
Lehrstuhl für Informatik I

Algorithmen und Komplexität

Universität Würzburg

Wüzburg, den 1. Juni 2021

Dr. Thomas van Dijk
Felix Klesen M.Sc.

Vorlesung Algorithmen für Geographische Informationssysteme SS 2021

Clustering Equivalent Destinations

Abgabe: in 2er Gruppen bis Mittwoch, den 9.6.2021, 10:15 Uhr, in analoger Form oder über die
E-Learning-Seite der Lehrveranstaltung. Bitte geben Sie auf Ihrer Ausarbeitung die Namen
beider Gruppenteilnehmer an.

Equivalent destinations in trees

Let G be a graph and T = (V,E) the tree as in the lecture slides, rooted at s ∈ V . Let Pab

be the (unique) path in T from a to b, and let w(·) be the weight of a path.

Definition 1 (Directed similarity) Let u, v ∈ V be two vertices, u 6= s, and let x be their
lowest common ancestor in T . The directed similarity of u to v is defines as

σ(u, v) = w(Psx)/w(Psu).

Definition 2 (α-Compatible, ⊕) Two vertices u, v ∈ V are called α-compatible if and only
if both σ(u, v) ≥ α and σ(v, u) ≥ α. When α is clear from context, we write u ⊕ v to assert
that u and v are α-compatible.

(a) Prove or disprove these three claims: ⊕ is reflexive, symmetric and transitive. (3 Punkte)

(b) Prove the following lemma. (3 Punkte)

Lemma 1 Let u, v ∈ V be vertices and let x be their lowest common ancestor. Then u and
v are compatible if and only if they are each compatible to x, that is, u⊕v ⇐⇒ u⊕x∧v⊕x.

(c) Prove the following lemma. (3 Punkte)

Lemma 2 Let x ∈ V and let a, b ∈ V be descendants of x. If w(Psa) ≤ w(Psb) and b⊕x,
then a ⊕ x. That is, if a and b are both descendants of x, and b is father away from the
root, then b⊕ x =⇒ a⊕ x.

(d) Prove the following lemma. (1 Punkt)

Lemma 3 Let x ∈ V be a vertex and let S ⊆ V be a set of vertices such that for any pair
of vertices in S their lowest common ancestor is x. Then (⊕) is an equivalence relation
on S. In particular, let S⊕ = {v ∈ S : v ⊕ x}. All pairs of vertices in S⊕ are compatible,
and any vertex in S \ S⊕ is not compatible to any other vertex in S.

(e) The algorithm from the lecture merges cells bottom-up, starting with the leafs, and it
is proven that this results in an optimal clique cover. Consider doing the same merging
algorithm, but top-down, starting from the root and merging down. Give an instance on
which this finds a clique cover with Θ(n) cells even though a clique cover with O(1) cells
exists. (4 Punkte)

1


