el min é Islan d

Ein Ort unendlich, weit weg vom Rest der Welt.

Zwei Probleme

[sland hat keine Sufsigkeiten. Der Rest der Welt hat kein Eis.

Eine Losung

Es gibt nur einen Weg zwischen Island und dem Rest der Welt

— Der Bifrost,

* Drohnen transportieren auf diesem Stifdigkeiten nach Island
und im Gegenzug Eis zurtick in den Rest der Welt.

* Sich entgegenkommende Drohnen weichen einander

geschickt aus.

[1] hier schwierig erkennbar: Eine unendliche lange Linie

& Crrorne Caollizion Avaidance Sustern srashed

b Student of Cormputer Science From Juliuis-
tAazcirmilan Unreernizsty in Woerzburg, Germarn.

|||||||||||| | SFStEm Errnr

L.

Die Zeit gefriert,

Es liegt nun an Dir junge*r Informatik-Student*in, das Land zu retten
und herauszufinden, welche Stfdigkeiten ihr Ziel, erreichen werden.
Ruhm und Eis werden Dich erwarten, solltest du erfolgreich nach

Hause zurtickkehrens,.

[1] zZumindest in Island
[2] unendlich weit in der Zukunft
[3] Die Alternativstrategie Zuhausebleiben zahlt nicht!

Nap
‘
Das Setting L o8/ @©
Es gibt eine unendliche lange Linie

Auf dieser befinden sich Drohnen.

* Diese haben eine Startposition. @@
* Und bewegen sich mit konstanter Geschwindigkeit in eine Richtung. \
Einschrankungen:

* Keine zwei Startpositionen sind gleich.

 Es kollidieren nie mehr als zwei Drohnen miteinander.

* Kollidieren zwei Drohnen sind sie sofort Matsch.

Die Aufgabe

Kommen sich zwei Drohnen entgegen kollidieren sie.
Das gleiche gilt, wenn eine Drohne eine andere einholt.

— Finde heraus, welche Drohnen tiberleben!

Input

Ein Zeile mit der Anzahl der Drohnen n

e 1<n<10°

n Zeilen mit je zwei Zahlen, x; und v;
e —10° < x;,v; < 10°
* x; ist die Startposition der Drohne auf der Linie.

 v; ist die Geschwindigkeit der Drohne. (das Vorzeichen die Richtung)

Die Drohnen sind bereits in aufsteigender Startposition sortiert.

[1] getrennt durch Leerzeichen

Output

Eine Zeile mit der Anzahl der Drohnen, die niemals crashen.

Eine Zeile mit allen Nummern, der Drohnen, die niemals crashen.

* Die Drohnen-Nummer ist ihr Index i aus der Eingabe

Imiq, £
O¢; 4 Ahg £

)

[1] getrennt durch Leerzeichen

4

Wie viel Zeit haben wir?

Es gibt maximal 10° Drohnen.

- Das riecht nach O(nlogn)

— Greedy fur jedes Paar von Drohnen einen Kollisionszeitpunkt zu
berechnen, braucht also zu lange.

Wie geht’s schneller?

Kollidieren alle Drohnen, gibt es g Crashs.

Welche Drohnen konnen crashen?

= Nur Nachbarn!

Nachbarschaften:
* Anfangs gibtesn — 1

* Nach jedem Crash gibt es eine neue,

[1] und drei alte fallen weg

Ich mochle mit

\l‘ Donald crashen.

85
/

—
0>

“’
SOrry) \.etde.

ITeh will md}
DPruga kollideren

Und was geht daran schneller?

Angenommen alle Drohnen crashen
— Dann gibt es insgesamt (maximal)
n—1 vom Anfomny
+§ moaximale Anzahl o Croshs,

Nachbarschaften.

— Eine lineare Anzahl an Nachbarschaften, spitze!
. wnd Awm AV\fcwxg unel o Dfo\rmevx bareit g

g0r+l‘€r+1 noch SP*ZE\"!

Welche Drohnen sind Nachbarn?

1. Alle Drohnen, die am Anfang Nachbarn sind.

2. Alle Drohnen zwischen denen irgendwann genau zwei Drohnen
liegen, die kollidieren.

Gr&'/&
Oh hi! / oy
/ W2 \
é = = - -
©® 7

Welche Drohnen werden Nachbarn sein?

Am Anfang sind also nicht alle Nachbarschaften bekannt.

Aber: Zu jedem Zeitpunkt kennen wir eine Nachbarschaft, die auf jeden
Fall zu einer Kollision fiihren wird.

— Aus dieser entsteht eine neue Nachbarschatft,
also eine neue potentielle Kollision.

Sweep Line

Wir brauchen einen Sweep Line Algorithmus;.

—e- ——— " —— *—0—0— —> S .
—r —— Weeh Line
\ \ S N, 7 | \
\ \ ~N s\ e \
\ \) /'/ // : \
~
\ “ // o \/ \
\ \ CANA !
\ \ ad 7 TN | \
\ v ’ N |)
\ Ve . AN " \\
\\ 7\ / N\ \
\ \
/ \ /
\
/ g \\ \ 7 h :
s W\ 4 \' \
al \ ' N
/ \\ \
yd \ | \
'd \\
| ' \
N\ | "\
[SAY \
[N
\ l
i (

[1] mehr dazu auf Wikipedia

Sweep Line

Wir brauchen einen Sweep Line Algorithmus;.

\ \ \‘ 4) \
\ \ s~ /7
\ ~ / | \
\ \ o // \
\\ \‘ 77N ' \
\ / l \
\ | \
\\ \ | \
\ \ , / \ \
v { \
\ /
AN 7 | \
\ |
\ \ | N\
\{ \
i ‘ \
\

|
N\ | \
e\ \
\ \\ I

[1] mehr dazu auf Wikipedia

Sweep Line

Wir brauchen einen Sweep Line Algorithmus;.

\M -
‘\ \‘ o \ —_—
\ \ .
\ ' \

-
-

|

|

|

|

\ l
I

|

l

[1] mehr dazu auf Wikipedia

Sweep Line

Wir brauchen einen Sweep Line Algorithmus;.

N -

X

[1] mehr dazu auf Wikipedia

Wann kollidieren zwei Nachbarn?

Betrachte die Position einer Drohne zum Zeitpunkt t als Funktion:
filt) =x; +t- v

Der Kollisionszeitpunkt zweier Drohnen ist der Schnittpunkt ihrer
Funktionen. Da die Funktionen linear sind, ist dieser eindeutig;.

‘EO
Xi+t'Ui=Xj+t'Uj “'"j
Xi—Xj+t'Ui=t’Uj l-{:-vi tl_ L J
i Ji j i
xi—x =t (v —v) |‘(Vj“Vi)

[1] fast

. . Uj — U;
Und welche Nachbarn kollidieren?
ko SN '
Vorsicht! (vj — vi) darf nicht O sein! ‘ ; __
— Klar, zwei gleich schnelle Drohnen kollidieren nicht. ‘
. tij
Ein negativer Zeitpunkt liegt in der Vergangenheit. o TN
- Drohnen mit negativem Kollisionszeitpunkt kollidieren nicht.]
.

— Die nachste Kollision ist also die mit dem kleinsten positiven
Zeitpunkt zweier nicht gleich schneller Drohnen.

Effizient die nachste Kollision ermitteln

Folgende Methoden miissen wir haufig ausfiihren: haufig heipé hier:, 0(n) mal”
 Einfigen neuer Kollisionen

* Extrahieren der nachsten Kollision (kleinster positiver Zeitpunkt)

* Optional: Loschen von tiberholten Kollisionen

VY
— Das stinkt nach Min-Heap!

Im Sweep-Line-Slang wird dieser als Event-Point-Queue bezeichnet.

Nochmal kurz und knackig

1. Fur alle unterschiedlich schnellen Nachbarn
 Kollisionszeitpunkt ¢t berechnen

* Nachbarschaften mit positivem t in den Min-Heap einfligen

2. Solange der Min-Heap nicht leer ist

* Die nachste potentielle Kollision herausziehen.
e Falls beide Drohnen nochleben — Drohnen killen!

* Die Nachbarn der Kollision verkniipfen und ihren Kolhslonszeltpunkt t berechnen.

 Falls t positiv ist, die neue Nachbarschaft in den Min-Heap einfligen

3. Alle iberlebenden Drohnen ausgeben

Laufzeit

YYV VYV Y

Zur Initialisierung missen wir n — 1 Nachbarschaften einfligen.
Am teuersten wird es, wenn alle Drohnen kollidieren;.

* Dann gibt es g Kollisionen

* Flr jede miuissen wir eine neue Nachbarschaft einfiigen.
-> Machtn -1+ g < %n Einflige-Operationen von je O(logn)

- Also eine Laufzeit von O(nlogn)

[1] eine ungerade Anzahl an Drohnen kénnen wir flir die Laufzeit ignorieren

Kollisionszeitpunkt

Der Kollisionszeitpunkt ist eine rationale Zahl,.

— Je nach Datentyp konnen Ungenauigkeiten beim Runden
zu einem fehlerhaften Programm fiihren.

[1] bzw. kann unendlich viele Nachkommastellen haben

ij —

Xi—Xj

vj—vi

ij —

Losung 1 - Prazision

Auf welche Nachkommastelle diirfen wir runden?

e x und v sind beschrankt durch —10? und 10°

— Eine untere Schranke fiir den Unterschied von Kollisionszeitpunkten,

Xi—Xj

vj—vi

Q
e 271001 2:10°-2 25 T~
mno 2109 2-10°—-1 ~ 1019 &

— Mit einem Datentyp, der 19 dezimale Nachkommastellen drauf hat,
bist du also auf der sicheren Seite.

[1] - die nicht gleichzeitig sind -

Xi—Xj

H Uj — U;

Losung 2 - Bruche

Wir haben in Java eine eigene Bruch-Implementierung, verwendet:
» Zwei Attribute speichern Zahler und Nenner.

* Die Klasse implementiert Comparable.

* In der compareTo Methode muss dann nur multipliziert werden.

AX»\
\ - - -
- LAV, Ay, AN AN Vorgicht mit
2 AN, dem Vorzeichey !

— Vorsicht mit Vorzeichen, sowie dem Wertebereich der Datentypen!

[1] viel smarter!

Min-Heap

Wir haben fiir den Min-Heap eine Java PriorityQueue genutzt.

* increase- und decreaseKey werden eh nicht benotigt

Zuvor zum Heap hinzugeftligte Kollisionen konnen ihre Gultigkeit verlieren,

wenn eine der Drohnen zuvor mit einer anderen gecrasht ist.
A B cC

+, Q V—\)x

oo

Kollisionen aktiv zu entfernen ist eher teuer.

— Geschickter: Beim Herausnehmen tiberpriifen, gegebenenfalls ignorieren

Macht lieber eure eigenen Fehler

7

Auf Dom]Judge seht ihr, dass wir zwei Fehlversuche hatten.

*

1. Upsi, Max- statt Min-Heap gebastelt.

e Mit Links-Rechts-Schwache: Vorsicht bei compareTo-Methode!

2. Bei folgenden Sonderfallen hatten wir den Output vercheckt;:
* Wenn keine Drohne kollidiert.

* Wenn die letzte Kollision im Heap nicht mehr gultig ist.

[1] reine Eitelkeit

Tests

Auf WueCampus findet ihr noch ein paar Schnelltests.
Auf folgende Extremfalle zielen die ab:

1. Max-Heap Min-Heap Verwechsler

2. Laufzeit (grofde Eingabe, viele Kollisionen)
3. Keine Kollisionen
4

Prazisions-Test machen

Wenn ihr fertig seid: Kauft euch ein Eis.

Das war:

The Twilight Drone

presented by

Ruben Hussong und Lea Wolfl

