

Problem L: Well Spoken

Algorithmen für Programmierwettbewerbe

Hendrik Meininger

Johannes Schleicher

Problem

Problem:

Find the minimum maximum waiting time, given that Janet be ready between [A:B]

Problem L: Well Spoken

Problem

Problem L: Well Spoken

Approach

Problem:

Find the minimum maximum waiting time, given that Janet be ready between [A:B]

Solution:

1. Compute the distance from Richard to all vertices and from all vertices to Janet using two runs of Dijkstra

- 2. Binary search on the maximum waiting time boundaries
- 3. Check if given delay δ is possible

Problem L: Well Spoken

Approach

Check if delay δ is possible:

1. Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$ and $distToJanet(u) \le \delta$

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the signal will come at time A or when arriving at u

Approach - Example

Mark vertices u as "good" if: $distFromHome[u] + distToJanet[u] \le A + \delta$ and $distToJanet[u] \le \delta$

- u_1 : 0 + 7 ≤ 10 + 3 and 7 ≤ 3
- u_2 : $11 + 2 \le 10 + 3 \text{ and } 2 \le 3$
- u_3 : 7 + 0 ≤ 10 + 3 and 0 ≤ 3

Problem L: Well Spoken

Approach

Problem

Approach

Check if delay δ is possible:

1. Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$ and $distToJanet(u) \le \delta$

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the signal will come at time A or when arriving at u

2. Propagate: if *u* is good and $u \xrightarrow{l} v$ with $l + distToJanet(v) \le \delta$, then mark *v* and edge *l* as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

Approach - ExampleProblemApproachRuntime1. Step:
 $0 \le delay \le 7 \rightarrow \delta = 3$ e(start, end, cost)Propagate: if u is good and $u \xrightarrow{l} v$ with $l + distToJanet[v] \le \delta$,
then mark v and edge l as good too

- $u_2, e(2,1,1): 1+7 \le 3$
- $u_2, e(2,3,2): 2+0 \le 3$
- $u_2, e(2,3,5): 5+0 \le 3$
- $u_3, e(3,2,4): 4+2 \le 3$

Problem L: Well Spoken

Approach

Problem

Approach

Check if delay δ is possible:

1. Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$ and $distToJanet(u) \le \delta$

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the signal will come at time A or when arriving at u

2. Propagate: if *u* is good and $u \xrightarrow{l} v$ with $l + distToJanet(v) \le \delta$, then mark *v* and edge *l* as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

3. If subgraph of good edges has cycle \rightarrow delay δ is possible We can stay in the cycle until Janet calls and arrive at her place at most delta after she has called

If subgraph of good edges has cycle \rightarrow delay δ is possible hasCycle() = false

Problem L: Well Spoken

Approach

Problem

Approach

Check if delay δ is possible:

1. Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$ and $distToJanet(u) \le \delta$

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the signal will come at time A or when arriving at u

2. Propagate: if *u* is good and $u \xrightarrow{l} v$ with $l + distToJanet(v) \le \delta$, then mark *v* and edge *l* as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

- 3. If subgraph of good edges has cycle \rightarrow delay δ is possible We can stay in the cycle until Janet calls and arrive at her place at most delta after she has called
- 4. Otherwise, the subgraph of good nodes and edges is acyclic. Compute longest time Richard can stay in the subgraph. If this is $\geq B$ then delay δ is possible

Approach - longestPath()

Auxiliary variables:

indeg[u] := indegree of good nodes in subgraph

corresponds to the number of good incoming edges

$goodNodes \coloneqq u. isGood and indeg[u] = 0$

goodNodes contains at the beginning all good nodes with indegree 0, so that one can calculate the longest Path correctly afterwards

latest[u] = A + delay - distToJanet[u]

for each good node u, the latest time of arrival at the node, so that the delay can still be met

latest[u] = A + delay - distToJanet[u]

latest[2] = 10 + 3 - 2 = 11latest[3] = 10 + 3 - 0 = 13

Problem L: Well Spoken

Approach - longestPath()

return false

Hendrik Meininger, Johannes Schleicher

WU

 $4 \le delay \le 7 \rightarrow \delta = 5$

Mark vertices u as "good" if: $distFromHome[u] + distToJanet[u] \le A + \delta$ and $distToJanet[u] \le \delta$

- $u_1: \quad 0+7 \le 10+5 \text{ and } 7 \le 5$
- u_2 : $11 + 2 \le 10 + 5 \text{ and } 7 \le 5$
- u_3 : 7 + 0 ≤ 10 + 5 and 7 ≤ 5

Problem L: Well Spoken

Approach - Example

 $4 \le delay \le 7 \to \delta = 5$

Propagate: if *u* is good and $u \xrightarrow{l} v$ with $l + distToJanet[v] \le \delta$, then mark *v* and edge *l* as good too

- $u_2, e(2,1,1): 1+7 \le 5$
- $u_2, e(2,3,2): 2+0 \le 5$
- $u_2, e(2,3,5): 5+0 \le 5$
- $u_3, e(3,2,4): 4+2 \le 5$

Problem L: Well Spoken

If subgraph of good edges has cycle \rightarrow delay δ is possible hasCycle() = false

Problem L: Well Spoken

Problem L: Well Spoken

Approach - ExampleProblemApproachRuntime3. Step: $6 \le delay \le 7 \rightarrow \delta = 6$

Mark vertices u as "good" if: $distFromHome[u] + distToJanet[u] \le A + \delta$ and $distToJanet[u] \le \delta$

- u_1 : 0 + 7 ≤ 10 + 6 and 7 ≤ 6
- u_2 : $11 + 2 \le 10 + 6 \text{ and } 7 \le 6$
- u_3 : 7 + 0 ≤ 10 + 6 and 7 ≤ 6

Problem L: Well Spoken

Approach - Example

 $6 \leq delay \leq 7 \rightarrow \delta = 6$

Propagate: if *u* is good and $u \xrightarrow{l} v$ with $l + distToJanet[v] \le \delta$, then mark *v* and edge *l* as good too

- $u_2, e(2,1,1): 1+7 \le 6$
- $u_2, e(2,3,2): 2+0 \le 6$
- $u_2, e(2,3,5): 5+0 \le 6$
- $u_3, e(3,2,4): 4+2 \le 6$

Problem L: Well Spoken

If subgraph of good edges has cycle \rightarrow delay δ is possible hasCycle() = true

Problem L: Well Spoken

Approach - ExampleProblemApproachRuntime4. Step: $6 \le delay \le 6 \rightarrow left == right$ $\rightarrow Output := 6$

Problem L: Well Spoken

Problem L: Well Spoken

$checkDelay(\delta)$

- 1. Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$ and $distToJanet(u) \le \delta$
- 2. Propagate: if *u* is good and $u \xrightarrow{l} v$ with $l + distToJanet(v) \le \delta$, then mark *v* and edge *l* as good too
- 3. If subgraph of good edges has cycle \rightarrow delay δ is possible
- 4. Otherwise the subgraph of good nodes and edges is acyclic. Compute longest time Richard can stay in the subgraph. If this is $\geq B$ then delay δ is possible

$checkDelay(\delta)$

1. Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$ and $distToJanet(u) \le \delta$

O(V)

- 2. Propagate: if *u* is good and $u \xrightarrow{l} v$ with $l + distToJanet(v) \le \delta$, then mark *v* and edge *l* as good too
- 3. If subgraph of good edges has cycle \rightarrow delay δ is possible
- 4. Otherwise the subgraph of good nodes and edges is acyclic. Compute longest time Richard can stay in the subgraph. If this is $\geq B$ then delay δ is possible

$checkDelay(\delta)$

1.	Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$ and $distToJanet(u) \le \delta$	O(V)
2.	Propagate: if u is good and $u \xrightarrow{l} v$ with $l + distToJanet(v) \le \delta$, then mark v and edge l as good too	O(E)
3.	If subgraph of good edges has cycle \rightarrow delay δ is possible	O(V + E)
4.	Otherwise the subgraph of good nodes and edges is acyclic. Compute longest time Richard can stay in the subgraph. If this is $\geq B$ then delay δ is possible	0(?)

Runtime – longestPath()

return false

Runtime - longestPath()

return false

Runtime - longestPath()

Problem L: Well Spoken

$checkDelay(\delta)$

1.	Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$ and $distToJanet(u) \le \delta$	O(V)
2.	Propagate: if u is good and $u \xrightarrow{l} v$ with $l + distToJanet(v) \le \delta$, then mark v and edge l as good too	O(E)
3.	If subgraph of good edges has cycle \rightarrow delay δ is possible	O(V+E)
4.	Otherwise the subgraph of good nodes and edges is acyclic. Compute longest time Richard can stay in the subgraph. If this is $\geq B$ then delay δ is possible	O(V+E)

$checkDelay(\delta)$

1.	Mark vertices u as "good" if $distFromHome(u) + distToJanet(u) \le A + \delta$	O(V)
	and distToJanet(u) $\leq \delta$	O(V)

- 2. Propagate: if *u* is good and $u \xrightarrow{l} v$ with $l + distToJanet(v) \le \delta$, then mark v O(E) and edge *l* as good too
- 3. If subgraph of good edges has cycle \rightarrow delay δ is possible O(V + E)
- 4. Otherwise the subgraph of good nodes and edges is acyclic. Compute longest time Richard can stay in the subgraph. If this is $\geq B$ then delay δ is O(V + E) possible

 $\rightarrow O(V + E)$

Runtime: $O((V + E) * \log(w))$

Problem L: Well Spoken