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Sample Preparation Overview
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Mirzaei H., Carrasco M. (eds) Modern Proteomics — Sample Preparation, Analysis and Practical Applications. Advances in Experimental Medicine and Biology, vol 919. Springer



Digestion

Trypsin is the most common protease used in proteomics, since trypsin specifically cleaves C-terminal of Arg (R) and Lys (K).
* Sequence specificity greatly improves sensitivity of database searching
* Tryptic peptides typically have an optimal length (10-20 aa) for LC-MS analyses

* C-terminal basic residues greatly improve fragmentation behavior of peptides (improving identification rate)
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Limitation of trypsin:

* Complete sequence coverage typically cannot be achieved with trypsin alone
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nanolLC-MS

nanolLC MS/MS
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Electrospray lonization (ESI)
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Electrospray lonization (ESI)
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ESI spectrum of the peptide neurotensin.

For peptides the observed maximum charge state corresponds to number of basic sites!



Relative Abundance

Peptide Mass Spectrum
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RELATIWVE ABUNDANCE

Isotopic Pattern of Peptides and Proteins

100- C900H1502N3000C301 - resolution: 0.01
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Orbitrap
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* electrostatic ion trap
* very high resolution (up to 450 000)

* very high mass accuracy (1 ppm)




Orbitrap Fusion

Figure 1. Orbitrap Fusion ion path
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Orbitrap Fusion

FULL SCAN ANALYSIS

1=

1&

|
|

3

8 - l i

|




Collision-induced Dissociation (CID)

fragment peytral  collision
1on lost ycell

i
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: fragment ions
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lon  fragmenting activated fragment ion
1an (continues to fragment)

* collision cell is filled with N,
* avoltage is applied in front of the collision cell (collision energy, typically 10-30 V)

* optimal collision energy depends on peptide mass and charge



Collision-induced Dissociation (CID)

Collision induced dissociation and higher-energy collision dissociation
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Collision-induced Dissociation (CID)
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Popular Database Search Engines

Mascot

Sequest

MaxQuant (Andromeda)
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Database Searching for Peptide and Protein ID

Your name jv Email jens.vanselow@virchow.uni-wuerzburg.de

Search title Really intereresting RAW file

Database(s) MR - Enzyme Trypsin v
UniProt_mouse_decoy
UniProt_Staph_decoy B Allow up to 2 v missed cleavages
UniProt_Vac_Virus = o
UniProt_Yeast - Quantitation  None v
Taxonomy All entries -
Fixed Carbamidomethyl (C) = . ABA_light (DE)
modifications - ABA_light (Protein C-term)
Acetyl (K)
- Acetyl (N-term)
Acetyl 12C1 (K)
Display all modifications O Acetyl 12C1 (Protein N-term)
] Acetyl 12C1 me (K)
Variable | Acetyl (Protein N-term) -« Acetyl 12C1 me (N-term)
Oxidation (M) Acetyl 12C1 me (Protein N-term)
Phospho (ST) Acetyl 13C1 (K)
. Acetyl 13C1 (N-term)
Peptide tol. + 10 ppom v #13C 0 v MS/MStol. + 06 Da ~
Peptide charge 2+ - Monoisotopic @ Average ©
Data file | Durchsuchen.. | Keine Datei ausgewahit
Data format Mascot generic v Precursor m/z
Instrument Orbi HCD hd Error tolerant ||
Decoy [ Reporttop AUTO ~ hits

Start Search . Reset Form




Database Searching with Fragment lon Spectra

Step 1: Generate candidate peptide list

1 MSKPHSEAGT AFIQTQQLHA AMADTFLEHM CRLDIDSPPI TARNTGIICT
51 IGPASRSVET LKEMIKSGMN VARLNFSHGT HEYHAETIKN VRTATESFAS
101 DPILYRPVAV ALDTKGPEIR TGLIKGSGTA EVELKKGATL KITLDNAYME
151 KCDENILWLD YKNICKVVEV GSKIYVDDGL ISLQVKQKGA DFLVTEVENG list of experimental masses
201 GSLGSKKGVN LPGAAVDLPA VSEKDIQDLK FGVEQDVDMV FASFIRKASD
251 VHEVRKVLGE KGKNIKIISK IENHEGVRRF DEILEASDGI MVARGDLGIE igij:;i;: EZ
301 IPAEKVFLAQ KMMIGRCNRA GKPVICATQOM LESMIKKPRP TRAEGSDVAN 1140.6016 Da
351 AVLDGADCIM LSGETAKGDY PLEAVRMQHL IAREAEAAIY HLQLFEELRR 1820.9139 Da
401 LAPITSDPTE ATAVGAVEAS FKCCSGAIIV LTKSGRSAHQ VARYRPRAPI 1635.8861 Da
451 TIAVTRNPQTA RQAHLYRGIF PVLCKDPVQE AWAEDVDLRV NFAMNVGKAR 1778.8701 Da
501 GFFKKGDVVI VLTGWRPGSG FTNTMRVVPV P
1220.6222 Da
calculate mass list from all
tryptic peptides of all proteins 1882.8945 Da
) 2464.2823 Da
list of calculated masses 989 5024 Da
MSKPHSEAGTAFIQTQQLHAAMADTFLEHMCR 3643.6793 Da 1196.5747 Da
L DIDSPPITAR * mass accuracy 467 6714 D
NTGIICTIGPASR 1461.8068 Da
SVETLK 675.3803 Da 1778.8704 Da
EMIK 519.2727 Da 1763.9760 Da

candidate peptides

LDIDSPPITAR
NTGIICTIGPASR



Database Searching with Fragment lon Spectra

Step 2: Score fragment ion spectra

candidate peptide theoretical spectrum experimental spectrum

839.5229 Da APIIAVTR

‘ high score
|

839.5229 Da LVGVPSLR low score
‘ l

839.5229 Da LLAASLPR | ‘
l




Identification of Peptides from MS/MS Data

- 0000000001 protein

lprotease (e.g. trypsin)

T[] [mm— T peptides
l nanoLC / ESI
hydrophobicit . .
R 5 BN B I > peptideions
520.23 807.35 813.39 825.45 870.52 780.33 982.63 993.65 Da

lMS/MS
100 DOOD DOND NOND DOOND OOOD OOROD  DOOOD  fragmentions

l database searching

I [ [ AN identified peptides

protein from database



False Discovery Rate

False Discovery Rate (FDR) = FP / (FP + TP)

If TP is true positive matches and FP is false positive matches, the number of matches in the target
database is TP + FP and the number of matches in the decoy database is FP.

Protein false discovery rate (FDR): fraction of the identified proteins that are in fact wrongly identified

Peptide false discovery rate (FDR): fraction of the identified peptides that are in fact wrongly identified

Evaluation of FDR by using a decoy database

target database decoy database

example: 6037 identified peptides 224 identified peptides
peptide FDR =224/6037 =3.71%

There are different approaches estimating FDR:
* Separate searches in target and decoy database (applied by Mascot; gives higher FDR rates)
* One search using a concatenated target-decoy database

* Decoy database can be random or reversed



Ultra High Pressure High Performance Liquid Chromatography (UHPLC)
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Data-dependent nanoLC-MS/MS

Table 1. Statistics of data. Table 3. Statistics of filtered result. Table 5. Number of identified peptides in sach sample bv the number of missed cleavages
# of MS Scans 14325 Peptide-Spectrum Matches 53063 Missed Cleavages 0 1 2 3 4+
# of MS/MS Scans 86519 Peptide Sequences 36737 single run 35569 1153 13 0 0
Protein Groups 4463
Proteins 4538
Proteins (FUnique Peptides) 3036 (=2); 494 (=2); 604 (=1);

FDR (Peptide-Spectrum Matches) 1.0%
FDR (Peptide Sequences) 1.4%
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Stable isotope labeling,
e.g. SILAC

Label-free Quantification

Quantitative Proteomics
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Cell Culture

Sample
Preparation

LC-MS Analysis

Data Analysis

Cell Culture

Sample
Preparation

LC-MS Analysis

Data Analysis

light label medium label heavy label

\ J
R A

sample preparation and digestion
|

heavy

light
medium

retention time m/z

Co-elution of labeled Separation of labeled
peptides during LC-run peptides by MS analysis

- q-_medium ..¢: 5 heavy i a-_medium
ratio1 Tight ratio2 ight rahoB—W

E— e
sample A sample B sample C
! | )

sample preparation and digestion
|

PeptideX -

=
2 Peptidex m.v
o
=
retention time retention time retention time
\ )
T

compare intensities

unA

runC

most accurate quantification
less instrument time

higher peak complexity (might result in
less identified peptides)

requires isotopically labeled reagents
(expensive)

labeling strategy depends on sample type

applicable to any type of sample
no additional labeling step

no additional costs

peak complexity is not increased
less accurate quantification

more replicates, more instrument time

adapted from https://www.zmbh.uni-heidelberg.de/Central_Services/Mass_Spectrometry/quant_proteomics.html



Metabolic vs. Peptide-Labeling

metabolic labeling chemical labeling
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Stable Isotope Labeling by Amino Acids in Cell Culture - SILAC

% % i5Da
. m/z
Matthias Mann,
MPI Martinsried
miz
. . Light
tryptic pe pt|des; 100, N Heawy Extracted ion chromatograr (X1C)
a - . TA
g» 2
AVPSLTR = g
AVPSLTK g ] \ g
1:. i | l L i A E -
880 870 EBT1 E72 ET3 BT4 ATE 8TE I I G‘!? 1 L

myz b Time {min}



Isobaric Labeling
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Tandem Mass Tags

Relative abundance

TMT Labeling

TMT-127N b TMTpro-127N
O
o) 0 0 o) 0; //k
P :
N A A N\A%;)M@g@
O H eb 0 . H 1icd
TMT-127C TMTpro-127C O Amine reactive group
] () O Mass nomalization group
q 0 UE 0] D O Reporter ion group
N )I\*/\ﬁ)l\.\*/ Neo )j\*/\ﬂ\f/\ % '°C position
o * L * 0" * * * * % 5N position
0 HCD O H Hiucple/ | Fragmentation site by HCD
TMTi1plex TMTpro1Gplex
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Nature Methods volume 17, 399-404 (2020)



ID of Protein Interaction
Partners



Mass Spectrometric Analysis of Co-IPs

contaminants bait & interactors
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The Mediator Complex

essential for regulated transcription

communicates signals from activators to Pol Il Regulatory

i ) seguence
stimulates PIC formation 9

structure and function is conserved in higher cells
Mediator

%

Transcription
start site

Gene

TiBS

from S. Bjorklund & C.M. Gustafsson, T/BS 2005, 30:240.
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Analysis of Posttranslational
Modifications (PTMs)



Nucleosomes and Histones in Trypanosoma brucei

IP of H2A-containing nucleosomes IP of H2A.Z-containing nucleosomes
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PTM Analysis of Start Site Histones
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PTM Analysis of Start Site Histones
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Measuring Site-specific Acetylation Degrees

(o} (0} 5
u U i |
S N\A \”/ \ ANA N MPPTKGGKRP & Acetylation 13C1 (+43.01)
!| J| “ & Acetylation (K) (+42.01)
co e RT, 7h °C
CH3/ \O/ \CH3 N30A0-1-13C, pH7 HO/ \CH3
HoN HN
8c=0
HsC

in-gel elastase
acetylation with thermolysin
13C-Ac,0 papain
> -

Octamer of Histones

histone enriched
fraction

ElBashir R, Vanselow JT, Kraus A, Janzen CJ, Siegel NT, Schlosser A. (2015) Anal Chem 87:9939-9945.



Fragment lon Patchwork Quantification

N-term. C-term.
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Analyzing Acetylation Patterns in Start Site Nucleosomes

IP of H2A-containing hucleosomes IP of H2A.Z-containing nucleosomes
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Analyzing Acetylation Patterns in Start Site Nucleosomes

IP of H2A-containing nucleosomes IP of H2A.Z-containing nucleosomes
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Immunopeptidomics



MHC class | antigen presentation
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Nature Reviews Immunology volume 3, pages 952—961 (2003)



HLA Polymorphism

HLA-A —» ==

HLA-C

% f

HLA-B

HLA-DR
g

HLA-DQ —~

HLA-DP

MHC Class 1

HLA-A
HLA-B
HLA-C

Example: Hela cell line

MHC Class 11

HLA-DRB1
HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-DQA1
HLA-DQB1
HLA-DPA1
HLA-DPB1

HLA-A*68:02
HLA-A*03:19
HLA-B*15:03
HLA-B*15:03
HLA-C*12:03
HLA-C*12:03



HLA Peptide Motifs

HLA-A1 Supertype

A*01:01 A*25:01 A*32:01

Bits

HLA-A2 Supertype

A*02:01 A*02:02 A*02:03

HLA-A3 Supertype

A*03:01 A*11:02 A*68:01




HLA-I Peptides are the Key Players for T Cell Response

Human Leukocyte Antigen (HLA)

HLA Peptide

CD3(

HYPERVARIABLE
REGION

CONSTANT REGION

)

T Cell Receptor (TCR)

modified from junotherapeutics.com



Mass Spectrometry-based Immunopeptidomics
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Fragment lon Spectrum of HLA-I Peptide
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De novo Sequencing-based Approach — Peptide-PRISM

Database matching of de novo sequencing candidates

KVDAGGKVK 99 KVDAGGKVK 99 (RPL6)

KVDANKVK 96

‘ de novo kvDacevkk 91 database

sequencing KVDQGKVK 89  matching

PEPTIDE ) KVDAGKGVK 82 )

‘ | ‘ ‘ KVDGAGKVK 77
KVEGGGKVK 77
m/z KVGEGGKVK 77
VKDAGGKVK 77
KVDAKGGVK 70

MS/MS spectrum Top10 candidates Matched peptide

FDR filtering using stratified mixture models

DAAAKHAYR 37

KSHRVAGAK 80 KSHRVAGAK 80

calculate

QUOPALTEK 96 " © QVQPALTKK 96
KYLLLQAPR 51 I

xreepTIMK 87  distributions FDRFiltering ¢ roporrax g7
KTMPSNLHR 79 —)

TVPGHKKFK 9/ TVPGHKKFK 97
NAAKGLKQR 70

KPQLMVTPK 93 de novo score KPQLMVTPK 93
KLSCLGLVP 89 KLSCLGLVP 89
All matched Target & decoy Identified

peptides distributions peptides
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HLA Class | Binding Prediction (NetMHC)
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Tumor-specific Mutations can Generate Neoantigens

Wild type

TACCTGTTCAGCAGCTACAGCGCCAGC

"%,

Nonsynonymous mutation

No immune response to
wild-type antigen

T cell

TACCTGTTCAGCAGCTACAGCGTCAGC

F
= L> QL
ﬁt—f:" e ° 7__ Tumor
= 549
e e Immune response to
Neoantigen tumor neoantigen
© 2016 American Association for Cancer Research
CCR Reviews AACR

Braun et al. 2016 Clin Cancer Res 22:5642-5650



Strategy for Personalized Cancer Immunotherapy with Neoantigens

(1) DNA and RNA sequencing

Blood normal

(Z) Alignment and variant calling

b LN N N o B TR
N7 Y7 _———=
Marmal DNA = .
= ===
AN =z ==
LTS A
Tumor DA _pemr g =
===
NSNS Exs
Tumor AkA 1__5’_

=

(3) Perform epitope

prediction
" pVAC-5eq @- Integrate sequence
@ I?eslgn vac_elne information
with neoantigens

{5) Filter candidate
neoantigens

=

Validate candidates

7 Neoantigen

Liu et al. 2017 Cell 168:600-612



Strategies for HLA Peptide-based Immunotherapies

Vaccination with peptides or DNA/RNA (BioNTec)

Synthetic
neoantigen

Lymph node

Intramuscular .
Dentritic

Inf'::;‘ion_t.n‘d injection of injection of
sy “:T;ze neoantigen- neoantigen- cell
neoantigens encoding DNA encoding RNA

Killer T cell

Receptor

presented on
Neoantigens
expressed and
presented on
cell surface

X : 2
’
o **
»
w»
»

Source: https://www.the-scientist.com/features/personalized-cancer-vaccines-in-clinical-trials-66075




Cryptic HLA-I peptides

Cryptic HLA peptides derive from allegedly non-coding regions, such as 5’- and 3’-UTRs or introns, or
from coding sequences (CDS) in non-canonical reading frames.

5’-UTR CDs

MM_020802.3

cryptic peptide

EVLGASROQAALK

CCATGAGG:GAGGTTCTGGGGGCGAGCAGACAGGCGGCGCTGAAG%TGAAGGATGCTG
E G E Q T G E W K

R A, D

ANGPTLS

. M | |

T CEP126 T

start codon 'stop codon



Origin of cryptic peptides

Benign
ncRNA 3 12.6%
Intergenic I 99 3.2%
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Tumor-specific, recurrent, cryptic peptides (TURCs)

40% of the tumor-specific cryptic peptides are identified in 2 or more patients

One source for TURCs is aberrant, tumor-specific transcription

Example: antisense RNA, aberrantly expressed in melanoma
» 5 different cryptic peptides

* in 11 melanoma patients/patient cell lines

B Tumor

40 B Normal

30
20

10

. ; - 1
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¥

From GEPIA (http://gepia.cancer-pku.cn/)



TURC from an antisense RNA

RNA-seq melanoma cell line

l — - mm | Antisense RNA splice variant 1
mm | Antisense RNA splice variant 2

Antisense RNA splice variant 2

n*.*.‘.'m'\'\\\\\‘.\‘.‘.‘.‘\'\'1\\\\‘.‘.‘.‘.'\‘h".'1\\‘.‘.‘.'x'\'\\‘.'l\‘.‘.‘.‘.'m'\‘.'t'\\\‘h‘.‘.‘.'\‘.'t'\\\‘.'11‘.'#m'\'\%\‘.'\'#.'i'\\\\\‘l‘.\T\\\\\\N‘&'\'&'\\%\‘.‘\'&'ﬂ'\'\\

GTG ' nuORFdb*
TURC

» Cryptic HLA peptides from ncRNAs are recurrently presented on tumor cells, allowing the immune system to recognize aberrant
expression of ncRNAs.

» These cryptic peptides might represent a new class of non-private neoantigens exploitable for cancer immunotherapy.
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