

Seminar : Mathematical Foundations of Data Science

Summer Term 2021

Introductory Class on April, 14, 2021

Chair of Computer Science I - Algorithms and Complexity

Kamyar Khodamoradi

Joachim Spoerhase

Alexander Wolff

Agenda

1. Organization
2. Concept of the Seminar
3. Topic Assignment
4. Introduction to IPE

Agenda

1. Organization
2. Concept of the Seminar
3. Topic Assignment
4. Introduction to IPE

All classes via ZOOM.
Switch on cameras!

Organization

- **Wed, April, 14, 2021: Introduction**
- **Wed, April, 21: Short Talks to every topic**

Organization

- Wed, April, 14, 2021: **Introduction**
- Wed, April, 21: **Short Talks** to every topic
(ca 5 min., ca. 3 slides)

Organization

- Wed, April, 14, 2021: **Introduction**
- Wed, April, 21: **Short Talks** to every topic
(ca 5 min., ca. 3 slides)

Content:

- outlook to the talk
- problem motivation
- presenting key results

Organization

- Wed, April, 14, 2021: **Introduction**
- Wed, April, 21: **Short Talks** to every topic
(ca 5 min., ca. 3 slides)

Content:

- outlook to the talk
- problem motivation
- presenting key results

Goal:

- getting started quickly
- select key parts, results (agree with supervisor)
- synchronize prerequisites with other talks!
- practice talking
- getting feedback without grading

Organization

- Wed, April, 14, 2021: **Introduction**
- Wed, April, 21: **Short Talks** to every topic
(ca 5 min., ca. 3 slides)
- Wed, April, 29: **Primer on Tail Bounds** (Kamyar Khodamoradi)

Organization

- Wed, April, 14, 2021: **Introduction**
- Wed, April, 21: **Short Talks** to every topic
(ca 5 min., ca. 3 slides)
- Wed, April, 29: **Primer on Tail Bounds** (Kamyar Khodamoradi)
- Wed, May, 19–July, 14: **Talks**
(one per week)
- Fr, July, 16: hand in **Reports**

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)

This is not enough to cover a full book chapter!

→ identify most important results, treat essential parts comprehensively, outline less essential parts

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)
- during/after **interaction / discussion**
(interactive examples, quizzes, exercises, related topics, etc.) (does not contribute to time)

incorporate ideas from discussion to reports!

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)
- during/after **interaction / discussion**
(interactive examples, quizzes, exercises, related topics, etc.) (does not contribute to time)
incorporate ideas from discussion to reports!
- two quizzes (comprehension questions) during each talk, e.g. via PINGO: pingo.upb.de

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)
- during/after **interaction / discussion**
(interactive examples, quizzes, exercises, related topics, etc.) (does not contribute to time)
incorporate ideas from discussion to reports!
- two quizzes (comprehension questions) during each talk, e.g. via PINGO: pingo.upb.de
- at the end, presenters pose a question that the other participants discuss via the think-pair-share method

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)
- during/after **interaction / discussion**
(interactive examples, quizzes, exercises, related topics, etc.) (does not contribute to time)
incorporate ideas from discussion to reports!
- two quizzes (comprehension questions) during each talk, e.g. via PINGO: pingo.upb.de
- at the end, presenters pose a question that the other participants discuss via the think-pair-share method
- every participant must share her/his thoughts at least once over the seminar

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)
- during/after **interaction / discussion**
(interactive examples, quizzes, exercises, related topics, etc.) (does not contribute to time)

incorporate ideas from discussion to reports!

Preliminary discussion:

- **three** weeks before the talk:
discuss the **structure of your talk** with your supervisor
- **two** weeks before your talk:

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)
- during/after **interaction / discussion**
(interactive examples, quizzes, exercises, related topics, etc.) (does not contribute to time)

incorporate ideas from discussion to reports!

Preliminary discussion:

- **three** weeks before the talk:
discuss the **structure of your talk** with your supervisor
- **two** weeks before your talk:
Discuss your **slides** with your supervisor

Talks

- roughly 45 minutes **talk**
(60 minutes for groups of two)
- during/after **interaction / discussion**
(interactive examples, quizzes, exercises, related topics, etc.) (does not contribute to time)

incorporate ideas from discussion to reports!

Preliminary discussion:

These deadlines are strict
(except for 1. talk)!

- **three weeks** before the talk:
discuss the **structure of your talk** with your supervisor
- **two weeks** before your talk:
Discuss your **slides** with your supervisor

Reports

- roughly 10 pages for two (~ 8 for one)

Reports

- roughly 10 pages for two (~ 8 for one)
- not only a summary of the topic; e. g. adding further details or intuition for proofs

Reports

- roughly 10 pages for two (~ 8 for one)
- not only a summary of the topic; e. g. adding further details or intuition for proofs
- relation to other topics

Reports

- roughly 10 pages for two (~ 8 for one)
- not only a summary of the topic; e. g. adding further details or intuition for proofs
- relation to other topics
- \LaTeX template

Reports

- roughly 10 pages for two (~ 8 for one)
- not only a summary of the topic; e. g. adding further details or intuition for proofs
- relation to other topics
- \LaTeX template
- **Preliminary version** of report two weeks after talk, but at the latest until Mon, July, 5

Passing & Grading

Requirements for Passing the Seminar

- giving a talk to the selected topic including the required interactive parts (two quizzes, question/discussion)
- creating a report
- presence at the talks
- absence at most once
- participation in the discussions (share your thoughts at least once in the plenum)

Passing & Grading

Requirements for Passing the Seminar

- giving a talk to the selected topic including the required interactive parts (two quizzes, question/discussion)
- creating a report
- presence at the talks
- absence at most once
- participation in the discussions (share your thoughts at least once in the plenum)

Grading

- Talk (content, design of the slides, comprehensibility)
- Report (content, language, spelling, connection to other topics)
- 50:50

Concept of the Seminar

A Short History of Computer Science

Application

programming,
compilers, operating
systems

Theory

computability,
automata theory,
formal languages

Start

1960s

A Short History of Computer Science

Application

programming,
compilers, operating
systems

perform well-defined
tasks (e.g. sorting,
searching,
optimization)

Theory

computability,
automata theory,
formal languages

algorithms,
complexity theory

Start

1960s

1970s

A Short History of Computer Science

Application

programming,
compilers, operating
systems

perform well-defined
tasks (e.g. sorting,
searching,
optimization)

extracting information
and learning from
massive data (for user
applications)

Theory

computability,
automata theory,
formal languages

algorithms,
complexity theory

data science and
machine learning
(mathematical
foundations)

Start

1960s

1970s

recent years

Book: Foundations of Data Science

computability,
automata theory,
formal languages

algorithms,
complexity theory

Book: Foundations of Data Science

computability,
automata theory,
formal languages

algorithms,
complexity theory

traditional TCS curriculum

Book: Foundations of Data Science

computability,
automata theory,
formal languages

algorithms,
complexity theory

traditional TCS curriculum

add

data science and
machine learning
(mathematical
foundations)

Book: Foundations of Data Science

computability,
automata theory,
formal languages

algorithms,
complexity theory

traditional TCS curriculum

add

data science and
machine learning
(mathematical
foundations)

[...] With this in mind we have written this book to cover the theory we expect to be useful in the next 40 years, just as an understanding of automata theory, algorithms, and related topics gave students an advantage in the last 40 years. [...]”

Key Elements and Tools

assumptions on the input

(rather than analyzing worst case)

probability distributions

models

Key Elements and Tools

assumptions on the input

(rather than analyzing worst case)

probability distributions

models

high-dimensional geometry

$$d \rightarrow \infty$$

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	2	0	4	3	0	1	0	2
Doc2	0	2	4	0	2	3	0	0
Doc3	4	0	1	3	0	1	0	1
Doc4	0	1	0	2	0	0	1	0
Doc5	0	0	2	0	0	4	0	0
Doc6	1	1	0	2	0	1	1	3
Doc7	2	1	3	4	0	2	0	2

document term matrix

adjacency matrix of web graph

Key Elements and Tools

assumptions on the input

(rather than analyzing worst case)

probability distributions

models

high-dimensional geometry

$$d \rightarrow \infty$$

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	2	0	4	3	0	1	0	2
Doc2	0	2	4	0	2	3	0	0
Doc3	4	0	1	3	0	1	0	1
Doc4	0	1	0	2	0	0	1	0
Doc5	0	0	2	0	0	4	0	0
Doc6	1	1	0	2	0	1	1	3
Doc7	2	1	3	4	0	2	0	2

document term matrix

adjacency matrix of web graph

mathematical tools: probability, statistics, linear algebra,
(multivariate) analysis

Concept of the Seminar

Consider this a reading group were we jointly learn the mathematical foundations of this subject

Concept of the Seminar

Consider this a reading group where we jointly learn the mathematical foundations of this subject

Disclaimer: We do not cover applied aspects such as software, libraries, specific applications

Concept of the Seminar

Consider this a reading group where we jointly learn the mathematical foundations of this subject

Disclaimer: We do not cover applied aspects such as software, libraries, specific applications

Feel free to add potential applications as illustrative motivation to your talk...

Seminar Topics

General Information

- You will be assigned one section or chapter from the book: *Foundations of Data Science*.
- You should select the key parts/results from these sections for your presentation.
- Check with your supervisor (as mentioned before).

List of Topics

- High-Dimensional Geometry
- Best-Fit Subspaces and Singular Value Decomposition (SVD)
- Random Walks and Markov Chains
- Machine Learning
- Algorithms for Massive Data
- Clustering Techniques
- Analysis of Random Graphs
- Social Choice
- Compressed Sensing

Discussions Forum

wuecampus My Courses ▾ This Course ▾ English (en) ▾

SS21: Seminar Mathematical Foundations of Data Science

Home > My courses > SS21_MFDS

 Announcements

 Discussions Forum ←

Seminar: Mathematical Foundations of Data Science

Credits: 5 ECTS, 2 SWS

Time & Place: Wednesdays, 14:00–15:30, online (Zoom link below)

Prerequisites: algorithms, linear algebra, analysis, and probability. Prior attendance of the course "Algorithmic Graph Theory" is recommended.

Target Group: Master Computer Science (recommended), Bachelor Computer Science

Lecturers: Joachim Spoerhase and Alexander Wolff and Kamyar Khodamoradi

Next Steps

- enroll in the course

Next Steps

- enroll in the course

wuecampus

My Courses ▾ This Course ▾ English (en) ▾

- select the key parts and results from your section/chapter in the book

SS21: Seminar Mathematical Foundations of Data Science

Home

My courses

SS21_MFDS

Announcements

Discussions Forum

Seminar: Mathematical Foundations of Data Science

Credits: 5 ECTS, 2 SWS

Time & Place: Wednesdays, 14:00–15:30, online (Zoom link below)

Next Steps

- enroll in the course

The screenshot shows a course page from the wuecampus LMS. At the top, there are navigation links: 'My Courses', 'This Course', and 'English (en)'. Below these are several buttons and sections:

- My Grades**: Represented by a bar chart icon.
- Enrol me in this course**: Represented by a blue arrow icon inside a red circle, with a red arrow pointing to it from the left.
- Course administration**: Represented by a gear icon.
- Course Description**: A text input field with placeholder text: "Beschreiben Sie kurz und prägnant, worum es in diesem Kurs geht." (Describe briefly and concisely what this course is about.)
- Course Teachers**: A list containing two entries:
 - Joachim Spoerhase (with a small profile picture)
 - Alexander Wolff (with a small profile picture)
- Activities**: A section with a checked checkbox and a 'Forums' button.

At the bottom left, there are sidebar links: 'SS21:', 'Home', 'Enrolment', and 'SS21:'. At the bottom center, there is a note: "Beschreiben Sie kurz und prägnant, worum es in diesem Kurs geht." (Describe briefly and concisely what this course is about.)

Next Steps

- enroll in the course
- get an overview over the book section/chapter assigned to you

Next Steps

- enroll in the course
- get an overview over the book section/chapter assigned to you
- select the key parts and results from your section/chapter in the book

Next Steps

- enroll in the course
- get an overview over the book section/chapter assigned to you
- select the key parts and results from your section/chapter in the book
- identify potential prerequisites from previous sections

Next Steps

- enroll in the course
- get an overview over the book section/chapter assigned to you
- select the key parts and results from your section/chapter in the book
- identify potential prerequisites from previous sections
- double check with your supervisor and synchronize with other students (presenting the prerequisites); send by Monday, April, 19!

Next Steps

- enroll in the course
- get an overview over the book section/chapter assigned to you
- select the key parts and results from your section/chapter in the book
- identify potential prerequisites from previous sections
- double check with your supervisor and synchronize with other students (presenting the prerequisites); send by Monday, April, 19!
- prepare a short presentation for next week (April 21st).

Presentation Software IPE

Finally:

Demonstration of the IPE program

for creating images and slides

<http://ipe.otfried.org/>