
Aufgabensammlung ADS-Repetitorium 2021
Amortisierte Analyse – Dynamische Programmierung

Aufgabe 1: Bank-Schließfächer und Heaps
Bei einer Bank können Sie Schließfächer mieten. In jedes Schließfach passt genau ein Gegenstand. Der Service
ist aber nicht kostenlos. Für das Einlagern des n. Gegenstands stellt die Bank log n Euro in Rechnung.
Ebenfalls werden bei der Rückgabe des n. Gegenstands log n Euro fällig.

(a) Geben Sie die Gesamtkosten für das Ein- und Auslagern den n. Gegenstands in Θ-Notation an.

Lösung: Θ(log n).

(b) Wie muss die Bank ihre Bezahlpolitik ändern, sodass das Abholen der Gegenstände kostenlos ist, die
Bank aber trotzdem denselben Gewinn macht?

Lösung: Die Bank verlangt die Kosten für das Abholen des Gegenstands bereits bei der Einlage-
rung. Die Kosten für das Einlagern des n. Gegenstands sind dann 2 log n.

(c) Geben Sie die Kosten für das Ein- und Auslagern mit der neuen Bezahlpolitik in Θ-Notation an.

Lösung: Die Kosten für das Hinbringen bleiben in Θ(log n), während die Kosten für das Abholen
in Θ(1) liegen.

(d) Übertragen Sie Ihre Überlegungen aus den vorherigen Teilaufgaben auf einen MaxHeap. Zeigen Sie mit
der Buchhaltermethode, dass die Insert-Methode amortisiert eine Laufzeit von O(log n) und ExtractMax
eine konstante Laufzeit hat.

Lösung: Wir zahlen für eine Einfügeoperation der i. Zahl êi = 2 log i und für das Löschen der
i. Zahl l̂i = 1. Für das Einfügen von n Zahlen und das anschließende Extrahieren zahlen wir
also ĉ =

∑n
i=1 2 log i +

∑n
i=1 1. Vergleichen wir das mit den tatsächlichen Worst-Case-Kosten c =∑n

i=1 log i +
∑n

i=1 log i, so erkennen wir, dass ĉ > c. Da ĉ ∈ O(n log n) und auch die tatächlichen
Kosten c ∈ O(n log n), schließen wir daraus, dass Insert eine amortisierte Laufzeit von O(log n) hat
und ExtractMax amortisiert in O(1) liegt.

(e) Lösen Sie die Aufgabe nun mit der Potentialmethode.

Lösung: Die Potentialmethode bei n Elementen im Heap definieren wir mit Φ(n) =
∑n

i=1 log i, also
der Summe aller Höhen im Heap. Damit ist Φ(0) = 0 und es gibt keinen Wert n, sodass Φ(k) < 0.
Nun berechnen wir die amortisierten Kosten der Operationen:
Insert: ĉi = ci + Φ(n) − Φ(n − 1) = log n +

∑n−1
i=1 log i + log n −

∑n−1
i=1 log i = 2 log n ∈ O(log n)

ExtractMax: ĉi = ci + Φ(n− 1)− Φ(n) = log n+
∑n−1

i=1 log i− (
∑n−1

i=1 log i+ log n) = 0 ∈ O(1)

Aufgabe 2: Kürzeste Wege mit negativen Kanten
Gestern haben wir festgestellt, dass die Ergebnisse von Dijkstra auf Graphen mit negativen Kanten unter
Umständen nicht die kürzesten Wege repräsentieren. In dieser Aufgabe wollen wir einen Algorithmus finden,
der auf einem Graphen G = (V,E) mit der Gewichtsfunktion w : V × V → R einen kürzesten Weg zwischen
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zwei Knoten s und t findet. Wir nehmen an, dass der Graph G keine von s erreichbaren, negativen Kreise
enthält.

(a) Zeigen Sie, dass das Problem eine optimale Substruktur aufweist. Sie müssen also zeigen, dass der
kürzeste Weg zwischen s und t aus kleineren Teillösungen desselben Problems berechenbar ist. In welchen
Fällen ist es besonders einfach, den kürzesten Weg zwischen s und t zu berechnen?

Lösung: Auf dem Weg von s nach t überqueren OdBA wir einen Knoten w. Also setzt sich der
gesuchte kürzeste Weg von s nach t aus zwei Wegen zusammen, einem Weg von s nach w und
einem Weg von w nach t. Die beiden Teilwege sind jeweils kürzeste Wege und diese sind jeweils
mindestens eine Kante kürzer.

Damit erhalten wir ein kleineres Problem derselben Art, nämlich den kürzesten Weg von s zu einem
Knoten w zu finden.

Besonders einfach ist das Problem zu lösen, falls s = t, da dann δ(s, t) = 0.

(b) Wie viele Kanten kann jeder kürzeste Weg im Graphen G = (V,E) maximal haben? Angenommen, der
Distanzwert v.d ist für alle v ∈ V mit ∞ intialisiert und s.d = 0. Was passiert auf jeden Fall, wenn Sie
die Relax-Methode (siehe Dijkstra) nun auf jede Kante in beliebiger Reihenfolge aufrufen? Was passiert,
wenn Sie dies erneut tun?

Lösung: Der längste mögliche kürzeste Weg traversiert jeden Knoten maximal einmal. Deswegen
ist die höchste mögliche Kantenanzahl |V |−1. Nachdem Aufruf von Relax wurden die Distanzwerte
der Nachbarn von s auf einen endlichen Wert gesetzt und mindestens einer von ihnen hat auch
die korrekte Entfernung. Beim wiederholten Aufruf von Relax kommen immer mehr Knoten hinzu,
deren Entfernung gesetzt ist und in jeder Iteration wird mindestens eine Entfernung richtig gesetzt.

(c) Wir betrachten nun eine zweidimensionale Tabelle T . Jede Spalte steht für einen Knoten (in beliebiger
Reihenfolge), und es gibt |V | − 1 Zeilen. Die Zelle T (i, j) enthält die Länge des kürzesten Weges von
s zum i-ten Knoten, nachdem j Mal die Relax-Methode auf alle Kanten aufgerufen wurde. Stellen Sie
die Tabelle für folgenden Graphen auf und füllen Sie sie zeilenweise aus. Relaxieren Sie die Kanten in
alphabetischer Reihenfolge nach ihrem Startknoten.

s

a
b

c

d
e

10

8

2

1 −2

−4

1
−1

Iteration s.d a.d b.d c.d d.d e.d
0 0 ∞ ∞ ∞ ∞ ∞
1
2
3
4
5

Lösung:

Iteration s.d a.d b.d c.d d.d e.d
0 0 ∞ ∞ ∞ ∞ ∞
1 0 10 ∞ ∞ ∞ 8
2 0 10 10 12 9 8
3 0 5 10 11 9 8
4 0 5 5 7 9 8

(d) Geben Sie nun den Algorithmus in Pseudocode an. Welche Laufzeit hat er?
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Lösung: Der Bellman-Ford-Algorithmus löst das Problem.
Die Korrektheit kann durch die Schleifeninvariante

”
Nach der i. Iteration gilt für i + 1 Knoten v,

dass ihre berchnete Distanz v.d mit dem tatsächlich kürzesten Weg δ(s, v) übereinstimmt.“ gezeigt
werden.

(e) Modifizieren Sie Ihren Algorithmus so, dass er auch die optimale Lösung selbst, also den kürzesten Weg
berechnet. Welche Methode aus der Vorlesung können Sie dafür verwenden?

Lösung: Wir ergänzen den Anweisungsblock der if -Abfrage um die Zeile v.p = u, wobei das
Attribut v.p jeweils auf den Elternknoten u auf dem bisher kürzesten gefundenen Wegs von s nach
v zeigt. Die if -Abfrage entspricht nun genau der Relax-Funktion, die vom Dijkstra-Algorithmus
bekannt ist.

(f) Unter welchen Umständen kann der Algorithmus vorzeitig abgebrochen werden? Wie kann mithilfe des
Algorithmus ein negativer Zykel detektiert werden?

Lösung: Falls sich in einer Iteration keine d-Werte mehr ändern, kann der Algorithmus vorzeitig
abgebrochen werden. Falls alle |V | − 1 Iterationen ausgeführt wurden und in einer letzten, |V |.
Iteration noch d-Werte verändert werden, dann liegt ein negativer Zykel vor.

Aufgabe 3: Palindrome Subsequenzen
Ein Palindrom ist eine Zeichenkette, die von vorne und von hinten gelesen das gleiche ergibt, zum Beispiel
das Adjektiv

”
soldlos“. Eine Subsequenz ist ein String, der nach Weglassen beliebig vieler Zeichen aus einem

String hervorgeht, beispielsweise das Wort
”
Baum“ aus

”
Brauchtum“. Wir suchen nun einen effizienten Al-

gorithmus, der eine längste Subsequenz einer Zeichenkette s = s0 . . . sn findet, die gleichzeitig ein Palindrom
ist. Die längste palindrome Subsequenz in

”
Amortisierte Laufzeit“ ist

”
tieteit“.

(a) Erklären Sie kurz, wie ein Brute-Force-Algorithmus vorgehen würde, um das Problem zu lösen. Was ist
die Laufzeit dieses Algorithmus?

Lösung: Der Brute-Force-Ansatz wäre, alle Subsequenzen aus s zu berechnen und diese auf ihre
Palindrom-Eigenschaft zu testen. Da es jedoch 2n+1 Subsequenzen gibt, ist dieser Ansatz nicht
effizient. Die Laufzeit wäre in O(n · 2n+1).

(b) Gegeben sei eine Zeichenkette s = s0 . . . sn und ihre längste palindrome Subsequenz p = p0 . . . pm.
Beschreiben Sie wie p aus einer kleineren Instanz desselben Problems hervorgeht. Betrachten Sie dazu
einen Teilstring s′ von s, und erklären Sie, wie p zu s′ steht.

Lösung:

i. Falls s0 6= p0, dann ist p eine optimale Lösung für s1, . . . , sn.

ii. Falls sn 6= pm, dann ist p eine optimale Lösung für s0 . . . sn−1.

iii. Falls s0 = sn, dann ist s0 = pm und p1 . . . pm−1 ist eine optimale Lösung in s′ = s1 . . . sn−1.

Beweis. Es trifft immer genau einer der obigen Fälle zu. Wir begründen nun, dass die obigen
Implikationen korrekt sind:

i. Analog zu ii.

ii. Angenommen, p ist keine optimale Lösung für s0 . . . sn−1. Dann gibt es eine andere optimale
Lösung mit der Länge größer als m + 1 für s0 . . . sn−1. Das widerspricht aber der Annahme,
dass p optimal für s0 . . . sn−1 ist.
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iii. Falls s0 6= pm, dann könnten wir p verbessern, indem wir die offenbar noch nicht genutzten
s0 und sn vorne und hinten an p anhängen. Das widerspricht aber der Annahme, das p schon
optimal ist. Also muss s0 = pm sein. Nun, nehmen wir an, p1 . . . pm−1 ist keine optimale
Lösung in s1 . . . sn−1. Dann muss es eine andere optimale Lösung für s1 . . . sn−1 geben, die
länger als m−1 ist. Da s0 = sn könnten wir diese Lösung nutzen, um eine längste palindrome
Subsequenz der Länge m+ 2 für s zu finden. Dies widerspricht ebenfalls der Annahme, das p
optimal ist.

Die obigen Implikationen zeigen, dass wir das Problem der längsten palindromen Subsequenz immer
auf kleine Substrings übertragen können. Die Teilprobleme überlappen sich, da wir zum Beispiel
den inneren Teil von s in allen obigen Implikationen untersuchen müssen.

(c) Wir definieren l(i, j) als die Länge der längsten palindromen Subsequenz im Substring si . . . sj . Was ist
l(i, i) und l(i, i+1)? Dies sind die Basisfälle und sind einfach anzugeben. Überlegen Sie sich nun, wie Sie
für allgemeine i, j mit i < j den Wert l(l, j) berechnen können. Tipp: Machen Sie eine Fallunterscheidung
nach si = sj bzw. si 6= sj und greifen Sie auf l(i′, j′) zu, wobei i′ < i oder j′ < j.

Lösung: Lege eine Matrix der Größe n + 1 × n + 1 an und fülle jede Diagonale, angefangen von
der Hauptdiagonale, sukzessive nach oben rechts. Andere Richtungen sind denkbar, dann müssen
die Indizes angepasst werden.

l(i, j) =


1 falls i = j

2 falls i+ 1 = j und si = sj

max(l(i+ 1, j), l(i, j − 1)) falls si 6= sj

l(i+ 1, j − 1) + 2 falls si = sj

(d) Legen Sie eine Matrix, die l(i, j) für alle 0 ≤ i ≤ j ≤ n repräsentiert, für die beiden Sequenzen
”
anna“

und
”
graphalgo“ an und füllen Sie sie aus. Wie lang sind die längsten palindromen Subsquenzen in den

Wörtern? Wo steht der Wert der Lösung in der Matrix?

Lösung: Da
”
anna“ selbst ein Palindrom ist, ist die längste palindrome Subsequenz vier Zeichen

lang. Die längste palindrome Subsequenz von
”
graphalgo“ ist 5.

A N N A
A 1 1 2 4
N 1 2 2
N 1 1
A 1

G R A P H A L G O
G 1 1 1 1 1 3 3 5 5
R 1 1 1 1 3 3 3 3
A 1 1 1 3 3 3 3
P 1 1 1 1 1 1
H 1 1 1 1 1
A 1 1 1 1
L 1 1 1
G 1 1
O 1

Der Wert der optimalen Lösung steht bei einer komplett ausgefüllten Matrix in der ersten Zeile
ganz rechts.

(e) Formulieren Sie jetzt einen Algorithmus, der eine solche Matrix automatisch ausfüllt und den Wert der
Lösung zurückgibt.
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Lösung: Die obige Matrix-Rekurrenz wird direkt umgesetzt. Die erste Fallunterscheidung entfällt
hierbei durch die Initialisierung der Matrix in Zeile 3.

Algorithmus 1: findLongestPalindromeSubsequenceLength(String s)

1 n = s.length
2 values = new int [s.length][s.length]
3 Fülle Hauptdiagonale von values mit 1ern
4 for row = 1 to n - 1 do
5 currRow = 1
6 for col = row + 1 to n do
7 if scurrRow == scol ∧ currRow + 1 6= col then
8 values[currRow][col] = values[currRow+1][col-1] + 2

9 else if scurrentRow == scol then
10 values[currRow][col] = 2

11 else
12 values[currRow][col] = max (values[currRow][col-1], values[currRow+1][col])

13 currRow = currRow + 1

14 return values[1][n]

(f) Jetzt möchten Sie nicht nur den Wert ermitteln, sondern auch die längste palindrome Subsequenz selbst.
Beschreiben Sie, wie Sie mit einer zweiten Matrix die längste palindrome Subsequenz ermitteln können.

Lösung: Wir legen eine Matrix an, die genau so groß ist wie die erste und füllen sie parallel
mit der Hauptmatrix mit Pfeilen aus, die auf das Feld zeigen, auf dem der Wert des aktuellen
Feldes basiert. Dann verfolgen wir den Weg vom obersten rechten Feld zurück, bis wir auf ein
Feld treffen, das den Wert 1 oder zwei 2 hat. Diese beiden Felder haben laut Matrix-Rekkurenz
keine Vorgänger-Felder. Spalten-Indizes, die von Feldern abhängen, die diagonal von einem anderen
Feld abhängen, beschreiben Zeichen, die in der längsten palindromen Subsequenz vorkommen. Das
heißt, wir speichern diese Felder. Sobald wir das Ende des Weges erreicht haben, fügen wir noch
das letzte Zeichen hinzu. Nun haben wir die Hälfte des gesuchten Palindroms und müssen dies nur
noch spiegeln. Dabei müssen wir auf gerade und ungerade Länge aufpassen (siehe Pseudocode).

(g) Zeichnen Sie auch die ergänzte Matrix für die Wörter
”
anna“ und

”
graphalgo“. Was ist die jeweils

längste palindrome Subsequenz?

Lösung: Für
”
anna“ ist die Lösung

”
anna“, für

”
graphalgo“ ist die Lösung

”
gahag“.

A N N A
A � � ↓ ↙
N � � ←
N � �
A �

G R A P H A L G O
G � ← ← ← ← ↓ ← ↙ ←
R � ← ← ← ↓ ← ← ←
A � ← ← ↙ ← ← ←
P � ← ← ← ← ←
H � ← ← ← ←
A � ← ← ←
L � ← ←
G � ←
O �

(h) Ändern Sie Ihren Algorithmus so, dass er die längste palindrome Subsequenz zurückgibt.
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Lösung:

Algorithmus 2: findLongestPalindromeSubsequence(String s)

1 n = s.length
2 values = new int [s.length][s.length]
3 directions = new int [s.length][s.length]
4 Fülle Hauptdiagonale von values mit 1ern
5 for row = 1 to n - 1 do
6 currRow = 1
7 for col = row + 1 to n do
8 if scurrRow == scol ∧ currRow + 1 6= col then
9 values[currRow][col] = values[currRow+1][col−1] + 2

10 directions[currRow][col] = ↙
11 else if scurrentRow == scol then
12 values[currRow][col] = 2
13 directions[currRow][col] = ←
14 else
15 if values[currRow][col-1] ≥ values[currRow+1][col] then
16 values[currRow][col] = values[currRow][col−1]
17 directions[currRow][col] = ←
18 else
19 values[currRow][col] = values[currRow+1][col]
20 directions[currRow][col] = ↓

21 currRow = currRow + 1

22 row = 1
23 length = values[1][n]
24 col = length
25 result =

”
“

26 while values[row][col] 6= 1 do
27 if directions[row][col] = ← then col = col − 1
28 if directions[row][col] = ↓ then row = row + 1
29 if directions[row][col] = ↙ then
30 row = row + 1
31 col = col − 1
32 result = result + scol

33 if length mod2 == 0 then result = result + scol + scol + reverse(result)
34 else result = result + scol + reverse(result)
35 return result

(i) Überlegen Sie sich, wie Sie Ihren Algorithmus ändern können, sodass er den längsten palindromen
Substring findet. Im Wort

”
stirnlappenbasilisk“ ist der längste palindrome Substring

”
silis“, während

die bisher betrachtete palindrome Subsequenz
”
silappalis“ ist. Formulieren Sie die Matrix-Rekurrenzen

aus Teilaufgabe c) um und beschreiben Sie in Worten, wo sich in der Matrix jetzt der Wert der Lösung
befindet und wie Sie die Lösung rekonstruieren können.

Lösung: Der Wert der Zelle l(i, j) repräsentiert nun nicht mehr die optimale Lösung für den
Substring si . . . sj , sondern den Wert ein 1, falls si . . . sj kein Palindrom ist, andernfalls die Länge des
Palindroms. Dementsprechend müssen wir lediglich verhindern, dass Werte nach oben durchgereicht
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werden. Wir ändern also den dritten Fall entsprechend:

l(i, j) =


1 falls i = j

2 falls i+ 1 = j und si = sj

1 falls si 6= sj

l(i+ 1, j − 1) + 2 falls si = sj

Dann suchen wir nach dem höchsten Feld in der Matrix, welches dann auch gleich den Wert der
optimalen Lösung entspricht. Nun gehen wir wieder diagonal nach links unten, bis wir auf ein leeres
Feld treffen. Die Spalten-Indizes dieses Wegs sind die Buchstaben des Palindromes, die dann noch
gespiegelt angehängt werden müssen.

(j) Falls Sie noch Zeit haben, geben Sie einen Brute-Force-Algorithmus an, der eine längste palindrome
Subsequenz findet.

Lösung: Die Idee besteht darin, einen Branching-Algorithmus zu konsturieren.

Algorithmus 3: bruteForce(s0 . . . sn, p0 . . . pm = ε )

1 if s0 . . . sn = ε then
2 return True falls p0 . . . pm Palindrom, False sonst

3 return bruteForce(s1 . . . sn, p0 . . . pms0) ∨ bruteForce(s1 . . . sn, p0 . . . pm)
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