K - Teardown

Cameron Reuschel, David Schantz

Table of Contents

- The Problem
- Debunking Approaches
- Problem Structure
- The Algorithm
- Implementation Tips
- Summary

The Problem

Problem Description

Bulldozer Time!

Given:

- Many buildings along a long, straight road
- modelled as individual square blocks

Objective:

- Level all the buildings
- by getting all blocks on the ground

- by moving any block left or right
- with as few moves as possible

What is a Move?

Input

Output

Minimum number of moves needed to get all blocks to level 0

Julius-Maximilians-
UNIVERSITÄT
WÜRZBURG

Pause the video and play a little!

https://xdracam.itch.io/teardown

Definitions

n	Number of columns
Block	Single block with clearly defined xy-coordinates
h	Height of a block $=y$-coordinate
m	Number of blocks with $\mathrm{h}>0$
Column	A specific x-coordinate
Gap	A column without any blocks
Stack	Multiple adjacent blocks in the same column
Split	Separation of a column into three parts that either go left, right or are leveled in place

Obvious Problem Characteristics

- always possible to find a solution
- infinite gaps to the left and right of the instance

- solution is not unique
- many different moves and orders can lead to the same or equivalent outcomes
- each problem instance has mirror version with left/right swapped
- so the order with which we iterate the instance does not matter

Intuitive Heuristics

- after pushing blocks into a direction, it makes no sense to push them back
- good idea to move many blocks at once
- moving towards closer/enough gaps is better
- moving blocks at $h=0$ is useless

Or is it?

Debunking Approaches

Move all blocks into same direction?

Find a column c.
Move all blocks with $\mathrm{x} \leq \mathrm{c}$ to the left \& all blocks with $\mathrm{x}>\mathrm{c}$ to the right

For each column, move left or right individually?

Problem Structure

Problem Complexity

- depends on number of blocks above ground level = m
- hard to solve in linear time
- we need to split a stack in the middle sometimes
- we can't know where to split in advance
- so we need to consider all splits
- up to 10^{9} columns with 10^{5} blocks each ($\mathrm{m}<10^{14}$)

$$
\left[10^{14} \text { bytes }=100 \text { terabytes }\right] \longleftarrow \begin{aligned}
& \text { As much data as the LHC } \\
& \text { generates in one second! }
\end{aligned}
$$

\Rightarrow we cannot possibly use $\mathrm{O}(\mathrm{m})$ memory

Upper and Lower Bounds

- m = number of blocks above ground level

- need a minimum of moves
- every move can only level at most one block
- blocks on floor are already leveled
- need a maximum of $2 m$ moves

\Rightarrow 2-approximation strategy

Basic Solution Idea

Partition all blocks with $\mathrm{h}>0$ into non-overlapping intervals

- Every block in an interval is leveled with the same strategy
- In Left/Right intervals, all blocks are moved in the same direction until leveled
- In a NoOp interval, all blocks are leveled with the 2-approximation strategy
- every block in a NoOp interval requires exactly 2 moves to be leveled

Partitioning of all blocks with $\mathrm{h}>0$ into non-overlapping intervals so that the sum of required moves is minimal

Visualization: Interval Partitioning

required moves: $4+2+3+4+1=14$

Definition: Left / Right Intervals

- every block with $\mathrm{h}>0$ is moved in the same direction until leveled
- contain a start stack and a continuous sequence of complete columns
- can include gap columns outside the problem instance!

Clearly defined by:

- start column index
- end column index
- number of blocks moved
in start column (= start stack size)

$$
\begin{aligned}
\text { length of an interval } & =\text { number of included columns }-1 \\
& =\text { end column index }- \text { start column index }
\end{aligned}
$$

Left / Right Intervals: Observations

- start stack always has at least 1 block with h > 0

- otherwise there would be nothing to move, so why include?
- for every block with h > 0, includes at least one matching gap
- otherwise we could not have leveled that block in the interval
- end column is always a gap
- interval ends as soon as we have found a gap for each non-leveled block
- a single column can include start stacks of both a left and a right interval
- required moves to level $=$ length of the interval
- in a right-interval, we need to move the leftmost block into the rightmost gap
- the leftmost block is in the start stack, the rightmost gap is the end column
- all other blocks on the way will be leveled before the leftmost block reaches the end gap

How Many Intervals?

- each block with $\mathrm{h}>0$ can be in either a left, right or noop interval
\Rightarrow up to 3 m possible intervals in a problem instance
- up to m non-overlapping intervals at the same time

$\Rightarrow \mathrm{O}\left(2^{\mathrm{m}}\right)$ interval partitionings to consider!

$$
\text { but } m<10^{14} \Rightarrow \text { impossible to calculate all partitionings }
$$

The Algorithm

Incremental Calculation

Too many possible interval partitions
Cannot calculate them all
\rightarrow Dynamic Programming

Basic Approach

Iterate over columns from left to right
For each column \mathbf{x}, remember min number of moves required to level everything to the left (including \mathbf{x}) in movesUntil[\mathbf{x}]

```
Input : n, h
for x from 0 until n do
    // assume NoOp:
    movesUntil[x] \leftarrow movesUntil[x-1] + 2 \cdot max(h[x] - 1, 0)
    consider left and right intervals separately
return movesUntil.last
```


Calculating a Left Interval

Naive approach: go left until we have gaps for all found blocks
\rightarrow Inefficient, will result in $\mathbf{O}\left(\mathrm{m}^{2}\right)$ runtime for left moves alone
Idea: Keep

- a stack of open gaps we found
- a counter how many gaps to the left of 0 have been filled

Calculating a Left Interval

Input : n, h
let gaps \leftarrow empty stack
let gapsFilledBeyondLeftBorder $\leftarrow 0$
let leftSplits $\leftarrow 2$-dim array
for x from 0 until n do
leftSplits $[\mathrm{x}][0] \leftarrow$ movesUntil[$\mathrm{x}-1]$
if $\mathrm{h}[\mathrm{x}]=0$ then
push x to gaps
else
for y from 1 until $\mathrm{h}[\mathrm{x}]$ do if gaps is not empty then
leftBound \leftarrow gaps.pop()
else
gapsFilledBeyondLeftBorder $+=1$
leftBound \leftarrow-gapsFilledBeyondLeftBorder

leftSplits $[\mathrm{x}][\mathrm{y}] \leftarrow \operatorname{leftSplits}[\mathrm{x}][\mathrm{y}-1]+2$
let leftMoves \leftarrow movesUntil[leftBound] +x - leftBound if leftSplits $[\mathrm{x}][\mathrm{y}]>$ leftMoves then
leftSplits $[\mathrm{x}][\mathrm{y}] \leftarrow$ leftMoves
movesUntil[x] \leftarrow leftSplits[x][h[x]-1]

Calculating a Right Interval

Handle right intervals at their end column $\rightarrow \mathbf{x}$ must be a gap
A search for each gap would be inefficient
Idea: New columns have to be leveled completely before a right interval can end
\rightarrow Keep stack of possible right intervals
Each with \{ leftCol, remainingBlocks \}

Calculating a Right Interval

```
Input : n, h
let openRightIntervals }\leftarrow\mathrm{ empty stack of { leftCol, remainingBlocks }
for x from 0 until n do
    if h[x]>1 then
        push {x,h[x]-1} to openRightIntervals
        (left interval handling)
    else if h[x]=0 then
        movesUntil[x]}\leftarrow\mathrm{ movesUntil[x-1]
        if openRightIntervals is not empty then
            let ri }\leftarrow\mathrm{ openRightIntervals.top
            let }\mp@subsup{\textrm{x}}{\ell}{}\leftarrow\mathrm{ ri.leftCol
            let blocksTaken }\leftarrow\textrm{h}[\mp@subsup{\textrm{x}}{\ell}{}]\mathrm{ - ri.remainingBlocks
            let totalMoves }\leftarrow\mathrm{ leftSplits[x}\mp@subsup{\textrm{x}}{\ell}{}][\mathrm{ blocksTaken] + x - x ( 
            if totalMoves < movesUntil[x] then
                movesUntil[x] }\leftarrow\mathrm{ totalMoves
            ri.remainingBlocks -= 1
            if ri.remainingBlocks = 0 then
                openRightIntervals.pop()
```


Handle all remaining intervals in stack
Right column is always lastRightBound + .remainingBlocks (lastRightBound is $\mathbf{n} \mathbf{- 1}$ for the first one)

Necessary Optimizations

Current Performance

Need to iterate over every block with $\mathrm{h}>1$

- Once for left-intervals, once for right-intervals
$\rightarrow \mathrm{O}(\mathrm{m})$ runtime
Need to save min move value for each possible split
$\rightarrow \mathrm{O}(\mathrm{m})$ memory
- Worst case: No Gaps
\rightarrow All columns on right-interval stack
\rightarrow Need to handle all splits at the end
\rightarrow Actually need all the values until the end

$$
\begin{aligned}
& \text { Remember: up to } 10^{14} \text { blocks } \\
& 1 \text { byte per block } \rightarrow 100 \text { terabyte } \\
& \mathrm{O}(m) \text { definitely doesn't work for extreme cases. } \\
& \text { d }
\end{aligned}
$$

Idea: Implement leftSplits as sparse data
Step one: flatten the array

Idea: Implement leftSplits as sparse data

Assumption: No gaps	14
How do the values in the array develop?	13
+1 For most blocks	
+2 For a new column	12
	11
	12
	12

Idea: Implement leftSplits as sparse data

Generalizing to gaps:

- At every gap, the required moves do not increase (one non-positive change)
\rightarrow Only $\mathbf{O}(\mathbf{n})$ non-1 differences in leftSplits
\rightarrow If we only save non-1 differences, we can reduce the memory usage from $\mathrm{O}(\mathrm{m})$ to $\mathrm{O}(\mathrm{n})$

Getting the required data

But how do we get the minimum number of moves until starting a left split when considering a right split?

- Use a search tree (C++ std::map, Java TreeMap)
- Keys: indices of old array
- When entry is present, then done
- If not, search the tree for the next smaller key

- Result: Value at present entry + difference between the keys
$\rightarrow \mathrm{O}(\log n)$ lookup instead of $\mathrm{O}(1)$
Logarithmic factors can often be ignored for actual runtimes ;)

Idea: Skip Left Interval calculations

When calculating left intervals, we only jump from gap to gap (at most n)
\rightarrow As long as we stay in bounds (left column index ≥ 0), total left split calculation is in $\mathbf{O}(\mathbf{n} \log \mathrm{n})$, as there can be at most \mathbf{n} gaps
$\rightarrow \mathbf{O}(m \log n)$ only applies when leaving bounds
Idea: If we do leave the left bound, there will be infinite gaps \rightarrow Every additional block only adds +1 move

Since we don't save those, we can simply break once we found a worthy (= better than 2-approx strategy) left split across the left bound $\rightarrow \mathbf{O}(\mathrm{n} \log \mathrm{n})$

Idea: Cleanup right intervals faster

Same approach: Infinite consecutive gaps after handling all columns

- No need to find .remainingBlocks next gaps, can just calculate end column
- Partitionally leveling stack is not necessary, taking all blocks is optimal

Only have to handle all right splits ending before right bounds (at most \mathbf{n}) and one right interval per column that exceeds bounds (at most \mathbf{n})
$\rightarrow \mathbf{O}(\mathrm{n} \log \mathrm{n})$ in total

Implementation Tips

https://xkcd.com/1691/

- Use long (int64) for most numbers!
- large instances can easily cause ints to overflow
- performance will be fine, we promise
- Watch out for offsets!
+/- 1 issues can easily happen
depending on how you keep track of values

- Use expressive variable names!
- which values are in/exclusive w.r.t. column indices?, etc
- Ignore micro-optimizations until the very end
- can get up to factor ~ 3 faster
- but algorithmic improvements can lead to ~1000 times faster code!

Summary

Iterate through all columns and keep track of:

- min number of moves required to level everything so far
- number of blocks with $\mathrm{h}>0$ encountered so far (= key for leftSplits)

If height of column >1 :

- push to openRightIntervals
- calculate possible leftSplits by iterating through the blocks
- stop iterating early when all following blocks would only need 1 more move

If column is a gap:

- push it to the gaps stack
- check whether including the top of openRightIntervals yields a better result

After iterating, iterate backwards through openRightIntervals and check for a better result

