

Visualization of Graphs

Summary:

Drawing styles, problems, frameworks, algorithms, ...

Jonathan Klawitter

Drawing styles

- Radial, HV-drawing
- Orthogonal (two different slopes)

- Hierarchical, layered, upward and upward planar

- Planar, 1-planar, k-planar

■ Edge styles:
■ Straight-line
■ With curves or circular arcs

- With or without bends

■ Using k slopes (rectilinear, octilinear, hexalinear, ...)

- Non-planar, e.g. RAC drawings, bundle crossings
- Minimum angle resolution, maximum ... (some parameter)

■ Contact representations (triangles, Ts, Ys, rectangles, ...)

■ Visibility representations (bar visibility)

Problems

■ Graph Layout Problem

- Recognition (Does a graph admit such a drawing/belong to that class?)

■ Construction (If yes, then please construct a drawing.)
\square Optimisation (minimisation/maximisation) problems:
■ crossings, bundle crossings, drawing in low beyond planarity class

- area, width, height

■ bends

- edge lengths
- angular resolution, ...

arca, viath, met
- Is it NP-hard? (Reduction from SAT-variant, reduction from other drawing style, ...)

■ Can we do it in polynomial time?

- Bounds on properties (Crossing Lemma)

■ Partial representation extension (and simultaneous representation)

Frameworks, methods, tools

Frameworks

- Sugiyama framework
- Topology-Shape-Metric
- Force-based ammuno

Dynammic programming + decomposition methods

- Post-order (for trees)
- SPQ-tree (for series-parallel graphs)
- SPQR-tree (for biconnected graphs, partial bar visibility representation extension)
- Block-cut tree (for connected graphs)

Combinatorial descriptions + other tools

- Canonical order (for plane triangulations, planar 3-connected) + shift method
- Refined canonical order (for planar 4-connected)
- Barycentric method, Tutte embedding
- Schnyder forest, regular edge labeling, orthogonal representation

- Draw "maximal" graph, remove dummy parts later
- Hierarchical clustering
- Flow network

Graph classes

- graphs and digraphs

■ st-digraphs, DAGs

- trees and series-parallel graphs

- planar, k-planar and other beyond planar classes
- triangulated, internally triangulated
- upward planar
- biconnected, 3-connected

■ bipartite graphs

- metro maps
and graph parameters
- crossing number
- beyond-planarity things. . .

