Domiyes

Algorithmen für Programmierwettbewerbe Sommersemester 2021

Sarah Bäurich
Florian Strunz

The Problem

Input: A set of dominoes positioned on a board.

2-1

The Problem

Input: A set of dominoes positioned on a board.

2-2

The Problem

Input: A set of dominoes positioned on a board.
Output: A numbering of domino endpoints such that...

- Adjacent endpoints have the same number.

2-3

The Problem

Input: A set of dominoes positioned on a board.
Output: A numbering of domino endpoints such that...

- Adjacent endpoints have the same number.

2-4

The Problem

Input: A set of dominoes positioned on a board.
Output: A numbering of domino endpoints such that...

- Adjacent endpoints have the same number.
- Every number is used at most twice.
- Endpoints belonging to the same domino have differing numbers.

2-5

The Problem

Input: A set of dominoes positioned on a board.
Output: A numbering of domino endpoints such that...

- Adjacent endpoints have the same number.
- Every number is used at most twice.
- Endpoints belonging to the same domino have differing numbers.

2-6

Modeling the Problem

- Can we solve this problem graph theoretically?

3-1

Modeling the Problem

- Can we solve this problem graph theoretically?
- In the domino graph $D=(V, E) \ldots$

3-2

Modeling the Problem

- Can we solve this problem graph theoretically?
- In the domino graph $D=(V, E) \ldots$
- there is a node in V for each domino endpoint.

3-3

Modeling the Problem

- Can we solve this problem graph theoretically?
- In the domino graph $D=(V, E) \ldots$
- there is a node in V for each domino endpoint.
- $u v \in E$ iff u is adjacent to v and $u v$ is not on the domino

3-4

Modeling the Problem - II

- What does a solution to our numbering problem look like in D ?

4-1

Modeling the Problem - II

- What does a solution to our numbering problem look like in D ?
- If a solution exists, then there is a perfect matching in the domino graph.

4-2

Modeling the Problem - II

- What does a solution to our numbering problem look like in D ?
- If a solution exists, then there is a perfect matching in the domino graph.

4-3

Modeling the Problem - II

- What does a solution to our numbering problem look like in D ?
- If a solution exists, then there is a perfect matching in the domino graph.

Algorithm:

Calculate a perfect matching and give nodes in the same matching edge the same number.

4-4

Modeling the Problem - II

- What does a solution to our numbering problem look like in D ?
- If a solution exists, then there is a perfect matching in the domino graph.

Algorithm:

Calculate a perfect matching and give nodes in the same matching edge the same number.

4-5

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...
- Then we could calculate a maximum matching M in $\mathcal{O}(V)$ time.

5-2

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...
- Then we could calculate a maximum matching M in $\mathcal{O}(V)$ time.

1. Find all leaves L.

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...
- Then we could calculate a maximum matching M in $\mathcal{O}(V)$ time.

1. Find all leaves L.
2. For each edge $u v$ with $v \in L$... $M=M \cup\{u v\}$.
Delete u and v.

5-4

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...
- Then we could calculate a maximum matching M in $\mathcal{O}(V)$ time.

1. Find all leaves L.
2. For each edge $u v$ with
 $v \in L$... $M=M \cup\{u v\}$.
Delete u and v.

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...
- Then we could calculate a maximum matching M in $\mathcal{O}(V)$ time.

1. Find all leaves L.
2. For each edge $u v$ with $v \in L$... $M=M \cup\{u v\}$.
Delete u and v.
3. If there are remaining leaves, go to step 1.

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...
- Then we could calculate a maximum matching M in $\mathcal{O}(V)$ time.

1. Find all leaves L.
2. For each edge $u v$ with $v \in L$... $M=M \cup\{u v\}$.
Delete u and v.
3. If there are remaining leaves, go to step 1.

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...
- Then we could calculate a maximum matching M in $\mathcal{O}(V)$ time.

1. Find all leaves L.
2. For each edge $u v$ with $v \in L$...

$$
M=M \cup\{u v\} .
$$

Delete u and v.
3. If there are remaining leaves, go to step 1.

Maximum Matchings in Forests

- Suppose a domino graph is a tree (or forest)...
- Then we could calculate a maximum matching M in $\mathcal{O}(V)$ time.

1. Find all leaves L.
2. For each edge $u v$ with $v \in L$...

$$
M=M \cup\{u v\} .
$$

Delete u and v.
3. If there are remaining leaves, go to step 1.

What do domino graphs look like?

But are all domino graphs trees (or forests)?

6-1

What do domino graphs look like?

But are all domino graphs trees (or forests)?

6-2

What do domino graphs look like?

But are all domino graphs trees (or forests)?

Domino graphs can have cycles! \Rightarrow They are not trees. \Rightarrow Our $\mathcal{O}(V)$ algorithm will not work here.

6-3

What do domino graphs look like? - II

Question: What is the maximum degree Δ in the domino graph?

7-1

What do domino graphs look like? - II

Question: What is the maximum degree Δ in the domino graph?

Let us find out using an example...

7-2

What do domino graphs look like? - II

Question: What is the maximum degree Δ in the domino graph?

Let us find out using an example...

7-3

What do domino graphs look like? - II

Question: What is the maximum degree Δ in the domino graph?

Let us find out using an example...

7-4

What do domino graphs look like? - II

Question: What is the maximum degree Δ in the domino graph?

Let us find out using an example...

7-5

What do domino graphs look like? - II

Question: What is the maximum degree Δ in the domino graph?

Let us find out using an example...

$$
7-6
$$

What do domino graphs look like? - II

Question: What is the maximum degree Δ in the domino graph?

Let us find out using an example...

7-7

$$
\Rightarrow \Delta \leq 3
$$

Max. Matchings in General Graphs

- How do we compute maximum (cardinality) matchings in general graphs?

8-1

Max. Matchings in General Graphs

- How do we compute maximum (cardinality) matchings in general graphs?
- Algorithmic Graph Theory:

8-2

Max. Matchings in General Graphs

- How do we compute maximum (cardinality) matchings in general graphs?
- Algorithmic Graph Theory:
- Edmonds' 1965 Algorithm $-\mathcal{O}\left(V^{3}\right)$, too slow and too complicated!

Max. Matchings in General Graphs

- How do we compute maximum (cardinality) matchings in general graphs?
- Algorithmic Graph Theory:
- Edmonds' 1965 Algorithm $-\mathcal{O}\left(V^{3}\right)$, too slow and too complicated!
- Micali-Vazirani Algorithm $-\mathcal{O}(\sqrt{V} E)$, way too complicated!

8-4

Max. Matchings in General Graphs

- How do we compute maximum (cardinality) matchings in general graphs?
- Algorithmic Graph Theory:
- Edmonds' 1965 Algorithm $-\mathcal{O}\left(V^{3}\right)$, too slow and too complicated!
- Micali-Vazirani Algorithm $-\mathcal{O}(\sqrt{V} E)$, way too complicated!
- We know that in our domino graphs $\Delta \leq 3$. Can we specialise them further?
$8-5$

Max. Matchings in General Graphs

- How do we compute maximum (cardinality) matchings in general graphs?
- Algorithmic Graph Theory:
- Edmonds' 1965 Algorithm $-\mathcal{O}\left(V^{3}\right)$, too slow and too complicated!
- Micali-Vazirani Algorithm $-\mathcal{O}(\sqrt{V} E)$, way too complicated!
- We know that in our domino graphs $\Delta \leq 3$. Can we specialise them further?
- Hopefully, such a specialisation will give us faster and/or simpler algorithms!

8-6

Domino Graph is Bipartite

Theorem. Any domino graph $D=(V, E)$ is bipartite.

$$
9-1
$$

Domino Graph is Bipartite

Theorem. Any domino graph $D=(V, E)$ is bipartite. Proof. Domino graphs are subgraphs of the infinite grid graph.

9-2

Domino Graph is Bipartite

Theorem. Any domino graph $D=(V, E)$ is bipartite. Proof. Domino graphs are subgraphs of the infinite grid graph.

9-3

Domino Graph is Bipartite

Theorem. Any domino graph $D=(V, E)$ is bipartite. Proof. Domino graphs are subgraphs of the infinite grid graph.

9-4

Domino Graph is Bipartite

Theorem. Any domino graph $D=(V, E)$ is bipartite.
Proof. Domino graphs are subgraphs of the infinite grid graph.

The infinite grid graph can be two-coloured. Thus, we can divide V into two edge-disjoint sets A and B.

9-5

Berge's Theorem on Maximum Matchings
Let M be a (not necessarily maximal) matching...

Berge's Theorem on Maximum Matchings
Let M be a (not necessarily maximal) matching...
An alternating path switches between matching and non-matching edges.

10-2

Berge's Theorem on Maximum Matchings
Let M be a (not necessarily maximal) matching...
An alternating path switches between matching and non-matching edges.

An augmenting path is an alternating path that starts and ends in an M-free node.

10-3

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...
An alternating path switches between matching and non-matching edges.

An augmenting path is an alternating path that starts and ends in an M-free node.

By switching the parity of the matching along an augmenting path, we can extend the matching by 1 edge.

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...
An alternating path switches between matching and non-matching edges.

An augmenting path is an alternating path that starts and ends in an M-free node.

By switching the parity of the matching along an augmenting path, we can extend the matching by 1 edge.

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...
An alternating path switches between matching and non-matching edges.

An augmenting path is an alternating path that starts and ends in an M-free node.

By switching the parity of the matching along an augmenting path, we can extend the matching by 1 edge.

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...
An alternating path switches between matching and non-matching edges.

An augmenting path is an alternating path that starts and ends in an M-free node.

By switching the parity of the matching along an augmenting path, we can extend the matching by 1 edge.

Theorem. (Berge)
M is maximum matching $\Leftrightarrow \nexists$ Augmenting path
10-7

Matching Algos using Berge's Theorem

- Berge's theorem immediately gives us an outline for a general maximum matching algorithm:

11-1

Matching Algos using Berge's Theorem

- Berge's theorem immediately gives us an outline for a general maximum matching algorithm:
$\operatorname{MaxMatching}(G=(V, E))$ $M=\emptyset$
while \exists Augmenting path P in G do Augment M along P return M

11-2

Matching Algos using Berge's Theorem

- Berge's theorem immediately gives us an outline for a general maximum matching algorithm:

$$
\begin{aligned}
& \text { MaxMatching }(G=(V, E)) \\
& \quad M=\emptyset \\
& \text { while } \exists \text { Augmenting path } P \text { in } G \text { do } \\
& \quad \text { Augment } M \text { along } P \\
& \text { return } M
\end{aligned}
$$

- Why can we not implement this algorithm "directly"?
$11-3$

Matching Algos using Berge's Theorem

- Berge's theorem immediately gives us an outline for a general maximum matching algorithm:

$$
\begin{aligned}
& \text { MaxMatching }(G=(V, E)) \\
& \quad M=\emptyset \\
& \text { while } \exists \text { Augmenting path } P \text { in } G \text { do } \\
& \quad \text { Augment } M \text { along } P \\
& \text { return } M
\end{aligned}
$$

- Why can we not implement this algorithm "directly"?
- There are many paths that could be augmenting!

11-4

Matching Algos using Berge's Theorem

- Berge's theorem immediately gives us an outline for a general maximum matching algorithm:

$$
\begin{aligned}
& \text { MaxMatching }(G=(V, E)) \\
& \quad M=\emptyset \\
& \text { while } \exists \text { Augmenting path } P \text { in } G \text { do } \\
& \text { Augment } M \text { along } P \\
& \text { return } M
\end{aligned}
$$

- Why can we not implement this algorithm "directly"?
- There are many paths that could be augmenting!
- Solution: Specialise the algorithm for bipartite graphs.

11-5

Reduction to Maximum Flow

- Recap from Algorithmic Graph Theory: Let $G=(A \cup B, E)$ be a bipartite graph.

Reduction to Maximum Flow

- Recap from Algorithmic Graph Theory: Let $G=(A \cup B, E)$ be a bipartite graph.
- We can convert the problem of bipartite maximum matchings into a maximum flow problem...

Reduction to Maximum Flow

- Recap from Algorithmic Graph Theory: Let $G=(A \cup B, E)$ be a bipartite graph.
- We can convert the problem of bipartite maximum matchings into a maximum flow problem...

12-3

Reduction to Maximum Flow

- Recap from Algorithmic Graph Theory: Let $G=(A \cup B, E)$ be a bipartite graph.
- We can convert the problem of bipartite maximum matchings into a maximum flow problem...

12-4

Reduction to Maximum Flow

- Recap from Algorithmic Graph Theory: Let $G=(A \cup B, E)$ be a bipartite graph.
- We can convert the problem of bipartite maximum matchings into a maximum flow problem...

12-5

Reduction to Maximum Flow

- Recap from Algorithmic Graph Theory: Let $G=(A \cup B, E)$ be a bipartite graph.
- We can convert the problem of bipartite maximum matchings into a maximum flow problem...

12-6

Reduction to Maximum Flow

- Recap from Algorithmic Graph Theory: Let $G=(A \cup B, E)$ be a bipartite graph.
- We can convert the problem of bipartite maximum matchings into a maximum flow problem...

12-7

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.

$A \quad B$
13-1

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

13-2

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

A
B

13-3

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

A
B

13-4

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

A
B

13-5

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

A
B

13-6

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

$A \quad B$
13-7

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

$A \quad B$
13-8

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

13-9

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

13-10

Specialising Maximum Flow

- Using EdmondsKarp here works, but we can simplify the algo for bipartite matchings.
- Idea: Find augmenting paths from an M -free $a \in A$ to an M-free $b \in B$ until there are none left.

13-11

The Domiyes Algorithm

Domiyes(Domino[] D)

14-1

The Domiyes Algorithm

Domiyes(Domino[] D)

$$
P=\left\{p_{1} \mid\left(p_{1}, p_{2}\right) \in D\right\} \cup\left\{p_{2} \mid\left(p_{1}, p_{2}\right) \in D\right\}
$$

Let $f: P \rightarrow \mathbb{N}$ be a bijection

14-2

The Domiyes Algorithm

Domiyes(Domino[] D)

$$
P=\left\{p_{1} \mid\left(p_{1}, p_{2}\right) \in D\right\} \cup\left\{p_{2} \mid\left(p_{1}, p_{2}\right) \in D\right\}
$$

Let $f: P \rightarrow \mathbb{N}$ be a bijection

$$
\begin{aligned}
& A=\{f(p) \mid p \in P \wedge p \cdot x \equiv p \cdot y(\bmod 2)\} \\
& B=\{f(p) \mid p \in P \wedge p \cdot x \not \equiv p \cdot y(\bmod 2)\}
\end{aligned}
$$

14-3

The Domiyes Algorithm

Domiyes(Domino[] D)

$$
\begin{aligned}
& P=\left\{p_{1} \mid\left(p_{1}, p_{2}\right) \in D\right\} \cup\left\{p_{2} \mid\left(p_{1}, p_{2}\right) \in D\right\} \\
& \text { Let } f: P \rightarrow \mathbb{N} \text { be a bijection } \\
& A=\{f(p) \mid p \in P \wedge p \cdot x \equiv p . y(\bmod 2)\} \\
& B=\{f(p) \mid p \in P \wedge p \cdot x \not \equiv p . y(\bmod 2)\} \\
& E=\left\{\left.\{u, v\} \in\binom{P}{2} \right\rvert\, \mathrm{u} \text { adj. to } \mathrm{v} \text { of diff. domino }\right\}
\end{aligned}
$$

The Domiyes Algorithm

Domiyes(Domino[] D)

$$
\begin{aligned}
& P=\left\{p_{1} \mid\left(p_{1}, p_{2}\right) \in D\right\} \cup\left\{p_{2} \mid\left(p_{1}, p_{2}\right) \in D\right\} \\
& \text { Let } f: P \rightarrow \mathbb{N} \text { be a bijection } \\
& A=\{f(p) \mid p \in P \wedge p . x \equiv p . y(\bmod 2)\} \\
& B=\{f(p) \mid p \in P \wedge p . x \not \equiv p . y(\bmod 2)\} \\
& E=\left\{\left.\{u, v\} \in\binom{P}{2} \right\rvert\, \mathrm{u} \text { adj. to } v \text { of diff. domino }\right\} \\
& M=\text { MaxBipartiteMatching }(A, B, E)
\end{aligned}
$$

14-5

The Domiyes Algorithm

Domiyes(Domino[] D)

$$
\begin{aligned}
& P=\left\{p_{1} \mid\left(p_{1}, p_{2}\right) \in D\right\} \cup\left\{p_{2} \mid\left(p_{1}, p_{2}\right) \in D\right\} \\
& \text { Let } f: P \rightarrow \mathbb{N} \text { be a bijection } \\
& A=\{f(p) \mid p \in P \wedge p . x \equiv p . y(\bmod 2)\} \\
& B=\{f(p) \mid p \in P \wedge p \cdot x \not \equiv p \cdot y(\bmod 2)\} \\
& E=\left\{\left.\{u, v\} \in\binom{P}{2} \right\rvert\, \mathrm{u} \text { adj. to } v \text { of diff. domino }\right\} \\
& M=\text { MAxBipartiteMatching }(A, B, E) \\
& k=0
\end{aligned}
$$

foreach $\{a, b\} \in M$ do

$$
\begin{aligned}
& f^{-1}(a) \text {.number }=k ; f^{-1}(b) \text {.number }=k \\
& k=k+1
\end{aligned}
$$

Domiyes(Domino[] D)

$$
\begin{array}{ll}
P=\left\{p_{1} \mid\left(p_{1}, p_{2}\right) \in D\right\} \cup\left\{p_{2} \mid\left(p_{1}, p_{2}\right) \in D\right\} & \mathcal{O}(n) \\
\text { Let } f: P \rightarrow \mathbb{N} \text { be a bijection } & \\
A=\{f(p) \mid p \in P \wedge p \cdot x \equiv p \cdot y(\bmod 2)\} & \mathcal{O}(n) \\
B=\{f(p) \mid p \in P \wedge p \cdot x \not \equiv p \cdot y(\bmod 2)\} & \\
E=\left\{\left.\{u, v\} \in\binom{P}{2} \right\rvert\, \text { u adj. to vof diff. domino }\right\} & \mathcal{O}\left(n^{2}\right) \\
\begin{array}{l}
M=\text { MaxBipartiteMatching }(A, B, E) \\
k=0
\end{array} & \mathcal{O}(V E \\
\text { foreach }\{a, b\} \in M \text { do } & \\
\begin{array}{l}
f^{-1}(a) . \text { number }=k ; f^{-1}(b) . \text { number }=k \\
k=k+1
\end{array} & \mathcal{O}(n) \\
\end{array}
$$

14-7

Domiyes(Domino[] D)

$$
\begin{aligned}
& P=\left\{p_{1} \mid\left(p_{1}, p_{2}\right) \in D\right\} \cup\left\{p_{2} \mid\left(p_{1}, p_{2}\right) \in D\right\} \\
& \text { Let } f: P \rightarrow \mathbb{N} \text { be a bijection } \\
& A=\{f(p) \mid p \in P \wedge p . x \equiv p . y(\bmod 2)\} \\
& B=\{f(p) \mid p \in P \wedge p . x \not \equiv p . y(\bmod 2)\} \\
& \mathcal{O}(n) \\
& E=\left\{\left.\{u, v\} \in\binom{P}{2} \right\rvert\, \mathrm{u} \text { adj. to } \mathrm{v} \text { of diff. domino }\right\} \mathcal{O}\left(n^{2}\right) \\
& M=\operatorname{MaxBipartiteMatching}(A, B, E) \\
& \mathcal{O}(V E) \\
& k=0 \\
& \text { foreach }\{a, b\} \in M \text { do } \\
& f^{-1}(a) \text {.number }=k ; f^{-1}(b) \text {.number }=k \\
& k=k+1
\end{aligned}
$$

$$
\overline{\mathcal{O}\left(n^{2}+V E\right)}
$$

MaxBipartiteMatching

$\operatorname{MaxBipartiteMatching}\left(A, B, E \subseteq\binom{A}{2} \cup\binom{B}{2}\right)$

15-1

MaxBipartiteMatching

MaxBipartiteMatching $\left(A, B, E \subseteq\binom{A}{2} \cup\binom{B}{2}\right)$
$M=\emptyset$
foreach M-free $a \in A$ do

return M

15-2

MaxBipartiteMatching

MaxBipartiteMatching $\left(A, B, E \subseteq\binom{A}{2} \cup\binom{B}{2}\right)$
$M=\emptyset$
foreach M-free $a \in A$ do
if \exists aug. path P from a to M-free $b \in B$ then

return M
$15-3$

MaxBipartiteMatching

MaxBipartiteMatching $\left(A, B, E \subseteq\binom{A}{2} \cup\binom{B}{2}\right)$
$M=\emptyset$
foreach M-free $a \in A$ do
if \exists aug. path P from a to M-free $b \in B$ then foreach $u v \in P$ do
if $\{u, v\} \in M$ then $M=M \backslash\{\{u, v\}\}$ else

$$
M=M \cup\{\{u, v\}\}
$$

return M

15-4

MaxBipartiteMatching

MaxBipartiteMatching $\left(A, B, E \subseteq\binom{A}{2} \cup\binom{B}{2}\right)$
$M=\emptyset$
foreach M-free $a \in A$ do if \exists aug. path P from a to M-free $b \in B$ then foreach $u v \in P$ do if $\{u, v\} \in M$ then $M=M \backslash\{\{u, v\}\}$ else

$$
M=M \cup\{\{u, v\}\}
$$

return M

This still runs in
$\mathcal{O}(V E)$ time. However...

15-5

MaxBipartiteMatching

MaxBipartiteMatching $\left(A, B, E \subseteq\binom{A}{2} \cup\binom{B}{2}\right)$
$M=\emptyset$
foreach M-free $a \in A$ do if \exists aug. path P from a to M-free $b \in B$ then foreach $u v \in P$ do if $\{u, v\} \in M$ then $M=M \backslash\{\{u, v\}\}$ else

$$
M=M \cup\{\{u, v\}\}
$$

This still runs in
$\mathcal{O}(V E)$ time. However...

$$
\Delta \leq 3 \Rightarrow|E| \leq 3 V
$$

return M

15-6

MaxBipartiteMatching

MaxBipartiteMatching $\left(A, B, E \subseteq\binom{A}{2} \cup\binom{B}{2}\right)$
$M=\emptyset$
foreach M-free $a \in A$ do
if \exists aug. path P from a to M-free $b \in B$ then foreach $u v \in P$ do
if $\{u, v\} \in M$ then $M=M \backslash\{\{u, v\}\}$ else

$$
M=M \cup\{\{u, v\}\}
$$

return M

This still runs in
$\mathcal{O}(V E)$ time. However...

$$
\begin{gathered}
\Delta \leq 3 \Rightarrow|E| \leq 3 V \\
\mathcal{O}(V E)= \\
\mathcal{O}(V \cdot 3 V)=\mathcal{O}\left(V^{2}\right)
\end{gathered}
$$

15-7

