
1

Domiyes
Algorithmen für Programmierwettbewerbe

Sommersemester 2021

Florian StrunzSarah Bäurich

2 - 1

The Problem

Input: A set of dominoes positioned on a board.

2 - 2

The Problem

Input: A set of dominoes positioned on a board.

2 - 3

The Problem

Input: A set of dominoes positioned on a board.

Output: A numbering of domino endpoints such that...

Adjacent endpoints have the
same number.

2 - 4

The Problem

Input: A set of dominoes positioned on a board.

Output: A numbering of domino endpoints such that...

Adjacent endpoints have the
same number.

2 - 5

The Problem

Input: A set of dominoes positioned on a board.

Output: A numbering of domino endpoints such that...

Adjacent endpoints have the
same number.

Every number is used at most
twice.

Endpoints belonging to the
same domino have differing
numbers.

2 - 6

The Problem

Input: A set of dominoes positioned on a board.

Output: A numbering of domino endpoints such that...

Adjacent endpoints have the
same number.

Every number is used at most
twice.

Endpoints belonging to the
same domino have differing
numbers.

3 - 1

Modeling the Problem

Can we solve this problem graph theoretically?

3 - 2

Modeling the Problem

Can we solve this problem graph theoretically?

In the domino graph D = (V,E)...

3 - 3

Modeling the Problem

Can we solve this problem graph theoretically?

In the domino graph D = (V,E)...

there is a node in V for each
domino endpoint.

3 - 4

Modeling the Problem

Can we solve this problem graph theoretically?

In the domino graph D = (V,E)...

there is a node in V for each
domino endpoint.

uv ∈ E iff u is adjacent to v
and uv is not on the domino

4 - 1

Modeling the Problem — II

What does a solution to our numbering problem look like
in D?

4 - 2

Modeling the Problem — II

What does a solution to our numbering problem look like
in D?

If a solution exists, then there is a perfect matching in
the domino graph.

4 - 3

Modeling the Problem — II

What does a solution to our numbering problem look like
in D?

If a solution exists, then there is a perfect matching in
the domino graph.

4 - 4

Modeling the Problem — II

What does a solution to our numbering problem look like
in D?

If a solution exists, then there is a perfect matching in
the domino graph.

Algorithm:
Calculate a perfect matching and
give nodes in the same matching
edge the same number.

4 - 5

Modeling the Problem — II

What does a solution to our numbering problem look like
in D?

If a solution exists, then there is a perfect matching in
the domino graph.

Algorithm:
Calculate a perfect matching and
give nodes in the same matching
edge the same number.

4

3

4

3

21

1 2

5 - 1

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

5 - 2

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

Then we could calculate a maximum matching M in O(V)
time.

5 - 3

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

5 - 4

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

2. For each edge uv with
v ∈ L...

M = M ∪ {uv}.
Delete u and v.

5 - 5

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

2. For each edge uv with
v ∈ L...

M = M ∪ {uv}.
Delete u and v.

5 - 6

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

2. For each edge uv with
v ∈ L...

M = M ∪ {uv}.
Delete u and v.

3. If there are remaining
leaves, go to step 1.

5 - 7

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

2. For each edge uv with
v ∈ L...

M = M ∪ {uv}.
Delete u and v.

3. If there are remaining
leaves, go to step 1.

5 - 8

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

2. For each edge uv with
v ∈ L...

M = M ∪ {uv}.
Delete u and v.

3. If there are remaining
leaves, go to step 1.

5 - 9

Maximum Matchings in Forests

Suppose a domino graph is a tree (or forest)...

Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

2. For each edge uv with
v ∈ L...

M = M ∪ {uv}.
Delete u and v.

3. If there are remaining
leaves, go to step 1.

6 - 1

What do domino graphs look like?

But are all domino graphs trees (or forests)?

6 - 2

What do domino graphs look like?

But are all domino graphs trees (or forests)?

6 - 3

What do domino graphs look like?

But are all domino graphs trees (or forests)?

Domino graphs can have cycles! ⇒ They are not trees. ⇒
Our O(V) algorithm will not work here.

7 - 1

What do domino graphs look like? — II

Question: What is the maximum degree ∆ in the domino
graph?

7 - 2

What do domino graphs look like? — II

Question: What is the maximum degree ∆ in the domino
graph?

Let us find out using an example...

7 - 3

What do domino graphs look like? — II

Question: What is the maximum degree ∆ in the domino
graph?

Let us find out using an example...

7 - 4

What do domino graphs look like? — II

Question: What is the maximum degree ∆ in the domino
graph?

Let us find out using an example...

7 - 5

What do domino graphs look like? — II

Question: What is the maximum degree ∆ in the domino
graph?

Let us find out using an example...

7 - 6

What do domino graphs look like? — II

Question: What is the maximum degree ∆ in the domino
graph?

Let us find out using an example...

7 - 7

What do domino graphs look like? — II

Question: What is the maximum degree ∆ in the domino
graph?

Let us find out using an example...

⇒ ∆ ≤ 3

8 - 1

Max. Matchings in General Graphs

How do we compute maximum (cardinality) matchings in
general graphs?

8 - 2

Max. Matchings in General Graphs

How do we compute maximum (cardinality) matchings in
general graphs?

Algorithmic Graph Theory :

8 - 3

Max. Matchings in General Graphs

How do we compute maximum (cardinality) matchings in
general graphs?

Algorithmic Graph Theory :

Edmonds’ 1965 Algorithm – O(V 3), too slow and
too complicated!

8 - 4

Max. Matchings in General Graphs

How do we compute maximum (cardinality) matchings in
general graphs?

Algorithmic Graph Theory :

Micali-Vazirani Algorithm – O(
√
V E), way too

complicated!

Edmonds’ 1965 Algorithm – O(V 3), too slow and
too complicated!

8 - 5

Max. Matchings in General Graphs

How do we compute maximum (cardinality) matchings in
general graphs?

Algorithmic Graph Theory :

Micali-Vazirani Algorithm – O(
√
V E), way too

complicated!

Edmonds’ 1965 Algorithm – O(V 3), too slow and
too complicated!

We know that in our domino graphs ∆ ≤ 3. Can we
specialise them further?

8 - 6

Max. Matchings in General Graphs

How do we compute maximum (cardinality) matchings in
general graphs?

Algorithmic Graph Theory :

Micali-Vazirani Algorithm – O(
√
V E), way too

complicated!

Edmonds’ 1965 Algorithm – O(V 3), too slow and
too complicated!

We know that in our domino graphs ∆ ≤ 3. Can we
specialise them further?

Hopefully, such a specialisation will give us faster and/or
simpler algorithms!

9 - 1

Domino Graph is Bipartite

Theorem. Any domino graph D = (V,E) is bipartite.

9 - 2

Domino Graph is Bipartite

Theorem. Any domino graph D = (V,E) is bipartite.

Proof. Domino graphs are subgraphs of the infinite grid
graph.

9 - 3

Domino Graph is Bipartite

Theorem. Any domino graph D = (V,E) is bipartite.

Proof. Domino graphs are subgraphs of the infinite grid
graph.

9 - 4

Domino Graph is Bipartite

Theorem. Any domino graph D = (V,E) is bipartite.

Proof. Domino graphs are subgraphs of the infinite grid
graph.

9 - 5

Domino Graph is Bipartite

Theorem. Any domino graph D = (V,E) is bipartite.

Proof. Domino graphs are subgraphs of the infinite grid
graph.

The infinite grid graph can
be two-coloured. Thus, we
can divide V into two
edge-disjoint sets A and B.

10 - 1

Let M be a (not necessarily maximal) matching...

Berge’s Theorem on Maximum Matchings

10 - 2

An alternating path switches
between matching and
non-matching edges.

Let M be a (not necessarily maximal) matching...

Berge’s Theorem on Maximum Matchings

10 - 3

An alternating path switches
between matching and
non-matching edges.

Let M be a (not necessarily maximal) matching...

Berge’s Theorem on Maximum Matchings

An augmenting path is an
alternating path that starts and
ends in an M -free node.

10 - 4

An alternating path switches
between matching and
non-matching edges.

Let M be a (not necessarily maximal) matching...

Berge’s Theorem on Maximum Matchings

An augmenting path is an
alternating path that starts and
ends in an M -free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

10 - 5

An alternating path switches
between matching and
non-matching edges.

Let M be a (not necessarily maximal) matching...

Berge’s Theorem on Maximum Matchings

An augmenting path is an
alternating path that starts and
ends in an M -free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

10 - 6

An alternating path switches
between matching and
non-matching edges.

Let M be a (not necessarily maximal) matching...

Berge’s Theorem on Maximum Matchings

An augmenting path is an
alternating path that starts and
ends in an M -free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

10 - 7

An alternating path switches
between matching and
non-matching edges.

Let M be a (not necessarily maximal) matching...

Berge’s Theorem on Maximum Matchings

An augmenting path is an
alternating path that starts and
ends in an M -free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

Theorem. (Berge)

M is maximum matching⇔ @Augmenting path

11 - 1

Matching Algos using Berge’s Theorem

Berge’s theorem immediately gives us an outline for a
general maximum matching algorithm:

11 - 2

Matching Algos using Berge’s Theorem

Berge’s theorem immediately gives us an outline for a
general maximum matching algorithm:

MaxMatching(G = (V,E))

while ∃ Augmenting path P in G do
M = ∅

Augment M along P
return M

11 - 3

Matching Algos using Berge’s Theorem

Berge’s theorem immediately gives us an outline for a
general maximum matching algorithm:

MaxMatching(G = (V,E))

while ∃ Augmenting path P in G do
M = ∅

Augment M along P
return M

Why can we not implement this algorithm “directly”?

11 - 4

Matching Algos using Berge’s Theorem

Berge’s theorem immediately gives us an outline for a
general maximum matching algorithm:

MaxMatching(G = (V,E))

while ∃ Augmenting path P in G do
M = ∅

Augment M along P
return M

Why can we not implement this algorithm “directly”?

There are many paths that could be augmenting!

11 - 5

Matching Algos using Berge’s Theorem

Berge’s theorem immediately gives us an outline for a
general maximum matching algorithm:

MaxMatching(G = (V,E))

while ∃ Augmenting path P in G do
M = ∅

Augment M along P
return M

Why can we not implement this algorithm “directly”?

There are many paths that could be augmenting!

Solution: Specialise the algorithm for bipartite graphs.

12 - 1

Reduction to Maximum Flow

Recap from Algorithmic Graph Theory : Let
G = (A ∪B,E) be a bipartite graph.

12 - 2

Reduction to Maximum Flow

Recap from Algorithmic Graph Theory : Let
G = (A ∪B,E) be a bipartite graph.

We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

12 - 3

Reduction to Maximum Flow

Recap from Algorithmic Graph Theory : Let
G = (A ∪B,E) be a bipartite graph.

A B

We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

12 - 4

Reduction to Maximum Flow

Recap from Algorithmic Graph Theory : Let
G = (A ∪B,E) be a bipartite graph.

A B

We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

12 - 5

Reduction to Maximum Flow

Recap from Algorithmic Graph Theory : Let
G = (A ∪B,E) be a bipartite graph.

A B

ts

We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

12 - 6

Reduction to Maximum Flow

Recap from Algorithmic Graph Theory : Let
G = (A ∪B,E) be a bipartite graph.

A B

ts

We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

12 - 7

Reduction to Maximum Flow

Recap from Algorithmic Graph Theory : Let
G = (A ∪B,E) be a bipartite graph.

A B

ts

We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

|M | = 3

13 - 1

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

13 - 2

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

13 - 3

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

13 - 4

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

13 - 5

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

13 - 6

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

13 - 7

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

13 - 8

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

13 - 9

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

13 - 10

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

1

1 2

2

3 3

4 4

13 - 11

Specialising Maximum Flow

Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.

1

1 2

2

3 3

4 4

1

1

2 2

3

3 4

4

14 - 1

The Domiyes Algorithm

Domiyes(Domino[] D)

14 - 2

The Domiyes Algorithm

Domiyes(Domino[] D)

Let f : P → N be a bijection
P = {p1 | (p1, p2) ∈ D} ∪ {p2 | (p1, p2) ∈ D}

14 - 3

The Domiyes Algorithm

Domiyes(Domino[] D)

Let f : P → N be a bijection

A = {f(p) | p ∈ P ∧ p.x ≡ p.y (mod 2)}

P = {p1 | (p1, p2) ∈ D} ∪ {p2 | (p1, p2) ∈ D}

B = {f(p) | p ∈ P ∧ p.x 6≡ p.y (mod 2)}

14 - 4

The Domiyes Algorithm

Domiyes(Domino[] D)

Let f : P → N be a bijection

A = {f(p) | p ∈ P ∧ p.x ≡ p.y (mod 2)}

P = {p1 | (p1, p2) ∈ D} ∪ {p2 | (p1, p2) ∈ D}

E = {{u, v} ∈
(
P
2

)
| u adj. to v of diff. domino}

B = {f(p) | p ∈ P ∧ p.x 6≡ p.y (mod 2)}

14 - 5

The Domiyes Algorithm

Domiyes(Domino[] D)

Let f : P → N be a bijection

A = {f(p) | p ∈ P ∧ p.x ≡ p.y (mod 2)}

P = {p1 | (p1, p2) ∈ D} ∪ {p2 | (p1, p2) ∈ D}

E = {{u, v} ∈
(
P
2

)
| u adj. to v of diff. domino}

M = MaxBipartiteMatching(A,B,E)

B = {f(p) | p ∈ P ∧ p.x 6≡ p.y (mod 2)}

14 - 6

The Domiyes Algorithm

Domiyes(Domino[] D)

Let f : P → N be a bijection

A = {f(p) | p ∈ P ∧ p.x ≡ p.y (mod 2)}

P = {p1 | (p1, p2) ∈ D} ∪ {p2 | (p1, p2) ∈ D}

E = {{u, v} ∈
(
P
2

)
| u adj. to v of diff. domino}

M = MaxBipartiteMatching(A,B,E)

B = {f(p) | p ∈ P ∧ p.x 6≡ p.y (mod 2)}

foreach {a, b} ∈M do
f−1(a).number = k;

k = 0

f−1(b).number = k
k = k + 1

14 - 7

The Domiyes Algorithm

Domiyes(Domino[] D)

Let f : P → N be a bijection

A = {f(p) | p ∈ P ∧ p.x ≡ p.y (mod 2)}

P = {p1 | (p1, p2) ∈ D} ∪ {p2 | (p1, p2) ∈ D}

E = {{u, v} ∈
(
P
2

)
| u adj. to v of diff. domino}

M = MaxBipartiteMatching(A,B,E)

B = {f(p) | p ∈ P ∧ p.x 6≡ p.y (mod 2)}

foreach {a, b} ∈M do
f−1(a).number = k;

k = 0

f−1(b).number = k

O(n)

O(n)

O(n2)

n := D.length

O(V E)

O(n)

k = k + 1

14 - 8

The Domiyes Algorithm

Domiyes(Domino[] D)

Let f : P → N be a bijection

A = {f(p) | p ∈ P ∧ p.x ≡ p.y (mod 2)}

P = {p1 | (p1, p2) ∈ D} ∪ {p2 | (p1, p2) ∈ D}

E = {{u, v} ∈
(
P
2

)
| u adj. to v of diff. domino}

M = MaxBipartiteMatching(A,B,E)

B = {f(p) | p ∈ P ∧ p.x 6≡ p.y (mod 2)}

foreach {a, b} ∈M do
f−1(a).number = k;

k = 0

f−1(b).number = k

O(n)

O(n)

O(n2)

n := D.length

O(V E)

O(n)

O(n2 + V E)

k = k + 1

15 - 1

MaxBipartiteMatching

MaxBipartiteMatching(A, B, E ⊆
(
A
2

)
∪
(
B
2

)
)

15 - 2

MaxBipartiteMatching

MaxBipartiteMatching(A, B, E ⊆
(
A
2

)
∪
(
B
2

)
)

foreach M -free a ∈ A do
M = ∅

return M

15 - 3

MaxBipartiteMatching

MaxBipartiteMatching(A, B, E ⊆
(
A
2

)
∪
(
B
2

)
)

foreach M -free a ∈ A do
if ∃ aug. path P from a to M -free b ∈ B then

M = ∅

return M

15 - 4

MaxBipartiteMatching

MaxBipartiteMatching(A, B, E ⊆
(
A
2

)
∪
(
B
2

)
)

foreach M -free a ∈ A do
if ∃ aug. path P from a to M -free b ∈ B then

foreach uv ∈ P do
if {u, v} ∈M then

M = ∅

M = M \ {{u, v}}
else

M = M ∪ {{u, v}}

return M

15 - 5

MaxBipartiteMatching

MaxBipartiteMatching(A, B, E ⊆
(
A
2

)
∪
(
B
2

)
)

foreach M -free a ∈ A do
if ∃ aug. path P from a to M -free b ∈ B then

foreach uv ∈ P do
if {u, v} ∈M then

M = ∅

M = M \ {{u, v}}
else

M = M ∪ {{u, v}}

return M

This still runs in
O(V E) time.
However...

15 - 6

MaxBipartiteMatching

MaxBipartiteMatching(A, B, E ⊆
(
A
2

)
∪
(
B
2

)
)

foreach M -free a ∈ A do
if ∃ aug. path P from a to M -free b ∈ B then

foreach uv ∈ P do
if {u, v} ∈M then

M = ∅

M = M \ {{u, v}}
else

M = M ∪ {{u, v}}

return M

This still runs in
O(V E) time.
However...

∆ ≤ 3⇒ |E| ≤ 3V

15 - 7

MaxBipartiteMatching

MaxBipartiteMatching(A, B, E ⊆
(
A
2

)
∪
(
B
2

)
)

foreach M -free a ∈ A do
if ∃ aug. path P from a to M -free b ∈ B then

foreach uv ∈ P do
if {u, v} ∈M then

M = ∅

M = M \ {{u, v}}
else

M = M ∪ {{u, v}}

return M

This still runs in
O(V E) time.
However...

∆ ≤ 3⇒ |E| ≤ 3V

O(V E) =
O(V · 3V) = O(V 2).

