Problem A: It's All Downhill From Here

Klaus Biehler, Markus Theiner

Problem

Input + Constraints

- Slopes
 - at least 1 slope
 - at most 5000 slopes
 - slopes go downhill
 - condition measure between 1 and 100
- Points
 - at least 2 points
 - at most 1000 points
 - point without incoming slope = mountain top
 - point without outgoing slope = valley
 - helicopter can land at any point

Input

Output

Summary

- Input:
 - directed, weighted, acyclic graph
- Output:
 - weight of longest path
- Optimizations:
 - Starting points are always at mountain tops
 - Removal of multiple slopes between 2 points

Approach 1: Brute Force

maxWeight=12

- for each $v \in V$ with indeg(v) = 0 walk (recursively) every path with starting point v
- return weight of longest path
- runtime? $\mathcal{O}(2^V)$

Approach 2: Bellman-Ford

- negate edge weights and search for shortest path
- Bellman-Ford:

for
$$i = 1$$
 to $|V| - 1$ do
for $uv \in E$ do
 $v.d \leftarrow min\{v.d, u.d + w(u, v)\}$
end
end

• runtime? $\mathcal{O}(V \cdot E)$

Approach 3: ?

- color each $v \in V$ with indegree = 0 black
- while not every vertex is black
 - find vertex v, where all incoming edges are connected to black vertices
 - for each incoming edge uv set $v.d = \max\{v.d, u.d + w(uv)\}$
 - color v black
- return $\max\{v.d \mid v \in V\}$
- runtime?

Approach 3: Topo-Sort

- sort vertices in topological order
- color each $v \in V$ with indegree = 0 black
- while not every vertex is black
 - find vertex v, where all incoming edges are connected to black vertices take next vertex v of the topological order
 - for each incoming edge uv set $v.d = \max\{v.d, u.d + w(uv)\}$
 - color v black
- return $\max\{v.d \mid v \in V\}$
- runtime? $\mathcal{O}(V+E)$

Implementation topological sort

L: $a \qquad b \qquad c \qquad e \qquad f$

- for each $v \in V$ set v.in = indegree(v)
- append each vertex with v.in = 0 to a List L
- for each vertex $v \in L$ (in order)
 - for each outgoing edge vu
 - * u.in = u.in 1
 - * if u.in == 0 append u to L
- L is now sorted in topological order
- runtime? $\mathcal{O}(V+E)$