

Vorlesung Algorithmen für Geographische Informationssysteme SS 2021

Clustering Equivalent Destinations

Abgabe: in 2er Gruppen bis Mittwoch, den 9.6.2021, 10:15 Uhr, in analoger Form oder über die E-Learning-Seite der Lehrveranstaltung. Bitte geben Sie auf Ihrer Ausarbeitung die Namen beider Gruppenteilnehmer an.

Equivalent destinations in trees

Let G be a graph and $\mathcal{T} = (V, E)$ the tree as in the lecture slides, rooted at $s \in V$. Let P_{ab} be the (unique) path in \mathcal{T} from a to b , and let $w(\cdot)$ be the weight of a path.

Definition 1 (Directed similarity) Let $u, v \in V$ be two vertices, $u \neq s$, and let x be their lowest common ancestor in \mathcal{T} . The directed similarity of u to v is defined as

$$\sigma(u, v) = w(P_{sx})/w(P_{su}).$$

Definition 2 (α -Compatible, \oplus) Two vertices $u, v \in V$ are called α -compatible if and only if both $\sigma(u, v) \geq \alpha$ and $\sigma(v, u) \geq \alpha$. When α is clear from context, we write $u \oplus v$ to assert that u and v are α -compatible.

- (a) Prove or disprove these three claims: \oplus is reflexive, symmetric and transitive. (3 Punkte)
- (b) Prove the following lemma. (3 Punkte)

Lemma 1 Let $u, v \in V$ be vertices and let x be their lowest common ancestor. Then u and v are compatible if and only if they are each compatible to x , that is, $u \oplus v \iff u \oplus x \wedge v \oplus x$.

- (c) Prove the following lemma. (3 Punkte)

Lemma 2 Let $x \in V$ and let $a, b \in V$ be descendants of x . If $w(P_{sa}) \leq w(P_{sb})$ and $b \oplus x$, then $a \oplus x$. That is, if a and b are both descendants of x , and b is father away from the root, then $b \oplus x \implies a \oplus x$.

- (d) Prove the following lemma. (1 Punkt)

Lemma 3 Let $x \in V$ be a vertex and let $S \subseteq V$ be a set of vertices such that for any pair of vertices in S their lowest common ancestor is x . Then (\oplus) is an equivalence relation on S . In particular, let $S_{\oplus} = \{v \in S : v \oplus x\}$. All pairs of vertices in S_{\oplus} are compatible, and any vertex in $S \setminus S_{\oplus}$ is not compatible to any other vertex in S .

- (e) The algorithm from the lecture merges cells bottom-up, starting with the leafs, and it is proven that this results in an optimal clique cover. Consider doing the same merging algorithm, but top-down, starting from the root and merging down. Give an instance on which this finds a clique cover with $\Theta(n)$ cells even though a clique cover with $O(1)$ cells exists. (4 Punkte)