Exact length, location of seed depends on the nuclease

Why might it be advantageous for CRISPR nucleases to accept some mismatches?

How to identify CRISPR-Cas systems

The CRISPR database for identifying CRISPR loci and cas genes in sequenced prokaryotic genomes

http://crispr.u-psud.fr

CRISPRs web server

Home About CRISPRs	News	FAQs	Help	Contact Us	Examples	IGM
--------------------	------	------	------	------------	----------	-----

Harnessing CRISPR

- Original studies of CRISPR focused on Type I CRISPR-Cas systems
- But Type I systems require 4 7 proteins in defined stoichiometries
- Type II systems require only one protein (Cas9)
- How do you generate the CRISPR RNA for Cas9?

Discovery of the tracrRNA in S. pyogenes

Deltcheva et al. Nature (2011)

Type II Cas9 as singleeffector protein with dual RNA guide

- Hybrid of crRNA and tracrRNA processed by RNase III
- 5' end of crRNA processed by unknown nucleases
- Allows for processing of array into individual crRNAs

Creating single-guide RNAs (sgRNAs)

S. pyogenes Cas9 as the standard

- Historical (see tracrRNA paper)
- Convenient (NGG consensus PAM)
- Numerous constructs (see Addgene)

Cas9 as a sophisticated molecular machine

Helical (REC)

HNH

Cleavage

Arg-rich bridge helix

Торо

PAM-interacting domain

Anders et al. Nature (2014)

Cas9 as a single-turnover enzyme

Sternberg et al. Nature (2014)

Programmable binding, effector recruiting with dCas9

Introduce disruptive mutations in HNH, RuvC domains

X =

- Nothing
- KRAB
- VP64
- GFP
- Fokl
- APOBEC

Gene regulation

Imaging

Editing

Cas9 synonymous with CRISPR technologies

- Strain typing
- Phage resistance
- Plasmid clearance
- Genome editing
- Gene drives
- Gene regulation
- Antimicrobials
- Imaging
- In vitro diagnostics
- Biological recording

Many other Cas9 nucleases available

- Different sizes
- Different PAMs
- Different functions
- Different immunogenicities

Is Cas9 the best we can hope for?

More recently explored aspects of CRISPR

- CRISPR evolution
- Natural diversity, functions of CRISPR-Cas system
- Mechanism, application of spacer acquisition
- CRISPR transposons
- Engineering Cas proteins

In this lecture...

- Discovery of CRISPR-Cas systems
- Types and mechanisms
- Cas9 and the sgRNA

Learning objectives

- Define CRISPR, Cas, and other basic terms
- Identify the three steps of adaptive immunity by CRISPR-Cas systems
- Explain how a CRISPR nuclease selects its target
- Explain why CRISPR-Cas systems were readily coopted as genome-editing technologies

CRISPR technologies