
Velkomin á Ísland
Ein Ort unendlich1 weit weg vom Rest der Welt.

[1] fast



Zwei Probleme

Island hat keine Süßigkeiten. Der Rest der Welt hat kein Eis.



Eine Lösung

Es gibt nur einen Weg zwischen Island und dem Rest der Welt

→ Der Bifrost1

• Drohnen transportieren auf diesem Süßigkeiten nach Island 

und im Gegenzug Eis zurück in den Rest der Welt.

• Sich entgegenkommende Drohnen weichen einander

geschickt aus.

[1] hier schwierig erkennbar: Eine unendliche lange Linie





Die Zeit gefriert1

Es liegt nun an Dir junge*r Informatik-Student*in, das Land zu retten 

und herauszufinden, welche Süßigkeiten ihr Ziel2 erreichen werden.

Ruhm und Eis werden Dich erwarten, solltest du erfolgreich nach 

Hause zurückkehren3.

[1] zumindest in Island
[2] unendlich weit in der Zukunft
[3] Die Alternativstrategie Zuhausebleiben zählt nicht!



Das Setting

Es gibt eine unendliche lange Linie.

Auf dieser befinden sich Drohnen.

• Diese haben eine Startposition.

• Und bewegen sich mit konstanter Geschwindigkeit in eine Richtung.

Einschränkungen:

• Keine zwei Startpositionen sind gleich.

• Es kollidieren nie mehr als zwei Drohnen miteinander.

• Kollidieren zwei Drohnen sind sie sofort Matsch.



Die Aufgabe

Kommen sich zwei Drohnen entgegen kollidieren sie.

Das gleiche gilt, wenn eine Drohne eine andere einholt.

→ Finde heraus, welche Drohnen überleben!



Input

Ein Zeile mit der Anzahl der Drohnen 𝑛

• 1 ≤ 𝑛 ≤ 105

𝑛 Zeilen mit je zwei Zahlen1 𝑥𝑖 und 𝑣𝑖

• −109 ≤ 𝑥𝑖 , 𝑣𝑖 ≤ 109

• 𝑥𝑖 ist die Startposition der Drohne auf der Linie.

• 𝑣𝑖 ist die Geschwindigkeit der Drohne. (das Vorzeichen die Richtung)

Die Drohnen sind bereits in aufsteigender Startposition sortiert.

[1] getrennt durch Leerzeichen



Output

Eine Zeile mit der Anzahl der Drohnen, die niemals crashen.

Eine Zeile mit allen Nummern1 der Drohnen, die niemals crashen.

• Die Drohnen-Nummer ist ihr Index i aus der Eingabe

[1] getrennt durch Leerzeichen



4

10 -30

30 20

50 0

90 -10 

2

1 4



Wie viel Zeit haben wir?

Es gibt maximal 105 Drohnen.

→ Das riecht nach 𝑂 𝑛 log𝑛

→ Greedy für jedes Paar von Drohnen einen Kollisionszeitpunkt zu 

berechnen, braucht also zu lange.



Wie geht’s schneller?

Kollidieren alle Drohnen, gibt es 
𝑛

2
Crashs.

Welche Drohnen können crashen?

→ Nur Nachbarn!

Nachbarschaften:

• Anfangs gibt es 𝑛 − 1

• Nach jedem Crash gibt es eine neue1

[1] und drei alte fallen weg



Und was geht daran schneller?

Angenommen alle Drohnen crashen

→ Dann gibt es insgesamt (maximal)

𝑛 − 1

+ 
n

2

Nachbarschaften.

→ Eine lineare Anzahl an Nachbarschaften, spitze!



Welche Drohnen sind Nachbarn?

1. Alle Drohnen, die am Anfang Nachbarn sind.

2. Alle Drohnen zwischen denen irgendwann genau zwei Drohnen 

liegen, die kollidieren.



Welche Drohnen werden Nachbarn sein?

Am Anfang sind also nicht alle Nachbarschaften bekannt. 

Aber: Zu jedem Zeitpunkt kennen wir eine Nachbarschaft, die auf jeden 

Fall zu einer Kollision führen wird.

→ Aus dieser entsteht eine neue Nachbarschaft,

also eine neue potentielle Kollision.



Sweep Line

Wir brauchen einen Sweep Line Algorithmus1.

[1] mehr dazu auf Wikipedia



Sweep Line

Wir brauchen einen Sweep Line Algorithmus1.

[1] mehr dazu auf Wikipedia



Sweep Line

Wir brauchen einen Sweep Line Algorithmus1.

[1] mehr dazu auf Wikipedia



Sweep Line

Wir brauchen einen Sweep Line Algorithmus1.

[1] mehr dazu auf Wikipedia



Wann kollidieren zwei Nachbarn?

Betrachte die Position einer Drohne zum Zeitpunkt t als Funktion:

𝑓𝑖 𝑡 = 𝑥𝑖 + 𝑡 ⋅ 𝑣𝑖

Der Kollisionszeitpunkt zweier Drohnen ist der Schnittpunkt ihrer 

Funktionen. Da die Funktionen linear sind, ist dieser eindeutig1.

[1] fast

𝑡𝑖𝑗 =
𝑥𝑖 − 𝑥𝑗
𝑣𝑗 − 𝑣𝑖

𝑥𝑖 + 𝑡 ⋅ 𝑣𝑖 = 𝑥𝑗 + 𝑡 ⋅ 𝑣𝑗

𝑥𝑖 − 𝑥𝑗 + 𝑡 ⋅ 𝑣𝑖 = 𝑡 ⋅ 𝑣𝑗

𝑥𝑖 − 𝑥𝑗 = 𝑡 ⋅ 𝑣𝑗 − 𝑡 ⋅ 𝑣𝑖

𝑥𝑖 − 𝑥𝑗 = 𝑡 ⋅ 𝑣𝑗 − 𝑣𝑖



Und welche Nachbarn kollidieren?

Vorsicht! 𝑣𝑗 − 𝑣𝑖 darf nicht 0 sein!

→ Klar, zwei gleich schnelle Drohnen kollidieren nicht.

Ein negativer Zeitpunkt liegt in der Vergangenheit.

→ Drohnen mit negativem Kollisionszeitpunkt kollidieren nicht.

→ Die nächste Kollision ist also die mit dem kleinsten positiven 

Zeitpunkt zweier nicht gleich schneller Drohnen.

𝑡𝑖𝑗 =
𝑥𝑖 − 𝑥𝑗

𝑣𝑗 − 𝑣𝑖



Effizient die nächste Kollision ermitteln

Folgende Methoden müssen wir häufig ausführen:

• Einfügen neuer Kollisionen

• Extrahieren der nächsten Kollision (kleinster positiver Zeitpunkt)

• Optional: Löschen von überholten Kollisionen

→ Das stinkt nach Min-Heap!

Im Sweep-Line-Slang wird dieser als Event-Point-Queue bezeichnet.



Nochmal kurz und knackig

1. Für alle unterschiedlich schnellen Nachbarn

• Kollisionszeitpunkt t berechnen

• Nachbarschaften mit positivem t in den Min-Heap einfügen

2. Solange der Min-Heap nicht leer ist

• Die nächste potentielle Kollision herausziehen.

• Falls beide Drohnen noch leben 

• Die Nachbarn der Kollision verknüpfen und ihren Kollisionszeitpunkt t berechnen.

• Falls t positiv ist, die neue Nachbarschaft in den Min-Heap einfügen

3. Alle überlebenden Drohnen ausgeben



Laufzeit

Zur Initialisierung müssen wir 𝑛 − 1 Nachbarschaften einfügen.

Am teuersten wird es, wenn alle Drohnen kollidieren1.

• Dann gibt es 
𝑛

2
Kollisionen

• Für jede müssen wir eine neue Nachbarschaft einfügen.

→ Macht 𝑛 − 1 +
𝑛

2
<

3

2
𝑛 Einfüge-Operationen von je 𝑂 log𝑛

→ Also eine Laufzeit von 𝑂 𝑛 log 𝑛

[1] eine ungerade Anzahl an Drohnen können wir für die Laufzeit ignorieren



Kollisionszeitpunkt

Der Kollisionszeitpunkt ist eine rationale Zahl1.

→ Je nach Datentyp können Ungenauigkeiten beim Runden 

zu einem fehlerhaften Programm führen.

[1] bzw. kann unendlich viele Nachkommastellen haben

𝑡𝑖𝑗 =
𝑥𝑖 − 𝑥𝑗

𝑣𝑗 − 𝑣𝑖



Lösung 1 – Präzision

Auf welche Nachkommastelle dürfen wir runden?

• 𝑥 und 𝑣 sind beschränkt durch −109 und 109

→ Eine untere Schranke für den Unterschied von Kollisionszeitpunkten1

→ Mit einem Datentyp, der 19 dezimale Nachkommastellen drauf hat,

bist du also auf der sicheren Seite.

𝑡𝑖𝑗 =
𝑥𝑖 − 𝑥𝑗

𝑣𝑗 − 𝑣𝑖

[1] – die nicht gleichzeitig sind –

Δ𝑡𝑚𝑖𝑛 =
2 ⋅ 109 − 1

2 ⋅ 109
−

2 ⋅ 109 − 2

2 ⋅ 109 − 1
>

2,5

1019



Lösung 2 – Brüche

Wir haben in Java eine eigene Bruch-Implementierung1 verwendet:

• Zwei Attribute speichern Zähler und Nenner.

• Die Klasse implementiert Comparable.

• In der compareTo Methode muss dann nur multipliziert werden.

→ Vorsicht mit Vorzeichen, sowie dem Wertebereich der Datentypen!

[1] viel smarter!

𝑡𝑖𝑗 =
𝑥𝑖 − 𝑥𝑗

𝑣𝑗 − 𝑣𝑖



Min-Heap

Wir haben für den Min-Heap eine Java PriorityQueue genutzt.

• increase- und decreaseKey werden eh nicht benötigt

Zuvor zum Heap hinzugefügte Kollisionen können ihre Gültigkeit verlieren, 

wenn eine der Drohnen zuvor mit einer anderen gecrasht ist.

Kollisionen aktiv zu entfernen ist eher teuer.

→ Geschickter: Beim Herausnehmen überprüfen, gegebenenfalls ignorieren



Macht lieber eure eigenen Fehler

Auf DomJudge seht ihr, dass wir zwei Fehlversuche hatten.

1. Upsi, Max- statt Min-Heap gebastelt.

• Mit Links-Rechts-Schwäche: Vorsicht bei compareTo-Methode!

2. Bei folgenden Sonderfällen hatten wir den Output vercheckt1:

• Wenn keine Drohne kollidiert.

• Wenn die letzte Kollision im Heap nicht mehr gültig ist.

[1] reine Eitelkeit



Tests

Auf WueCampus findet ihr noch ein paar Schnelltests.

Auf folgende Extremfälle zielen die ab:

1. Max-Heap Min-Heap Verwechsler

2. Laufzeit (große Eingabe, viele Kollisionen)

3. Keine Kollisionen

4. Präzisions-Test machen



Wenn ihr fertig seid: Kauft euch ein Eis.



Das war: 
The Twilight Drone

presented by 
Ruben Hussong und Lea Wölfl


