Problem A: It's All Downhill From Here

Klaus Biehler, Markus Theiner

Problem

Input + Constraints

- Slopes
- at least 1 slope
- at most 5000 slopes
- slopes go downhill
- condition measure between 1 and 100
- Points
- at least 2 points
- at most 1000 points
- point without incoming slope = mountain top
- point without outgoing slope = valley
- helicopter can land at any point

Input

6	6	
1	2	2
4	5	2
2	3	3
1	3	2
5	6	2
1	2	4

Output

7

Summary

- Input:
- directed, weighted, acyclic graph
- Output:
- weight of longest path
- Optimizations:
- Starting points are always at mountain tops
- Removal of multiple slopes between 2 points

Approach 1: Brute Force

- for each $v \in V$ with $\operatorname{indeg}(v)=0$ walk (recursively) every path with starting point v
- return weight of longest path
- runtime? $\mathcal{O}\left(2^{V}\right)$

Approach 2: Bellman-Ford

- negate edge weights and search for shortest path
- Bellman-Ford:

$$
\begin{aligned}
& \text { for } i=1 \text { to }|V|-1 \text { do } \\
& \left\lvert\, \begin{array}{l}
\text { for } u v \in E \text { do } \\
\mid \quad v . d \leftarrow \min \{v . d, u . d+w(u, v)\} \\
\text { end } \\
\text { end }
\end{array}\right.
\end{aligned}
$$

- runtime? $\mathcal{O}(V \cdot E)$

Approach 3: ?

- color each $v \in V$ with indegree $=0$ black
- while not every vertex is black
- find vertex v, where all incoming edges are connected to black vertices
- for each incoming edge $u v$ set $v . d=\max \{v . d, u . d+w(u v)\}$
- color v black
- return $\max \{v . d \mid v \in V\}$
- runtime?

Approach 3: Topo-Sort

- sort vertices in topological order
- color each $v \in V$ with indegree $=0$ black
- while not every vertex is black
- find wertex v, where all incoming edges are connected to black vertices
take next vertex v of the topological order
- for each incoming edge $u v$ set $v . d=\max \{v . d, u . d+w(u v)\}$
- color v black
- return $\max \{v . d \mid v \in V\}$
- runtime? $\mathcal{O}(V+E)$

Implementation topological sort

- for each $v \in V$ set $v . i n=\operatorname{indegree}(v)$
- append each vertex with $v . i n=0$ to a List L
- for each vertex $v \in L$ (in order)
- for each outgoing edge vu
* u.in $=u . i n-1$
* if u.in $==0$ append u to L
- L is now sorted in topological order
- runtime? $\mathcal{O}(V+E)$

