Problem A:
1t's All Downhill From Here

Klaus Biehler, Markus Theiner

Problem

Input + Constraints

® Slopes Mt. Awesome (1)
* atleast1 slope
e atmost 5000 S|Opes Canopy Vista (4)

e slopes go downhill

e condition measure between 1 and 100
* Points

* atleast2 points Haiivcer’s Oalipeeti(t)

* atmost 1000 points

* pointwithoutincomingslope = mountaintop

* pointwithout outgoingslope =valley

* helicoptercan land at any point

Hungry Bear Cave (5)

Stardew Valley (3)

Riverside Inn (6

66

122
452
233
132
562
124

Input

Mt. Awesome (1)

Stardew Valley (3)

Canopy Vista (4)

Hunter’s Outpost (2)

Hungry Bear Cave (5)

Riverside Inn (6

Output

Mt. Awesome (1)

Canopy Vista (4)

Hunter’s Outpost (2)

Hungry Bear Cave (5)

Stardew Valley (3)
Riverside Inn (6

Summary

* |nput:
* directed, weighted, acyclicgraph

* OQutput:
* weight of longest path

* Optimizations:
e Starting pointsare alwaysat mountaintops
 Removal of multipleslopes between 2 points

Approach 1: Brute Force

e for each v € V with indeg(v) = 0 walk
(recursively) every path with starting
point v

e return weight of longest path

e runtime? O(2v)

max Weight=12

Approach 2: Bellman-Ford

e negate edge weights and search for short-
est path

e Bellman-Ford:

fori=1to |V|—1do
for wv € E do
| v.d « min{v.d,u.d + w(u,v)}
end

end

e runtime? O(V - E)

Approach 3: ?

e color each v € V with indegree = 0 black

e while not every vertex is black

— find vertex v, where all incoming
edges are connected to black ver-
tices

— for each incoming edge uv set
v.d = max{v.d, u.d+ w(uv)}

— color v black
e return max{v.d | v € V}

e runtime?

Approach 3: Topo-Sort

e sort vertices in topological order

e color each v € V with indegree = 0 black

e while not every vertex is black

— tex v, where all incoming
edges are conneé black ver-
tices

take next vertex v of the topological
order

— for each incoming edge uv set
v.d = max{v.d, u.d+ w(uv)}

— color v black

e return max{v.d | v € V}

e runtime? O(V + F)

Implementation topological sort

e for each v € V set v.in = indegree(v)

e append each vertex with v.in = 0 to a
List L

e for each vertex v € L (in order)

— for each outgoing edge vu

* u.am = u.an — 1

% if u.in == 0 append u to L
e L is now sorted in topological order

e runtime? O(V + F)

