
Algorithmen für Programmierwettbewerbe

Problem L: Well Spoken

Hendrik Meininger Johannes Schleicher

Hendrik Meininger, Johannes Schleicher
2

Problem L: Well Spoken

Problem

Problem Approach Runtime

Problem:

Find the minimum maximum waiting time, given that Janet be ready between

[A:B]

Given:

-Timespan [A:B]

-Road network

-Intersections as nodes

-Streets as edges

1 2

3

1

Hendrik Meininger, Johannes Schleicher
3

Problem L: Well Spoken

Problem

➢ Input:

➢ Output:

1 2

3

10 20

3 5

1 3 7

2 1 1

2 3 2

2 3 5

3 2 4

6

[10:20]

1

[A:B]

|V| |E|

Problem Approach Runtime

E
𝑒(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑐𝑜𝑠𝑡)

𝑂𝑢𝑡𝑝𝑢𝑡 𝑖𝑠 𝑎𝑙𝑤𝑎𝑦𝑠 𝑎𝑛 𝑖𝑛𝑡

Hendrik Meininger, Johannes Schleicher
4

Problem L: Well Spoken

Approach

Problem:

Find the minimum maximum waiting time, given that Janet be ready between

[A:B]

Solution:

1. Compute the distance from Richard to all vertices and from all vertices to

Janet using two runs of Dijkstra

2. Binary search on the maximum waiting time boundaries

3. Check if given delay 𝛿 is possible

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
5

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

0 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 =
7 − 0

2
+ 0 = 3

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
6

Problem L: Well Spoken

Approach

Check if delay 𝛿 is possible:

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿
If node 𝑢 does not satisfy this condition, then there won′t be a route through 𝑢 that satisfies the delay delta, given that the

signal will come at time 𝐴 or when arriving at u

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
7

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

1. Step:
0 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 3

Mark vertices 𝑢 as “good“ if:

𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒[𝑢] + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢] ≤ 𝐴 + 𝛿 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢] ≤ 𝛿

𝑢1: 0 + 7 ≤ 10 + 3 𝑎𝑛𝑑 7 ≤ 3

𝑢2: 11 + 2 ≤ 10 + 3 𝑎𝑛𝑑 2 ≤ 3

𝑢3: 7 + 0 ≤ 10 + 3 𝑎𝑛𝑑 0 ≤ 3

3

2

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
8

Problem L: Well Spoken

Approach

Check if delay 𝛿 is possible:

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿
If node 𝑢 does not satisfy this condition, then there won′t be a route through 𝑢 that satisfies the delay delta, given that the

signal will come at time 𝐴 or when arriving at u

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too
An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
9

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

1. Step:
0 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 3

Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑣] ≤ 𝛿,

then mark 𝑣 and edge 𝑙 as good too

𝑢2, 𝑒 2,1,1 : 1 + 7 ≤ 3

𝑢2, 𝑒 2,3,2 : 2 + 0 ≤ 3

𝑢2, 𝑒 2,3,5 : 5 + 0 ≤ 3

𝑢3, 𝑒 3,2,4 : 4 + 2 ≤ 3

Problem Approach Runtime

𝑒(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑐𝑜𝑠𝑡)

3

2

Hendrik Meininger, Johannes Schleicher
10

Problem L: Well Spoken

Approach

Check if delay 𝛿 is possible:

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿
If node 𝑢 does not satisfy this condition, then there won′t be a route through 𝑢 that satisfies the delay delta, given that the

signal will come at time 𝐴 or when arriving at u

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too
An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

3. If subgraph of good edges has cycle → delay 𝛿 is possible
We can stay in the cycle until Janet calls and arrive at her place at most delta after she has called

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
11

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

1. Step:
0 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 3

If subgraph of good edges has cycle → delay δ is possible

ℎ𝑎𝑠𝐶𝑦𝑐𝑙𝑒() = 𝑓𝑎𝑙𝑠𝑒

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
12

Problem L: Well Spoken

Approach

Check if delay 𝛿 is possible:

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿
If node 𝑢 does not satisfy this condition, then there won′t be a route through 𝑢 that satisfies the delay delta, given that the

signal will come at time 𝐴 or when arriving at u

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too
An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

3. If subgraph of good edges has cycle → delay 𝛿 is possible
We can stay in the cycle until Janet calls and arrive at her place at most delta after she has called

4. Otherwise, the subgraph of good nodes and edges is acyclic. Compute

longest time Richard can stay in the subgraph. If this is ≥ 𝐵 then delay 𝛿 is

possible

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
13

Problem L: Well Spoken

Approach – longestPath()

Problem Approach Runtime

Auxiliary variables:

𝑖𝑛𝑑𝑒𝑔[𝑢]:= 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑔𝑜𝑜𝑑 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ
corresponds to the number of good incoming edges

𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠 ≔ 𝑢. 𝑖𝑠𝐺𝑜𝑜𝑑 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑔 𝑢 = 0
goodNodes contains at the beginning all good nodes with indegree 0, so that one can calculate the longest Path correctly

afterwards

𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 = 𝐴 + 𝑑𝑒𝑙𝑎𝑦 − 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢]
for each good node 𝑢, the latest time of arrival at the node, so that the delay can still be met

Hendrik Meininger, Johannes Schleicher
14

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

1. Step:
0 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 3

Compute longest time Richard can stay in the subgraph

If this is ≥ 𝐵 then delay 𝛿 is possible

𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 = 𝐴 + 𝑑𝑒𝑙𝑎𝑦 − 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢]

𝑙𝑎𝑡𝑒𝑠𝑡 2 = 10 + 3 − 2 = 11

𝑙𝑎𝑡𝑒𝑠𝑡 3 = 10 + 3 − 0 = 13

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
15

Problem L: Well Spoken

Approach – longestPath()

Problem Approach Runtime

Pseudocode:

𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑃𝑎𝑡ℎ(δ)

𝑤ℎ𝑖𝑙𝑒 ! 𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑖𝑠𝐸𝑚𝑝𝑡𝑦

𝑢 = 𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒 0

𝑖𝑓 𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢] ≥ 𝐵

𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑟𝑢𝑒

𝑓𝑜𝑟 𝐸𝑑𝑔𝑒 𝑒 𝑖𝑛 𝑔𝑜𝑜𝑑𝐸𝑑𝑔𝑒𝑠[𝑢]

𝑖𝑛𝑑𝑒𝑔[𝑒. 𝑑𝑒𝑠𝑡] −= 1

𝑖𝑓 𝑖𝑛𝑑𝑒𝑔[𝑒. 𝑑𝑒𝑠𝑡] == 0

𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑎𝑑𝑑(𝑒. 𝑑𝑒𝑠𝑡)

𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡] = max(𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡], 𝑙𝑎𝑡𝑒𝑠𝑡[𝑢] + 𝑒. 𝑤𝑒𝑖𝑔ℎ𝑡)

𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑎𝑙𝑠𝑒

Hendrik Meininger, Johannes Schleicher
16

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

1. Step:
0 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 3

Compute longest time Richard can stay in the subgraph

If this is ≥ 𝐵 then delay 𝛿 is possible

𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 = 𝐴 + 𝑑𝑒𝑙𝑎𝑦 − 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢]

𝑙𝑎𝑡𝑒𝑠𝑡 2 = 11
𝑙𝑎𝑡𝑒𝑠𝑡 3 = 13

Start with good nodes with 𝑖𝑛𝑑𝑒𝑔[𝑢] == 0
Check if: 𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≥ 𝐵

𝑙𝑎𝑡𝑒𝑠𝑡 2 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 2 = 11 + 2 ≥ 20

𝑙𝑎𝑡𝑒𝑠𝑡 3 = max 𝑙𝑎𝑡𝑒𝑠𝑡 3 , 𝑙𝑎𝑡𝑒𝑠𝑡 2 + 𝑒 2,3,2 = 13

𝑙𝑎𝑡𝑒𝑠𝑡 3 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 3 = 13 + 0 ≥ 20

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
17

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

2. Step:
4 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 5

Mark vertices 𝑢 as “good“ if:

𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒[𝑢] + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢] ≤ 𝐴 + 𝛿 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢] ≤ 𝛿

𝑢1: 0 + 7 ≤ 10 + 5 𝑎𝑛𝑑 7 ≤ 5

𝑢2: 11 + 2 ≤ 10 + 5 𝑎𝑛𝑑 7 ≤ 5

𝑢3: 7 + 0 ≤ 10 + 5 𝑎𝑛𝑑 7 ≤ 5

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
18

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

2. Step:
4 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 5

Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑣] ≤ 𝛿,

then mark 𝑣 and edge 𝑙 as good too

𝑢2, 𝑒 2,1,1 : 1 + 7 ≤ 5

𝑢2, 𝑒 2,3,2 : 2 + 0 ≤ 5

𝑢2, 𝑒 2,3,5 : 5 + 0 ≤ 5

𝑢3, 𝑒 3,2,4 : 4 + 2 ≤ 5

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
19

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

2. Step:
4 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 5

If subgraph of good edges has cycle → delay δ is possible

ℎ𝑎𝑠𝐶𝑦𝑐𝑙𝑒() = 𝑓𝑎𝑙𝑠𝑒

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
20

Problem L: Well Spoken

Approach - Example

2. Step:
4 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 5

Compute longest time Richard can stay in the subgraph

If this is ≥ 𝐵 then delay 𝛿 is possible

𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 = 𝐴 + 𝑑𝑒𝑙𝑎𝑦 − 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢]

𝑙𝑎𝑡𝑒𝑠𝑡 2 = 10 + 5 − 2 = 13
𝑙𝑎𝑡𝑒𝑠𝑡 3 = 10 + 5 − 0 = 15

Start with good nodes with 𝑖𝑛𝑑𝑒𝑔[𝑢] == 0
Check if: 𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≥ 𝐵

𝑙𝑎𝑡𝑒𝑠𝑡 2 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 2 = 11 + 2 ≥ 20
𝑙𝑎𝑡𝑒𝑠𝑡 3 = max 𝑙𝑎𝑡𝑒𝑠𝑡 3 , 𝑙𝑎𝑡𝑒𝑠𝑡 2 + 𝑒(2,3,2) = 15
𝑙𝑎𝑡𝑒𝑠𝑡 3 = max 𝑙𝑎𝑡𝑒𝑠𝑡 3 , 𝑙𝑎𝑡𝑒𝑠𝑡 2 + 𝑒(2,3,5) = 18
𝑙𝑎𝑡𝑒𝑠𝑡 3 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 3 = 18 + 0 ≥ 20

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
21

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

3. Step:
6 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 6

Mark vertices 𝑢 as “good“ if:

𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒[𝑢] + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢] ≤ 𝐴 + 𝛿 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑢] ≤ 𝛿

𝑢1: 0 + 7 ≤ 10 + 6 𝑎𝑛𝑑 7 ≤ 6

𝑢2: 11 + 2 ≤ 10 + 6 𝑎𝑛𝑑 7 ≤ 6

𝑢3: 7 + 0 ≤ 10 + 6 𝑎𝑛𝑑 7 ≤ 6

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
22

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

3. Step:
6 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 6

Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡[𝑣] ≤ 𝛿,

then mark 𝑣 and edge 𝑙 as good too

𝑢2, 𝑒 2,1,1 : 1 + 7 ≤ 6

𝑢2, 𝑒 2,3,2 : 2 + 0 ≤ 6

𝑢2, 𝑒 2,3,5 : 5 + 0 ≤ 6

𝑢3, 𝑒 3,2,4 : 4 + 2 ≤ 6

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
23

Problem L: Well Spoken

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Approach - Example

3. Step:
6 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 7 → 𝛿 = 6

If subgraph of good edges has cycle → delay δ is possible

ℎ𝑎𝑠𝐶𝑦𝑐𝑙𝑒() = 𝑡𝑟𝑢𝑒

Problem Approach Runtime

3

2

Hendrik Meininger, Johannes Schleicher
24

Problem L: Well Spoken

Approach - Example

4. Step:
6 ≤ 𝑑𝑒𝑙𝑎𝑦 ≤ 6 → 𝑙𝑒𝑓𝑡 == 𝑟𝑖𝑔ℎ𝑡
→ 𝑂𝑢𝑡𝑝𝑢𝑡 ≔ 6

Problem Approach Runtime

1 2

3

[𝐴: 𝐵] = [10: 20]

1

Hendrik Meininger, Johannes Schleicher
25

Problem L: Well Spoken

Runtime

Problem Approach Runtime

Runtime:

WellSpoken()

Dijkstra

Dijkstra

BinarySearch

𝑂(𝐸 + 𝑉 log 𝑉)

𝑂 log𝑤 ∗ 𝑂 ?
with 𝑤 = 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑠)checkDelay(𝛿)

Dijkstra

Dijkstra

BinarySearch

checkDelay(𝛿)checkDelay(𝛿) 𝑂 ?

Hendrik Meininger, Johannes Schleicher
26

Problem L: Well Spoken

𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑙𝑎𝑦(𝛿)

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too

3. If subgraph of good edges has cycle → delay 𝛿 is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute

longest time Richard can stay in the subgraph. If this is ≥ 𝐵 then delay 𝛿 is

possible

Runtime

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
27

Problem L: Well Spoken

𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑙𝑎𝑦(𝛿)

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too

3. If subgraph of good edges has cycle → delay 𝛿 is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute

longest time Richard can stay in the subgraph. If this is ≥ 𝐵 then delay 𝛿 is

possible

𝑂(𝑉)

Runtime

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
28

Problem L: Well Spoken

𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑙𝑎𝑦(𝛿)

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too

3. If subgraph of good edges has cycle → delay 𝛿 is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute

longest time Richard can stay in the subgraph. If this is ≥ 𝐵 then delay 𝛿 is

possible

𝑂(𝑉)

𝑂(𝐸)

Runtime

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
29

Problem L: Well Spoken

𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑙𝑎𝑦(𝛿)

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too

3. If subgraph of good edges has cycle → delay 𝛿 is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute

longest time Richard can stay in the subgraph. If this is ≥ 𝐵 then delay 𝛿 is

possible

𝑂(𝑉)

𝑂(𝐸)

𝑂(𝑉 + 𝐸)

Runtime

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
30

Problem L: Well Spoken

𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑙𝑎𝑦(𝛿)

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too

3. If subgraph of good edges has cycle → delay 𝛿 is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute

longest time Richard can stay in the subgraph. If this is ≥ 𝐵 then delay 𝛿 is

possible

𝑂(𝑉)

𝑂(𝐸)

𝑂(𝑉 + 𝐸)

𝑂(?)

Runtime

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
31

Problem L: Well Spoken

Runtime – longestPath()

Problem Approach Runtime

Pseudocode:

𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑃𝑎𝑡ℎ(δ)

𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑎𝑙𝑠𝑒

𝑤ℎ𝑖𝑙𝑒 ! 𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑖𝑠𝐸𝑚𝑝𝑡𝑦

𝑢 = 𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒 0

𝑖𝑓 𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≥ 𝐵

𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑟𝑢𝑒

𝑓𝑜𝑟 𝐸𝑑𝑔𝑒 𝑒 𝑖𝑛 𝑔𝑜𝑜𝑑𝐸𝑑𝑔𝑒𝑠 𝑢

𝑖𝑛𝑑𝑒𝑔 𝑒. 𝑑𝑒𝑠𝑡 −= 1

𝑖𝑓 𝑖𝑛𝑑𝑒𝑔 𝑒. 𝑑𝑒𝑠𝑡 == 0

𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑎𝑑𝑑 𝑒. 𝑑𝑒𝑠𝑡

𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡] = max(𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡], 𝑙𝑎𝑡𝑒𝑠𝑡[𝑢] + 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡)

Hendrik Meininger, Johannes Schleicher
32

Problem L: Well Spoken

Pseudocode:

𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑃𝑎𝑡ℎ(δ)

𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑎𝑙𝑠𝑒

𝑤ℎ𝑖𝑙𝑒 ! 𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑖𝑠𝐸𝑚𝑝𝑡𝑦

𝑢 = 𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒 0

𝑖𝑓 𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≥ 𝐵

𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑟𝑢𝑒

𝑂(𝑉)

𝑓𝑜𝑟 𝐸𝑑𝑔𝑒 𝑒 𝑖𝑛 𝑔𝑜𝑜𝑑𝐸𝑑𝑔𝑒𝑠 𝑢

𝑖𝑛𝑑𝑒𝑔 𝑒. 𝑑𝑒𝑠𝑡 −= 1

𝑖𝑓 𝑖𝑛𝑑𝑒𝑔 𝑒. 𝑑𝑒𝑠𝑡 == 0

𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑎𝑑𝑑 𝑒. 𝑑𝑒𝑠𝑡

𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡] = max(𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡], 𝑙𝑎𝑡𝑒𝑠𝑡[𝑢] + 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡)

Runtime – longestPath()

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
33

Problem L: Well Spoken

Pseudocode:

𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑃𝑎𝑡ℎ(δ)

→ 𝑂(𝑉 + 𝐸)
𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑎𝑙𝑠𝑒

𝑤ℎ𝑖𝑙𝑒 ! 𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑖𝑠𝐸𝑚𝑝𝑡𝑦

𝑢 = 𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒 0

𝑖𝑓 𝑙𝑎𝑡𝑒𝑠𝑡 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≥ 𝐵

𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑟𝑢𝑒

𝑓𝑜𝑟 𝐸𝑑𝑔𝑒 𝑒 𝑖𝑛 𝑔𝑜𝑜𝑑𝐸𝑑𝑔𝑒𝑠 𝑢

𝑖𝑛𝑑𝑒𝑔 𝑒. 𝑑𝑒𝑠𝑡 −= 1

𝑖𝑓 𝑖𝑛𝑑𝑒𝑔 𝑒. 𝑑𝑒𝑠𝑡 == 0

𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑎𝑑𝑑 𝑒. 𝑑𝑒𝑠𝑡

𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡] = max(𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡], 𝑙𝑎𝑡𝑒𝑠𝑡[𝑢] + 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡)

𝑂(𝑉)

𝑂(𝐸)𝑓𝑜𝑟 𝐸𝑑𝑔𝑒 𝑒 𝑖𝑛 𝑔𝑜𝑜𝑑𝐸𝑑𝑔𝑒𝑠 𝑢

𝑖𝑛𝑑𝑒𝑔 𝑒. 𝑑𝑒𝑠𝑡 −= 1

𝑖𝑓 𝑖𝑛𝑑𝑒𝑔 𝑒. 𝑑𝑒𝑠𝑡 == 0

𝑔𝑜𝑜𝑑𝑁𝑜𝑑𝑒𝑠. 𝑎𝑑𝑑 𝑒. 𝑑𝑒𝑠𝑡

𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡] = max(𝑙𝑎𝑡𝑒𝑠𝑡[𝑒. 𝑑𝑒𝑠𝑡], 𝑙𝑎𝑡𝑒𝑠𝑡[𝑢] + 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡)

𝑂(𝐸)

Runtime – longestPath()

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
34

Problem L: Well Spoken

𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑙𝑎𝑦(𝛿)

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too

3. If subgraph of good edges has cycle → delay 𝛿 is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute

longest time Richard can stay in the subgraph. If this is ≥ 𝐵 then delay 𝛿 is

possible

𝑂(𝑉)

𝑂(𝐸)

𝑂(𝑉 + 𝐸)

𝑂(𝑉 + 𝐸)

Runtime

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
35

Problem L: Well Spoken

𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑙𝑎𝑦(𝛿)

1. Mark vertices 𝑢 as “good“ if 𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑚𝐻𝑜𝑚𝑒 𝑢 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡 𝑢 ≤ 𝐴 + 𝛿
and distToJanet u ≤ 𝛿

2. Propagate: if 𝑢 is good and 𝑢→
𝑙
𝑣 with 𝑙 + 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑣) ≤ 𝛿, then mark 𝑣

and edge 𝑙 as good too

3. If subgraph of good edges has cycle → delay 𝛿 is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute

longest time Richard can stay in the subgraph. If this is ≥ 𝐵 then delay 𝛿 is

possible

𝑂(𝑉)

𝑂(𝐸)

𝑂(𝑉 + 𝐸)

𝑂(𝑉 + 𝐸)

→ 𝑂(𝑉 + 𝐸)

Runtime

Problem Approach Runtime

Hendrik Meininger, Johannes Schleicher
36

Problem L: Well Spoken

Runtime:

WellSpoken()

𝑂(𝐸 + 𝑉 log 𝑉)

𝑂 log𝑤 ∗ 𝑂 𝑉 + 𝐸
with 𝑤 = 𝑑𝑖𝑠𝑡𝑇𝑜𝐽𝑎𝑛𝑒𝑡(𝑠)

𝑂 𝑉 + 𝐸

𝑅𝑢𝑛𝑡𝑖𝑚𝑒: 𝑂(𝑉 + 𝐸 ∗ log(𝑤))

Runtime

Problem Approach Runtime

checkDelay(𝛿)

Dijkstra

Dijkstra

BinarySearch

checkDelay(𝛿)checkDelay(𝛿)

