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Abstract

Over the past decade, bacterial small RNAs (sRNAs) have gone from a bio-
logical curiosity to being recognized as a major class of regulatory molecules.
High-throughput methods for sampling the transcriptional output of bacte-
rial cells demonstrate that sRNAs are universal features of bacterial transcrip-
tomes, are plentiful, and appear to vary extensively over evolutionary time.
With ever more bacteria coming under study, the question becomes how
can we accelerate the discovery and functional characterization of sRNAs in
diverse organisms. New technologies built on high-throughput sequencing
are emerging that can rapidly provide global insight into the numbers and
functions of sRNAs in bacteria of interest, providing information that can
shape hypotheses and guide research. In this review, we describe recent de-
velopments in transcriptomics (RNA-seq) and functional genomics that we
expect to help us develop an integrated, systems-level view of sRNA biology
in bacteria.
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INTRODUCTION

The past decade has witnessed the increasing availability and sophistication of high-throughput
technologies, which have led to major changes in our understanding of transcriptional and
post-transcriptional regulation in bacteria. Once assumed to be relatively simple, bacterial
transcriptomes have been shown to exhibit many of the features associated with transcriptional
complexity in eukaryotic systems (64, 171, 175, 198), including a large complement of noncoding
RNAs. Most of these noncoding RNAs serve regulatory roles, the majority affecting gene
expression through RNA:RNA interactions with other transcripts, although some also act
through interactions with regulatory proteins. One abundant class of noncoding RNAs, the
trans-acting small regulatory RNAs (sRNA), has emerged as a pervasive regulator of diverse
cellular processes, with established roles in metabolism (11, 113, 140), quorum sensing (6, 127),
biofilm formation (114), iron regulation (130), and virulence (21, 61, 72, 140). The major mode
of action of these sRNAs is roughly analogous to that of eukaryotic microRNAs, mediated by
intermolecular base-pairing interactions between a conserved seed sequence within the sRNA
and an imperfectly complementary target sequence within an mRNA. In some lineages, notably
many Gammaproteobacteria, these interactions depend on the chaperone protein Hfq (25, 37,
195), which serves to both facilitate intermolecular interactions and stabilize sRNA transcripts.
These interactions can lead to either inhibition or enhancement of protein expression, although
inhibition appears to be more common (54). The molecular mechanisms underpinning these
changes in gene expression are diverse and can operate at the level of translation initiation by
modulating ribosome recruitment, at the level of transcript abundance by modulating transcript
degradation, or both (Figure 1). Indeed, multiple distinct regulatory mechanisms can be
employed simultaneously by the same sRNA (23, 48), with complex regulatory consequences.

sRNAs were discovered serendipitously during the investigation of protein coding sequences
(58, 196) (Figure 2). For example, the sRNA MicF was initially discovered through a phenotype
induced by multicopy plasmids constructed for the purpose of mapping the promoter of ompC,
encoding an outer membrane protein (119). Similarly, the sRNAs OxyS and DsrA were discovered
incidentally as short untranslated transcripts produced in the vicinity of transcriptional regulators
(177). The sequencing of a number of enterobacterial genomes in the late 1990s and early 2000s
enabled the first genome-wide sRNA screens. These screens used computational methods to
predict potential sRNAs (97) on the basis of features such as orphan promoters and terminators
(2), covariation of potential base pairs in sequence alignments (160), and sequence conservation
coupled with microarray expression data (200), collectively describing several dozen sRNAs in
Escherichia coli (74). Since that time, technical advances in tiling arrays (181), capillary sequencing
(194), pyrosequencing (174), and reversible dye-terminator sequencing (24, 87, 88, 155, 186) have
led to steadily increasing numbers of proven and suggested sRNAs, with current estimates putting
the number of sRNAs expressed by E. coli and Salmonella enterica at around 300, many of which are
species- or genera-specific. Although sRNA discovery outside of these model systems continues
to mature, comparable numbers of sRNAs have been detected in a wide range of bacteria (16, 75,
111, 161, 182), and their relatively narrow conservation on the level of primary sequence appears
to be a global trend across bacterial phylogeny (96, 143, 182).

Functional characterization of sRNAs, even in model organisms, has lagged behind discovery.
Computational predictions of the mRNA targets of sRNAs using thermodynamic models of inter-
molecular hybridization have improved by incorporating measures of target sequence accessibility
(20, 43) and, recently, interaction conservation (203). However, such predictions still have a gen-
erally low accuracy (135), likely because the determinants of sRNA binding are both complex and
incompletely understood (9, 136). This issue necessitates the use of experimental approaches in
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Figure 1
Common mechanisms of sRNA activity. sRNAs can operate by modulating translation (left) or transcript
stability (right), with resulting repression (top) or activation (bottom) of gene expression. Sequestration of
ribosome binding site: sRNA binding in the vicinity of the Shine-Dalgarno (SD) sequence blocks ribosomes,
preventing translation of the mRNA. The absence of translating ribosomes protecting the transcript may
leave cleavage sites exposed, indirectly leading to transcript degradation. Induction of mRNA decay: An
sRNA binding at potentially any position within a target transcript can recruit RNase E, possibly aided by
protein:protein interactions between Hfq and RNase E (123). This lowers transcript levels and hence
protein production. Anti-antisense mechanism: sRNAs can activate translation by disrupting native mRNA
secondary structures that would otherwise block ribosome binding. Selective mRNA stabilization: sRNA
binding within a transcript can interfere with degradation, leading to stabilization of particular transcript
isoforms (53) or enhanced translation of particular cistrons within a polycistronic transcript (139).
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Figure 2
Timeline of sRNA discovery in Escherichia coli and Salmonella enterica: Timeline of landmark studies and technological innovations in
bacterial sRNA biology. The y axis shows the approximate accumulation of sRNA known to be expressed by either E. coli or S. enterica
over time. Studies referenced: 2, 10, 12, 18, 24, 39, 51, 87, 93, 94, 101, 108, 119, 121, 129, 133, 134, 141, 148, 151, 155, 160, 162, 169,
174, 181, 183, 184, 186, 194, 200, 201, 205, 206. Abbreviations: Co-IP, co-immunoprecipitation; HITS-CLIP, high-throughput
sequencing of RNA isolated by cross-linking immunoprecipitation.

both screening of targets and validating individual interactions (170). Early screening approaches
used transcriptomic or proteomic measurements of strains either overexpressing or deleted for
particular sRNAs to identify putative targets. Notwithstanding its success, this approach suffers
from the inability to discriminate between direct sRNA targets and downstream effects of, in par-
ticular, overexpression. In addition, sustained overexpression can, in some cases, be toxic (1, 168)
or cause pleiotropic effects by titrating Hfq (79, 122, 138).

To address these problems, transcriptomic analysis of pulse-expressed sRNAs was introduced
(103, 137, 180) and has become the standard. In this approach, an sRNA is briefly expressed from
an inducible promoter, followed by transcriptomic analysis to identify rapid changes presumably
due to direct sRNA:mRNA interactions and subsequent transcript degradation or stabilization.
Regardless of the method used to identify putative targets, individual interactions need to be
validated. Verification is typically done through monitoring the effects of compensatory mutations
in the sRNA and its target sequence, using a GFP (green fluorescent protein) reporter–based two
plasmid system (31, 189) or other reporters, such as the lacZ gene (14, 100).

Such approaches are, and will remain, an important cornerstone of sRNA biology. However,
even in model strains, these techniques are laborious. If we are to completely characterize the
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functional sRNA complement of, say, E. coli K-12 or Salmonella Typhimurium SL1344, new
approaches are needed to prioritize candidates and point out promising directions for research.
Additionally, it is increasingly clear that model systems can take us only so far. For example, there
is increasing evidence for a diversity of mechanisms that differ between Gram-negative and Gram-
positive bacteria, and preliminary work suggests substantial variation in the sRNA complement
between species and genera (96). Although the proportion of this variation due to the turnover of
non- or weakly functional transcripts is unclear, a number of species-specific sRNAs are clearly
functional (134, 148, 186).

Beyond the close relatives of model organisms, the rise of previously obscure bacteria as major
opportunistic and nosocomial pathogens, illustrated powerfully by methicillin-resistant Staphylo-
coccus aureus (45), epidemic Clostridium difficile (71), and recently carbapenem-resistant Enterobac-
teriaceae (179), as well as the adaptation of strains of known pathogens such as S. Typhimurium to
cause severe disease in at-risk populations (47, 132), provides a clear impetus for the development
of technologies that allow us to rapidly characterize sRNAs in nonmodel organisms. The appar-
ent flexibility and rapid evolvability of sRNA-based regulation may enable these molecules to play
a general role in the development of these alternative lifestyles. Additionally, disease outcomes
are increasingly recognized to be the result of complex interactions between pathogen, host, and
host microbiota (150, 190), and recent work has shown some commensals incidentally exacerbate
infection (35, 49) or even act as opportunistic cobelligerents (149). Characterizing the diverse
organisms of the microbiota and their noncoding genomes will be a major challenge; however,
new technologies are emerging that can facilitate this process. In this review, we discuss recent
developments in high-throughput sequencing–based approaches with relevance to sRNA biology.
Rather than provide a comprehensive list, we use studies selected primarily from Salmonella and
E. coli to illustrate how such generic approaches may accelerate the discovery and functional
analysis of sRNAs in any bacterium of interest.

TECHNOLOGIES FOR sRNA CHARACTERIZATION

Until recently, obtaining a global picture of the transcriptional state of a cell has been difficult.
Sanger sequencing of cDNA libraries could provide a view of transcripts present in the cell,
but the low throughput of the method made genome-wide analyses extremely difficult. Tiling
microarrays made quantitative global analyses possible but need to be specifically designed for an
organism of interest, have limited resolution owing to a reliance on oligonucleotide hybridization,
and are vulnerable to various technical artifacts such as probe mishybridization and saturation.
The availability of high-throughput DNA sequencing has driven a revolution in the generation
of biological data, allowing the simultaneous interrogation of hundreds to millions of discrete loci
through massively parallel DNA analysis. High-throughput technology also enables the related
RNA-seq technique wherein RNA is first reverse-transcribed into cDNA and then sequenced.
This procedure can be done in ways that preserve information on strandedness and reveal precise
boundaries of transcripts. Numerous specialized techniques have been developed based on high-
throughput sequencing. Each method has a range of applications (Figure 3), spanning a continuum
from discovery of sRNAs and annotation of the transcriptome to methods that provide direct
insight into sRNA function, allowing us to shape hypotheses that can subsequently be validated
through traditional methods.

In the following sections, we address each of these techniques in turn, highlighting their poten-
tial applications to sRNA biology. It is important to note that the large amounts of data generated
by these methods raises special concerns for both experimental design and analysis compared to
traditional molecular techniques; we briefly discuss these issues in two sidebars (see Experimental
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Figure 3
Overview of high-throughput methods for identification and characterization of bacterial sRNAs. Five major technologies are covered
in this review. Each is defined primarily by the macromolecule it makes accessible to study: DNA, RNA, ribosomes, RNA-binding
proteins, and transposon insertions. The applications for these technologies span a range from discovery of novel transcripts to
contribution of direct information about sRNA function. Abbreviations: CLIP, cross-linking and immunoprecipitation; RIP, RNA
immunoprecipitation; sORF, short open reading frame; UTRs, untranslated regions.

Concerns for High-Throughput Methods and Analytical Concerns for High-Throughput
Methods).

DNA SEQUENCING: sRNA EVOLUTION AND FINE-SCALE
FUNCTIONAL MAPPING

Recent studies have revealed substantial variation in sRNAs between related bacteria (96, 143, 182),
although the processes governing this variation remain unclear. A number of mechanisms may
contribute to this diversity, including horizontal transfer, capture of transcripts spontaneously
generated through recombination and mutation, and derivation from coding transcripts (59).
Target sites in mRNAs also appear to vary extensively (143, 158), and these alterations may
additionally imply variation in sRNA function over evolutionary time. To track the evolution of
sRNAs, high-quality collections of genomes from closely related strains are required to determine
the precise order of events leading to the birth of novel transcripts and to changes in their regulatory
activities.

Studies of genome dynamics in related bacteria are becoming commonplace in epidemiological
and evolutionary studies (33, 106). However, such studies generally take a mapping approach (19),
in which sequencing reads from a collection of related strains are mapped to a single finished
reference genome or pseudomolecule built from assembled fragments, owing to the difficulties in
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EXPERIMENTAL CONCERNS FOR HIGH-THROUGHPUT METHODS

Although high-throughput methods have transformed biological research, their appropriate application to dif-
ferent scientific problems is often significantly more complicated than one would expect from reading technical
descriptions. Such methods can rapidly produce large amounts of data; however, these data are only as reliable
as the experimental procedures used to produce them. Understanding each step of the experimental process and
evaluating potential pitfalls when possible are essential to the production of high-quality data. A critical review
of CLIP-seq methods (159) provides an excellent example of the analytical approach that should be undertaken
in the application of any high-throughput method, documenting known and suspected biases in each step of the
protocol, as well as the likely consequences for the interpretation of results. Additionally, as in any experiment, both
adequate replication and good controls are necessary. An illustrative example of the importance of well-planned
control experiments is given by a recent PAR-CLIP study that used a pull-down of cross-linked FLAG-tagged
GFP to demonstrate the prevalence of background cross-linking events (52). By quantifying this background and
computationally subtracting it from experiments with genuine RNA-binding proteins, the authors were able to
substantially increase the specificity of the assay, providing superior data for downstream applications, such as motif
analysis.

assembling even relatively compact bacterial genomes from the short reads delivered by current
sequencing platforms (164). Although this approach is often adequate to detect high-confidence
single nucleotide polymorphisms for phylogenetic applications or the variable presence of large
genomic features, it has difficulties in providing the fine-grain information and structural variation
required for detailed functional studies of sRNAs in intergenic regions. Emerging long-read single-
molecule platforms, such as PacBio SMRT sequencing (98, 152) or the Oxford Nanopore minION
(5, 153), are beginning to provide a solution by simplifying the assembly problem (87).

A recent study in Helicobacter pylori provides an excellent example of how the availability of
closely related genome sequences can provide insight into the evolution of sRNA regulation
(145). The authors characterized the sRNA RepG, a highly abundant sRNA discovered during
global transcriptional mapping of H. pylori (169). They found that in H. pylori strain 26695, RepG

ANALYTICAL CONCERNS FOR HIGH-THROUGHPUT METHODS

High-throughput methods raise special concerns regarding analysis. Measuring large numbers of loci simultaneously
greatly increases the chances of spurious results. The analysis of such data must be done carefully and can often be as
time consuming as the development of the assay itself. Issues such as data normalization, distributional assumptions
made by common statistical tests, and appropriate corrections for multiple testing must be considered in light of
the specific methods used. For commonly applied methods, such as comparing conventional RNA-seq data sets,
standard analytical tools are available and can be applied with a minimal computational background (92, 99, 107).
However, quality control and assessment of reproducibility are essential. For many emerging technologies, the best
analysis techniques remain open to debate. Although it may be impractical for every biologist to additionally become
a programmer and a statistician, cultivating an appreciation for the subtleties of large data sets, experimental design,
and statistics is an important part of interpreting results. Major journals have begun running series of articles
aimed at introducing experimentalists to statistical analysis (126) and programming tools (125). It is important
that bioinformaticians also familiarize themselves with experimental protocols and have input into the design of
experiments so that potential sources of bias can be effectively accounted for in analysis.
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regulates the tlpB mRNA encoding a chemotaxis receptor: a C/U-rich sequence contained in a
hairpin loop of RepG base pairs with a G-repeat located in the 5′ UTR (untranslated region) of
tlpB (145). As homopolymeric stretches are known to be highly variable in related bacteria, even
responsible for phase variation through polymerase slippage during replication (124), the authors
also examined the impact of G-repeat length on regulation. Optimal regulation occurred in a
narrow range of G-repeat lengths, with shorter or longer repeats abrogating regulation by RepG.
The evolutionary relevance of the relationship between repeat length and gene regulation was
established by examining the tlpB locus in 32 Helicobacter strains, demonstrating wide variation in
G-repeat length in naturally occurring strains (145).

Although the above study focused on only a single target region, it illustrates how phyloge-
netically dense genome sequencing can shed light on the functional evolution of sRNAs. As more
genomes of large strain collections are sequenced, such evolutionary analysis of target regions may
become a routine part of sRNA characterization. A version of this approach has been taken by the
CopraRNA target prediction method, which uses a measure of the evolutionary conservation of
mRNA target sites to improve predictions (203).

High-throughput DNA sequencing can also be used to directly derive functional information
about sRNA:target interactions through monitoring saturated libraries of point mutants (77, 146).
Traditionally, validation of target sites has been performed by monitoring reporter activity follow-
ing disruptive mutations at predicted intermolecular base pairs, which should abolish regulation,
and compensatory mutations, which should restore near wild-type regulation (170). Although
two-plasmid systems with, for example, a fluorescent GFP reporter (31, 189) streamlined these
experiments, they remain labor intensive and often must be repeated numerous times, as com-
putational RNA:RNA hybridization tools only roughly estimate the contribution of individual
nucleotides to an interaction. However, a high-throughput adaptation of this approach now al-
lows every nucleotide of a regulatory sequence of interest to be assayed simultaneously in a single
experiment using a library of mutagenized target variants (77). The effects of sequence variants
on protein production can then be monitored through specific sequencing of the mutagenized
regions in fluorescence-activated cell sorting (FACS)-derived fractions of bacteria containing a
two-plasmid system, similar to that used in traditional interaction validation experiments. This
has been applied to the 109-base 5′ UTR of the csgD gene in order to map the regulatory region
for the OmrA sRNA (77). By sorting these variants into high, wild-type, and low GFP fractions
before sequencing, the authors identified mutations in the previously known OmrA-binding site
as having strong effects on GFP expression in the presence of OmrA. Interestingly, mutations in
the structurally accessible region of the target sequence were clearly enriched in the high-GFP
fraction compared with those in the base-paired region, adding additional experimental evidence
to the claim that accessibility is a major determinant of sRNA binding (9, 142, 158).

The reciprocal approach, i.e., FACS of mutagenized sRNAs and wild-type target-GFP fusions,
has also been taken (146) (Figure 4a). Two Hfq-dependent sRNAs, RyhB and DsrA, were mu-
tagenized and expressed in the presence of two known target UTRs each. This report contains
a number of interesting technical innovations. For instance, to counteract the inherent noise in
FACS sorting, bacteria are sorted into six fractions, and then the resulting distribution of read
counts across these fractions is used to estimate the GFP level of a variant. These measurements
provide additional experimental evidence for two commonly held beliefs about sRNA-based reg-
ulation: that the strength of target regulation can be tuned through mutations that affect the
thermodynamics of sRNA:target hybridization, and that sRNA structural stability contributes to
regulation efficiency, possibly through promotion of transcript abundance. An analysis of genetic
interactions in double mutants present in the library revealed expected patterns of covariation in
stem structures. However, this analysis also identified hub mutations, which appeared to interact
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Figure 4
High-throughput point mutagenesis, RNA-seq, and ribosome profiling. (a) Overview of the method for monitoring sRNA variant
libraries described in Reference 146. A large number of sequence variants are generated through error-prone polymerase chain reaction
(PCR) of an sRNA of interest. These variants are then cloned to generate a plasmid expression library. This library is transferred by
electroporation into Escherichia coli carrying a second plasmid containing the untranslated region of a known target gene fused to a
fluorescent reporter. The resulting population of bacteria is sorted using FACS (fluorescence-activated cell sorting), and DNA
sequencing of the sorted fractions is used to determine variant effects on protein expression. Adapted from Reference 146.
(b) Conventional and differential RNA-seq. Total RNA is isolated from a population of bacteria in a condition of interest. dRNA-seq
(171) (right path) proceeds by dividing the RNA into two fractions. One fraction is treated with TEX (5′ P-dependent terminator
exonuclease), which specifically degrades processed transcripts lacking a 5′PPP (5′ triphosphate), prior to conversion to cDNA and
sequencing, while the other fraction is not treated. By examining the differences in read enrichment between these two libraries, both
native and processed 5′ transcript boundaries can be determined. Conventional RNA-seq (left path) proceeds by the direct conversion of
total RNA to cDNA and fragmentation before sequencing. This technique provides information on relative transcript abundance and
can be used to help define polycistronic structures. (c) Ribosome profiling, as described in Reference 131. Cell lysates are subjected to
micrococcal nuclease (MNase) digestion, leaving discrete ∼30-base footprints physically enclosed by the ribosome, before intact
ribosome-footprint complexes are recovered by sedimentation. A specialized circularization process is used to minimize biases in library
preparation from short RNA fragments (81), and rRNA-derived sequences are depleted before library amplification and sequencing.
Mapping of the resulting reads provides information on ribosome occupancy and can be used to discover unannotated open reading
frames and pause sites, as well as the relative rates of translation. Abbreviations: GFP, green fluorescent protein; PCR, polymerase
chain reaction; UTR, untranslated region; WT, wild-type.
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with many other positions within the sRNA, including within the seed region. Of particular inter-
est was the U55A mutation in RyhB, which appears to relax the secondary structure, allowing for
continued regulation of target sequences even in the presence of mutations to the seed sequence
that would otherwise have abrogated sRNA function (146). These observations suggest a complex
relationship between sRNA secondary structure, target specificity, and regulation efficiency, and
provide a starting point for the interpretation and functional analysis of naturally occurring sRNA
variants.

RNA SEQUENCING: AIDING sRNA DISCOVERY
AND FUNCTIONAL ANALYSIS

sRNAs operate through direct base-pairing interactions with mRNA or other transcripts, often
changing the expression levels of these cellular targets. Therefore, global methods to determine
potential expression level changes of all the individual transcripts of a cell are foundational to
understanding how an sRNA might act. RNA-seq is rapidly replacing microarray-based gene
expression analyses by obviating the need for custom microarray design and by providing in-
creased sensitivity and dynamic range, while reducing technical artifacts such as nonspecific probe
hybridization (34). In contrast to microarrays, RNA-seq allows the high-resolution assay of tran-
scriptional changes independently of annotation. This strategy seems particularly important given
recent reports of sRNA interactions with other noncoding transcripts (90, 117, 186). The high
sensitivity of RNA-seq can also enable previously difficult or impossible applications, such as
simultaneous transcriptomic analysis of intracellular pathogens and their hosts, as proposed in
Reference 202, or single-cell transcriptomics (163). Here, we highlight one transformative po-
tential of RNA-seq: its ability to map the structural complexities of the bacterial transcriptome, a
prerequisite for a complete determination of sRNA interactions.

Assuming that most sRNAs act by base-pairing mechanisms and can operate at 5′ UTRs and
also within coding sequences, 3′ UTRs, and the intergenic spaces between polycistronic genes,
high-resolution transcriptome structures are key to gaining a full understanding of sRNA func-
tion. However, even the simplest bacteria appear to possess a remarkably complicated transcript
complement (63, 70), which varies extensively between related strains and species (40, 83, 96, 197).
Bacterial genes are frequently cotranscribed in polycistronic structures, and alternative, cryptic,
and antisense promoters now appear common. Indeed, several cases are already known in which
an sRNA acts to differentially regulate polycistronic genes, either through inducing degradation
of a portion of the polycistron message (38), stimulation of premature transcription termination
(15), or selective stabilization of a particular isoform (53, 139). A clear example is given by the
SgrS:yigL interaction in Salmonella that regulates glucose homeostasis, in which SgrS acts on the
5′ end of the monocistronic form of the yigL mRNA generated by an RNase E cleavage within
an upstream protein-coding sequence (139). It is unlikely that this interaction could have been
understood in the absence of a transcriptional atlas of Salmonella (88). Producing such an atlas
requires reliable predictions of transcript boundaries, which can be provided through specialized
RNA-seq protocols.

A number of techniques for global mapping of the 5′ ends of primary transcripts have been de-
veloped (29, 112, 169, 173, 204). One approach in particular, called differential RNA-seq (dRNA-
seq) (169) has provided insight into the transcriptome structures of a wide range of bacteria
(reviewed in 171) (Figure 4b). This method relies on the fact that primary bacterial transcripts
contain a 5′ triphosphate (5′PPP), whereas the 5′PPP is removed from processed transcripts. These
two classes of transcripts can be discriminated by 5′P-dependent terminator exonuclease (TEX),
which selectively degrades monophosphorylated processed transcripts. In addition to mapping
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5′ ends of mRNAs and intergenic transcripts, this technique can particularly aid in the discovery
of an emerging class of sRNAs derived from the 3′ regions of mRNAs, which can be generated
either by independent promoters or through cleavage of the primary coding transcript (24, 118).
Such RNAs are difficult to identify with conventional transcriptomics.

A trailblazing application of dRNA-seq has been its use in constructing an infection-relevant
atlas of the S. Typhimurium transcriptome (87). The authors first performed conventional RNA-
seq under 22 conditions relevant to the study of S. Typhimurium’s pathogenic lifestyle. These
conditions included a variety of growth phases in standard laboratory conditions: growth in in
vitro conditions that replicate aspects of environments that S. Typhimurium may encounter in
vivo, such as anaerobic conditions relevant to portions of the intestinal phase of infection; growth
in low phosphate, low magnesium minimal media that replicates aspects of the intracellular envi-
ronment; and, finally, exposure to a variety of shocks that Salmonella must survive to establish a
successful infection, including iron limitation, varying temperatures, acidic conditions, and bile.
Next, dRNA-seq was applied to four of the in vitro conditions and a pool composed of RNA
from all 22 conditions. By comparing the results obtained from TSSs (transcription start sites)
predicted by dRNA-seq of the pooled sample to those from individual conditions, the authors
showed that dRNA-seq of pooled RNA can identify 96% of TSSs predicted by dRNA-seq of indi-
vidual conditions, and the pooled dRNA-seq data successfully predicted TSSs for genes that were
only expressed in 1 of the 22 assayed conditions by conventional RNA-seq. However, because
the potential biases of pooling dRNA-seq libraries are unclear, multiplexing of samples provides
a cleaner alternative to pooling (87). Nevertheless, this study should inspire the construction of
similar atlases in a diverse range of microbial species and growth conditions. Such atlases provide
valuable information about the conditions under which particular sRNAs and their targets are
expressed and, hence, in which their activities should be investigated.

Until recently, less attention has been given to the determination of the 3′ ends of transcripts
and their roles in regulation in bacteria. Although the sequencing of fragmented RNA provides
an estimate of 3′ end positions (32), the signals resulting from this technology are often unclear,
perhaps owing to stochastically driven sloppy transcriptional termination in some bacteria (3).
Accurate methods for prediction of Rho-independent intrinsic terminators are available (55) and
can provide some insight into transcript boundaries. However, read-through at intrinsic transcrip-
tional terminators is frequent (22, 28, 178), may play a functional role in affecting the stoichiometry
of operon components, and can even be differentially regulated in response to stimuli (4). These
effects can be estimated using RNA-seq (30). Additionally, Rho-dependent termination varies
across the bacterial phylogeny and these termination sites can be difficult to predict computa-
tionally (147). High-throughput sequencing-based 3′ RACE (rapid amplification of cDNA ends)
protocols have been applied to individual genes of interest (155) and may provide a solution
to defining 3′ transcript ends, although the lack of a clear signal, similar to the 5′PPP used in
dRNA-seq protocols for mapping 5′ ends, makes discriminating native ends from the products of
processing and degradation challenging.

Once transcript end points have been determined, the major problem remains in how to use
them to determine polycistron structure and the relative usage of alternative transcripts. Recent
comparative studies of TSSs in related bacterial species suggest that the transcript variants pro-
duced by a locus can differ significantly, even on short timescales (40, 83). Although computational
methods exist for predicting operons and show reasonable accuracy using the incomplete exper-
imentally confirmed data sets available (17), most of these algorithms do not take transcriptomic
data into consideration and therefore are silent on the lengths of 5′ and 3′ UTRs, relative tran-
script usage, and the existence of suboperons and alternative transcripts. Recent methods have
been proposed for using information from fragmented RNA-seq data to serve as a link between
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adjacent genes in the prediction of polycistronic transcripts (102, 109). These methods show good
performance, although again, they do not address the existence of alternative transcripts. Ulti-
mately, the problem of alternative transcript prediction and usage quantification is likely to be
difficult because of the nonuniformity commonly observed in short-read RNA-seq data, as well
as underlying stochasticity in transcription and processing. However, the challenge of analyzing
alternative transcripts bears some similarity to the more well-studied problem of alternative iso-
form utilization in eukaryotes (66, 82, 154, 185, 199), and it is possible that techniques developed
to address the latter problem may be adaptable to bacteria. The ability to monitor differential iso-
form usage provides a layer of information previously unavailable in microarray or conventional
RNA-seq experiments, and should help to identify additional sRNAs that operate through the
differential regulation of cistrons within transcriptional units (34, 13, 47, 127).

RIBOSOME PROFILING: TRANSLATIONAL DYNAMICS

Although many sRNAs act, at least in part, by changing transcript levels, the effect of sRNA
regulation on phenotype ultimately depends on changes in protein levels which, however, can
also occur by a primary translational regulation without a strong associated change in the target
transcript level. Thus, a purely transcriptomic approach to characterizing sRNA-based regulation
may miss important interactions. Directly monitoring sRNA-induced changes in protein abun-
dance through proteomics has been successful (41, 68, 156, 168, 188), although such methods are
labor intensive and difficult to apply in unbiased, genome-wide fashions. By contrast, the RNA-
seq-based ribosome profiling technique captures translational dynamics, in theory, of all cellular
proteins (80), and thus provides a bridging technology between traditional RNA-seq experiments
and the direct measurement of protein levels through, for instance, mass spectrometry.

Like many recent high-throughput techniques, ribosome profiling adapts an old technology,
ribosome footprinting, to take advantage of the massively parallel measurements afforded by
modern short-read sequencing (Figure 4c) (80, 81). Cycloheximide treatment [in eukaryotes (81)],
chloramphenicol treatment [in bacteria (131)] or rapid filtration (95, 131) and flash freezing are
used to halt translational elongation. Polysomes are treated with RNase, leaving short ∼30-base
footprints physically enclosed by the translating ribosome. These RNA fragments are subsequently
used as templates for the production of cDNA, which can be analyzed through deep sequencing
as in conventional RNA-seq. The relative abundance of footprints covering a particular region is
indicative of ribosome occupancy at that region, providing a snapshot of ongoing protein synthesis
in the cell.

Ribosome profiling has recently been applied to bacterial sRNAs (65). In characterizing an
sRNA derived from the 3′ UTR of the cutC gene in E. coli, dubbed MicL, Guo and colleagues
found through a pulse induction approach coupled with RNA-seq that this sRNA regulates the
outer membrane lipoprotein Lpp. Although this was the sole target identified by transcriptomics,
additional targets regulated solely at the translational level could not be ruled out. By applying
ribosome profiling to similarly treated samples, the authors demonstrated that the lpp mRNA is
the primary, if not the only, target of MicL. Finally, the authors showed that the copper sensitivity
phenotype previously attributed to disruption of CutC is entirely due to MicL and its regulation
of Lpp expression, illustrating the importance of understanding transcriptional complexity for the
interpretation of phenotype. Although in this proof of principle case, ribosome profiling primarily
served to reinforce results derived from traditional transcriptomics, clear cases are known in which
translational regulation is not accompanied by transcript degradation and therefore would not be
detected by transcriptomic approaches such as RNA-seq (76, 78). The application of ribosomal
profiling to additional sRNAs is likely to reveal novel targets and regulatory mechanisms, as well
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as provide insights into the dynamics and relative importance of transcriptional degradation and
translation repression in sRNA-based regulation.

INVESTIGATING PROTEIN PARTNERS: RIP-SEQ AND CLIP-SEQ

As discussed, many bacterial sRNAs are at least partially dependent on protein-binding partners
for their functions, Hfq being a prominent example, with much of the enterobacterial sRNA com-
plement requiring it for function (25, 37, 195). Immunoprecipitation of an RNA-binding protein
(RBP) of interest followed by isolation and analysis of bound RNA [RIP (RNA immunoprecipita-
tion)] allows rapid characterization of its RNA regulon (Figure 5a). The earliest applications of this
technique to sRNAs in bacteria used microarrays carrying a range of genic and intergenic probes to
explore the Hfq-binding landscape of E. coli and identified a number of novel Hfq-binding sRNAs,
as well as provided evidence for widespread binding of mRNA transcripts and a role for Hfq in
tRNA processing (206). By adapting this technique to utilize high-throughput pyrosequencing in
place of microarrays, Sittka and colleagues probed the Salmonella genome for Hfq-binding tran-
scripts, more than doubling the number of known Hfq-binding sRNAs and providing evidence for
a major role for Hfq in regulating horizontally transferred sequences (174). Subsequently, Illumina
sequencing enabled comprehensive profiling of the Hfq interactome throughout growth to identify
as many as 25% of S. Typhimurium’s mRNAs as members of the Hfq regulon and revealed large
changes in the sRNA complement bound by Hfq during transitions in growth phase (24). Such a
RIP-seq-based atlas of Hfq-bound transcripts, containing both mRNAs and sRNAs, is an excellent
starting point for sRNA research in an organism of interest (24) and may pinpoint functional RNA
species among seeming degradation intermediates. For example, a recent study has identified that
the SroC RNA, an apparent decay product of a polycistronic mRNA encoding an ABC transporter
that was strongly bound by Hfq (24), acts as an antagonist of the sRNA GcvB (117).

Although RIP-seq has proven its utility in these and other studies, it suffers from technical
limitations. First, it is limited to the detection of stable protein:RNA interactions that can sur-
vive the immunoprecipitation procedure, although there is also a potential to detect nonspecific
interactions because of the gentle handling required and for the formation of spurious associa-
tions following cell lysis (116). Additionally, as complete or only partially fragmented or degraded
transcripts are pulled down by this method, the resolution of RIP-seq is poor, and it is unclear
whether it can provide reliable information on the locations of RBP binding sites within a tran-
script. These issues make certain downstream analyses, such as the identification of RBP binding
motifs, difficult.

Modifications of RIP-seq protocols incorporating direct in vivo UV cross-linking between
RBPs and their RNA targets (Figure 5a), commonly referred to as HITS-CLIP (high-throughput
sequencing of RNA isolated by cross-linking immunoprecipitation) or CLIP-seq, have been driv-
ing a revolution in the study of eukaryotic RBPs (36, 84, 110, 115, 157). The physical cross-linking
of binding partners allows the use of more stringent washes, eliminating nonspecific interactions.
Additionally, RNase treatment can be used to increase the resolution of the assay compared to
RIP-seq. Refinements of this protocol, known as PAR-CLIP and iCLIP, introduce additional
modification that can further improve the ability to detect direct interaction sites at nucleotide
resolution (67, 85). It should be noted that not all RBP:RNA interactions are UV cross-linked with
the same efficiency, and some true interactions, particularly those not involving direct interactions
with a nucleobase, will certainly be missed by this method, although the factors influencing these
biases are presently unclear (110).

HITS-CLIP has recently been applied in a bacterial system for the first time, to study Hfq
binding in a strain of enterohemorrhagic E. coli (EHEC) (186). In addition to discovering numerous
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island-encoded Hfq-binding sRNAs, the high resolution of the HITS-CLIP assay allowed the
authors to study characteristics of the Hfq-binding regions of RNAs. Among other findings, this
study confirmed the previous observation that sRNA target sites on mRNAs are often in close
proximity to Hfq-binding sites (9), suggesting that the availability of high-resolution Hfq:mRNA
binding site data may be one avenue by which to improve computational predictions of sRNA
targets. Finally, in depth analysis of the novel sRNAs discovered through this method identified
two so-called anti-sRNAs encoded within prophage elements (186).

UV irradiation has been the most popular method for performing CLIP because of its high
specificity for direct RNA:protein interactions; however, many alternative cross-linking treat-
ments exist with varying specificities and efficiencies, and can be applied in CLIP protocols to
provide additional types of information. Examples include formaldehyde, which cross-links both
RNA:protein and protein:protein interactions, identifying both direct and indirect interactions,
and 4′-aminomethyltrioxalen, which induces cross-links between proximal uridine bases, pro-
viding evidence for direct RNA:RNA interactions (44). Careful application of suites of cross-
linking treatments with varying properties to samples of interest, coupled with differential analy-
ses, can allow the high-throughput mapping of layers of RNA:RNA, RNA:protein, and indirect
protein:protein-mediated interactions. These approaches have been applied in eukaryotic systems
for both the detailed study of the interactions of individual noncoding RNAs (ncRNAs) (44),
and the genome-wide mapping of RNA:protein interaction sites (57, 172). UV CLIP can also be
modified to provide direct evidence for ncRNA:target interactions, through the introduction of a
ligation step during RNA isolation in CLASH (cross-linking, ligation, and sequencing of hybrids)-
like protocols (89). This method generates chimeric ncRNA:target reads and has been successfully
applied to the identification of noncanonical targets for both snoRNAs (small nucleolar RNAs)
(89) and microRNAs (62, 73) in eukaryotic systems. The adaptation of such a protocol to sRNAs
would provide a high-throughput method for directly assaying sRNA:mRNA interactions without
relying on secondary readouts (transcript or protein levels), and promises to unveil interactions
invisible to current approaches.

TRANSPOSON INSERTION SEQUENCING: FITNESS TO FUNCTION

Although monitoring the transcriptional and translational outputs of the cell is informative about
the processes occurring within the cell, taken on their own, they are effectively silent regarding
the relative importance of these processes to survival in any particular environment. Transposon
mutagenesis allows the direct monitoring of the fitness effects of gene disruptions and has
underpinned numerous insights into the biology of important human pathogens, including
S. Typhimurium, Mycobacterium tuberculosis, and Shigella flexneri (105). Transposon insertion
sequencing (TIS) (recently reviewed in 7, 193; see also 101 for an excellent early application to
sRNAs) provides a high-throughput method to quantify the effects of these disruptions
(Figure 5b). A number of protocols have been developed to serve this purpose, including TraDIS
(transposon-directed insertion site sequencing) (91) and Tn-seq (transposon sequencing) (191),
with variations in technical details. These techniques allow monitoring of large single insertion
mutant libraries by sequencing. These libraries can be grown in arbitrary conditions, including
many animal models of disease, and changes in read frequency after growth serve as a proxy for
changes in mutant abundance. As transposition is effectively random, all regions of the genome,
including noncoding regions (7), can be queried given sufficient insertion density, although the
bottlenecks present under in vivo conditions can limit feasible pool complexity (26, 60, 104).

A recent study with implications for sRNA biology has applied TIS to globally identify
S. Typhimurium genes involved in infection of four animal models, those of mouse, chicken,
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swine, and cattle (26). The murine typhoid model is a widely used proxy for human typhoid
fever (187), whereas infection of food animals mimics aspects of human gastrointestinal disease
and serves as an important disease reservoir (176). The analysis of a library of 7,702 (9,792 in
mouse) S. Typhimurium mutants passed through these four animal models recovered known
virulence determinants and suggested a variety of determinants of host specificity. In a single set
of experiments, this analysis also identified 11 sRNAs as having potential virulence phenotypes,
8 of them in 2 or more independent infection models, more than tripling (72) the number of
Salmonella sRNAs with potential roles in pathogenicity. However, the ability to survey short
genomic regions depends on insertion density; thus, this study (27) was able to assay only 40 of
the 140 Salmonella sRNAs known at the time, and many of those through only a single insertion in
each.

Bacterial sRNA disruptions generally show mild phenotypes, and this may be due to the exis-
tence of redundant pathways providing a fail-safe mechanism for stress responses in which sRNAs
are frequently involved. An additional feature of post-transcriptional regulation is that it is in-
herently epistatic (58), i.e., the effect of an sRNA regulator depends on the transcription factors
active in the cell under the particular condition assayed and so the output has the potential to
vary dramatically. Although large target regulons have been identified for many sRNAs, it is often
unclear which targets have important effects on physiology in any particular environment and
hence which drive survival under biologically relevant conditions. Understanding these interac-
tions requires tools that can measure the sRNA impact on organismal fitness, a role for which TIS
is well suited. One of the first applications of TIS was to measure the epistatic effects of disruption
of two discrete loci through the generation and analysis of transposon mutant libraries in defined
deletion backgrounds, mapping genetic interaction networks for several transcriptional regulators
and ABC transporters (191).

TIS has recently been applied to the bacterial ncRNA tmRNA, involved in freeing stalled
ribosomes, in Caulobacter crescentus. The technique successfully identified synthetic lethal inter-
actions with a novel protein-based ribosome release factor (46), specifically demonstrating the
power of this approach in identifying redundant pathways in stress responses. Applying similar
methods in sRNA deletion backgrounds under a variety of physiologically relevant conditions
could provide an avenue for moving from simply mapping post-transcriptional regulation toward
an understanding of consequences for fitness, as well as for dissecting the effects of the complex
network architectures common in many processes regulated by sRNAs (8).

TOWARD AN INTEGRATIVE VIEW OF sRNA FUNCTION

One of the main features of many of the high-throughput, postgenomic methods reviewed here is
that they can produce data sets with implications potentially far beyond the initial questions they
were meant to address (69). In fact, a number of the studies highlighted here have explicitly set
out to generate high-quality reference data sets. Other notable examples of this genus of study
include comprehensive multi-omics annotation of the C. crescentus genome (167) and phenotype-
genotype mapping in a wide variety of in vitro and in vivo conditions using TIS in Streptococcus
pneumoniae (192). Even in cases in which data are not generated with the purpose of providing a
reference, the genome-wide measurements produced can often be reused for unrelated studies.
The potential for applications to sRNA biology is shown by studies integrating transcriptomic
data from a variety of sources for the study of sRNA evolution (96) and interaction networks (120).

To illustrate the power of integrating postgenomic data sets for the characterization of sRNAs,
we have performed a simple reanalysis of five large data sets touching on the role of sRNAs in
Salmonella virulence (Figure 6). As discussed briefly above, S. Typhimurium is a major pathogen
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causing primarily a self-limiting gastroenteritis in humans, although some strains are capable of
causing invasive systemic disease in susceptible, primarily immunocompromised, populations (47).
Many animal models exhibit disease symptoms reminiscent of human gastroenteritis; however,
susceptible mouse strains develop diseases reminiscent of human typhoid fever, presenting either
an acute or a controlled systemic disease, depending on host genotype (187). Importantly, these
various models of disease can differ in the virulence factors required to successfully establish an in-
fection (166). If our goal then is to understand the contributions of sRNAs to virulence programs,
it is important to know which disease model is most appropriate and at what stage of infection
and under which conditions the sRNA may be active. Although our example here is specific to
S. Typhimurium, these general points could apply to any bacterium in any model system.

A fairly minimal analysis, presented in Figure 6, already provides a number of insights into the
potential function of sRNAs in infection. Thirty-eight sRNAs have now been predicted by at least
one in vivo fitness challenge to give measurable virulence phenotypes, with 21 of these findings
supported by at least 2 independent animal models, a nearly eightfold increase from those suspected
only a few years ago (72). We can additionally use this table to begin constructing specific, testable
hypotheses. For instance, InvR has been characterized as a pathogenicity island–encoded sRNA
regulating the translation of the major outer membrane porin OmpD (148). Even though it was
shown to be coregulated with the pathogenicity island SPI-1, no virulence phenotype was reported
at the time. Although the deletion of this sRNA showed no phenotype in a systemic mouse model
of infection (165), TIS assays in three gastrointestinal models of infection indicate an attenuation
of virulence. Additionally, although transcriptional profiling in these 14 selected conditions show
strong constitutive expression of InvR, it appears to be specifically induced in anaerobic growth
and under oxygen shock, in addition to its previously reported accumulation in the early stationary
phase, further indicating a role in survival in the gastrointestinal tract. Although these predictions
remain to be validated, they provide a view of how the existence and integration of such data sets
can open a window into sRNA function and guide directions for molecular studies.

PERSPECTIVE

Bacterial sRNAs are pervasive and appear to be a universal feature of bacterial transcriptomes.
Modern transcriptomics techniques have made the discovery of novel transcripts straightforward.
However, established methods for functional characterization simply cannot keep pace with the in-
creasing numbers of noncoding transcripts being discovered in the increasingly diverse menagerie
of bacteria being studied for scientific, medical, and industrial purposes. In this review, we have
highlighted a number of emerging techniques based on high-throughput sequencing that can pro-
vide rapid insight into sRNA function. Many sRNAs appear to be modulators of expression rather
than serving as simple on-off switches, and they have subtle effects on phenotype. Understanding
the implications of these subtle regulatory roles requires using global approaches to explore the
effects of this tuning of the transcriptome on both gene expression and fitness across varied condi-
tions and dynamically during transitions. Other technologies will also prove useful in this realm,
such as high-throughput phenotyping (128), sequencing-based approaches to RNA secondary
structures (42, 144), and direct pull-down and sequencing of sRNA targets (90). The increasing
accessibility of high-throughput methods provides us with an opportunity to begin systematically
exploring the interactions between sRNAs, the transcriptome, and the environments in which
bacteria reside. For example, simultaneous high-throughput sequencing of the transcriptomes of
a pathogenic bacterium and its host (202) promises to reveal molecular phenotypes of sRNA dele-
tions that manifest in altered bacterial stress responses or host defense programs without evident
macroscopic changes within the time of the assay.
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Figure 6
Integrating postgenomic data sets. Transcript boundaries were obtained for 280 verified and putative Salmonella Typhimurium sRNAs
from the Hinton laboratory’s SalCom (Salmonella Compendium) transcriptomic atlas (87), as were condition-specific expression data
for a subset of 14 in vitro conditions, representative of a range of conditions S. Typhimurium encounters during infection, assayed in
that study. These data were supplemented with RNA-seq data from intracellular S. Typhimurium replicating in a RAW murine
macrophage-like cell line ( J.C.D. Hinton, personal communication), as survival in macrophages is known to be a major determinant for
the establishment of systemic infection (50). The expression level of each sRNA has been normalized to its median expression in
transcripts per million (TPM) across these 14 conditions. Conditional expression has been re-expressed as median absolute deviations
(MADs) from this median to provide a comparable overview of the expression dynamics of each sRNA. These sRNAs were next filtered
for the presence of attenuating or amplifying mutations (fitness) in at least one of four animal models used in a transposon insertion
sequencing screen (26) and in a microarray-based targeted deletion screen using a murine typhoid model (165) as well as for previous
reports of virulence-related phenotypes in the literature (56, 72, 134). Additionally, sRNAs enrichment in an Hfq RIP-seq experiment
(24) has been annotated. Abbreviation: Co-IP, co-immunoprecipitation.

We have also shown a brief example of how this global information can be integrated to pro-
vide guidance as to potential sRNA functions. A long-term goal for the field may be to use this
sort of data to integrate sRNA networks into quantitative genome-scale models of regulatory
and physiological networks (13), allowing the in silico modeling of the effects of sRNA regula-
tion. However, for the moment, even basic questions regarding the functions of the majority of
noncoding transcripts in bacteria remain unanswered, and there is much work to be done.
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54. Fröhlich KS, Vogel J. 2009. Activation of gene expression by small RNA. Curr. Opin. Microbiol.
12(6):674–82

www.annualreviews.org • New Approaches to Bacterial Small RNAs 15.21



GE49CH15-Barquist ARI 30 September 2015 15:17

55. Gardner PP, Barquist L, Bateman A, Nawrocki EP, Weinberg Z. 2011. RNIE: genome-wide prediction
of bacterial intrinsic terminators. Nucleic Acids Res. 39(14):5845–52

56. Gong H, Vu G-P, Bai Y, Chan E, Wu R, et al. 2011. A Salmonella small non-coding RNA facilitates
bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLOS
Pathog. 7(9):e1002120

57. Gosai SJ, Foley SW, Wang D, Silverman IM, Selamoglu N, et al. 2015. Global analysis of the RNA-
protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol. Cell
57(2):376–88

58. Gottesman S. 2004. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev.
Microbiol. 58:303–28

59. Gottesman S, Storz G. 2011. Bacterial small RNA regulators: versatile roles and rapidly evolving vari-
ations. Cold Spring Harb. Perspect. Biol. 3(12): pii:a003798

60. Grant AJ, Restif O, McKinley TJ, Sheppard M, Maskell DJ, Mastroeni P. 2008. Modelling within-host
spatiotemporal dynamics of invasive bacterial disease. PLOS Biol. 6(4):e74

61. Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J. 2010. RNAs: regulators
of bacterial virulence. Nat. Rev. Microbiol. 8(12):857–66

62. Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, et al. 2014. Unambiguous identi-
fication of miRNA:target site interactions by different types of ligation reactions. Mol. Cell 54(6):1042–
54
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87. Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK, et al. 2013. An infection-relevant
transcriptomic compendium for Salmonella enterica serovar Typhimurium. Cell Host Microbe 14(6):683–
95
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188. Udekwu KI, Darfeuille F, Vogel J, Reimegård J, Holmqvist E, Wagner EGH. 2005. Hfq-dependent
regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 19(19):2355–66

189. Urban JH, Vogel J. 2007. Translational control and target recognition by Escherichia coli small RNAs
in vivo. Nucleic Acids Res. 35(3):1018–37

190. Ursell LK, Van Treuren W, Metcalf JL, Pirrung M, Gewirtz A, Knight R. 2013. Replenishing our
defensive microbes. BioEssays 35(9):810–17

191. Van Opijnen T, Bodi KL, Camilli A. 2009. Tn-seq: high-throughput parallel sequencing for fitness
and genetic interaction studies in microorganisms. Nat. Methods 6(10):767–72

192. Van Opijnen T, Camilli A. 2012. A fine scale phenotype-genotype virulence map of a bacterial pathogen.
Genome Res. 22(12):2541–51

193. Van Opijnen T, Camilli A. 2013. Transposon insertion sequencing: a new tool for systems-level analysis
of microorganisms. Nat. Rev. Microbiol. 11(7):435–42

194. Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jäger JG, et al. 2003. RNomics in Escherichia coli
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