
Aufgabensammlung ADS-Repetitorium 2021
Bäume und Graphen

Aufgabe 1: Rot-Schwarz-Bäume
Zeichnen Sie die folgenden Beispiele. Im Folgenden werden die nil -Blätter nicht mitgezählt. Ein Baum, der
nur aus einer Wurzel besteht, hat demnach einen Knoten und die Höhe eins.

(a) Gesucht ist ein gültiger Rot-Schwarz-Baum der Höhe drei, bei dem die Anzahl der Knoten minimal ist.

Lösung:

(b) Gesucht ist ein binärer Suchbaum der Höhe drei mit maximaler Knotenzahl, für den es keine gültige
Rot-Schwarz-Färbung gibt.

Lösung:

(c) Gesucht ist eine Permutation von sieben paarweise verschiedenen Zahlen, sodass diese beim Einfügen
in einen Binärbaum alle Ebenen komplett ausfüllen (der Binärbaum ist also balanciert).

Lösung: Eine mögliche Permutation ist 〈4, 2, 1, 3, 6, 5, 7〉. Diese ist nicht eindeutig. Wichtig ist, das
jeweils der Median der noch nicht eingfügten, zusammenhängenden Teillisten eingefügt wird.

Aufgabe 2: Modellierung als Graphen
Viele algorithmische Fragestellungen können als Graphen modelliert werden. Bearbeiten Sie folgende Punkte
für jede Fragestellung:

i. Geben Sie einen Algorithmus in Worten an, der die Fragestellung als Graph modelliert. Achten Sie auf
eine präzise Definition der Knoten- und Kantenmenge.

ii. Mit welchem Graph-Algorithmus kann die Fragestellung auf dem Graph gelöst werden? Wie müssen
die Algorithmen gegebenfalls modifiziert werden?

iii. Von welchen Parametern hängt die Laufzeit ab? Können Sie die Laufzeit genau angeben?

Einige der Probleme lassen sich eventuell auch einfacher ohne Graph lösen. In dieser Aufgabe sollen sie aber
explizit den Umgang mit Graphen üben.

1

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(a) Sie arbeiten im Marketing einer Firma, die Kameras herstellt. Auf einer Veranstaltung, die von n
Menschen besucht wird, bieten Sie folgende Werbekampagne an:
Sie verteilen m Einwegkameras, mit denen man je genau ein Bild schießen kann. Die Kameras sollen
dazu benutzt werden, Twofies (= Bilder, auf denen genau zwei Personen abgebildet sind) zu schießen.
Die Person, die am Ende der Veranstaltung mit den meisten anderen Menschen auf Twofies abgebildet
ist, hat gewonnen.
Wie können Sie die Person ermitteln, die gewinnt?

Lösung: Alle Menschen repräsentieren die Knoten. Zwei Menschen s1 und s2 werden durch eine
ungerichtete Kante verbunden, falls sie gemeinsam auf einem Twofie abgebildet sind. Wir suchen
den Knoten mit dem höchsten Grad. Zur Berechnung der Knotengrade können wir die Breitensuche
verwenden und in der for-Schleife die Nachbarn zählen. Das Der Knoten mit dem maximalen
Knotengrad wird zurückgegeben. Die Laufzeit liegt damit in O(m+ n).

(b) Das Kommunalunternehmen eines Landkreises mit n Gemeinden möchte jede Gemeinde an ein Radweg-
netz anbinden. Um Kosten zu sparen, sollen die Radwege nur an den breitesten Straßen im Landkreis
angelegt werden und Rundfahrten zwischen den Gemeinden sollen nicht möglich sein.

Lösung: Es wird offenbar ein maximaler Spannbaum gesucht. Jarńık-Prim und Kruskal liefern
minimale Spannbäume. Daher suchen wir zunächst in O(|E|) Zeit die breiteste Straße mit Breite
b und setzen das Gewicht jeder Kante e auf b − w(e). Nun können wir Jarńık-Prim oder Kruskal
ausführen und den berechneten, minimalen Spannbaum nutzen, um das Radwegenetz auszubauen.
Die Laufzeit des gesamten Algorithmus liegt in O(|E|+ n log n) (Jarńık-Prim) bzw. O(|E| log |E|)
(Kruskal).

(c) Ein Software-Projekt besteht aus n Modulen. Jedes Modul kann von anderen Modulen abhängig sein.
Ein Modul kann nur gestartet werden, falls alle Module, von denen das Modul abhängt, bereits gestartet
wurden. Gesucht ist also die Reihenfolge, in der die Module gestartet werden können.

Lösung: Jedes Modul ist ein Knoten. Wir fügen eine gerichtete Kante von m1 nach m2 ein, falls
m2 von m1 abhängig ist. Mit der Tiefensuche erhalten wir eine topoligische Sortierung der Module,
anhand der wir die Module starten können. Die Laufzeit ist in O(n+ |E|).

Aufgabe 3: Definition eines Graphen
Die Definition eines Graphen G = (V,E,w) ist gegeben durch die Knotenmenge V und die Kantenmenge E:

V =
{

(x, y) | x, y ∈ N ∧ x < n ∧ y < n
}
, n ∈ N+

E =
{(

(x1, y1), (x2, y2)
)
∈ V | w((x1, y1), (x2, y2)) < a

}
, a ∈ R+

Die Funktion w ist durch die Zuordnungsvorschrift (x1, y1), (x2, y2) 7→
√

(x1 − x2)2 + (y1 − y2)2 gegeben.
Falls ((x1, y1), (x2, y2)) ∈ E, so repräsentiert w die Gewichtsfunktion der Kanten.

(a) Kann der Graph als ungerichteter Graph aufgefasst werden? Begründen Sie Ihre Antwort.

Lösung: Der Graph kann als ungerichteter Graph aufgefasst werden, da die Gewichtsfunktion sym-
metrisch ist, unabhängig davon, in welcher Reihenfolge u und v als Parameter übergeben werden.

(b) Welches reale Szneario könnte durch diesen Graphen mit einem festen n und a beschrieben werden?

Lösung: Denkbar ist ein Szenario, in dem n2 Entitäten gitterartig auf einer Landkarte angeord-
net werden. Die Entitäten, deren euklidische Distanz kleiner als a ist, werden direkt miteinander
verbunden, zum Beispiel Straßenkreuzungen in Manhatten für a =

√
2.

Seite 2

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(c) Zeichnen Sie den Graph so, dass sich keine Kanten überkreuzen, für den Fall, dass n = 5 und a =
√

2.

Lösung:

(d) Geben Sie für a =
√

2 eine äquivalente Definition der Kantenmenge E an. In Ihrer Definition soll die
Funktion w nicht vorkommen.

Lösung: Bei a =
√

2 kommt ein Gitter zustande. Deshalb sind genau die Knoten miteinander
verbunden deren x bzw. y Koordinate jeweils genau eine Differenz von 1 aufweisen:

E =
{(

(x1, y1), (x2, y2)
)
∈ V 2 | x1 = x2 ∧ |y1 − y2| = 1 ∨ y1 = y2 ∧ |x1 − x2| = 1

}

(e) Geben Sie ein 0 < a < 3π an, sodass die Berechnung der Länge des kürzesten Weges zwischen zwei
Knoten bei beliebigem n in konstanter Zeit möglich ist. Wie funktioniert dann die Berechnung der Länge
des kürzesten Weges?

Lösung: Wähle a =
√

2, dann ist die Distanz zwischen zwei Knoten u und v die Manhatten-Distanz
ihrer Koordinaten, also δ(u, v) = |u.x− v.x|+ |u.y − v.y|. Diese Berechnung ist in konstanter Zeit
möglich.

Aufgabe 4: Augmentierung von Rot-Schwarz-Bäumen
Ein Rot-Schwarz-Baum zur Verwaltung einer dynamischen Menge verschiedener ganzer Zahlen soll so aug-
mentiert werden, dass man zu jeder Zeit bestimmen kann, für welche zwei Zahlen i, j der Menge mit i < j
die Differenz j − i am kleinsten ist. Geben Sie die Methode minGap(RedBlackTree T) in Pseudocode an, die
das gesuchte Zahlenpaar in konstanter Zeit liefert. Welche Extrainformationen speichern Sie im Baum und
wie lassen sich diese beim Einfügen, Löschen und Suchen aufrechterhalten, ohne die Laufzeiten der entspre-
chenden Methoden zu verschlechtern? Lässt sich das Problem auch mit konstantem Zusatzspeicher lösen,
wenn man auf die Delete-Methode verzichtet?

Lösung: Wir augmentieren den Rot-Schwarz-Baum so, dass jeder Knoten v zusätzlich seinen Successor
und den Knoten im Teilbaum mit Wurzel v, welcher unter allen Knoten im Teilbaum die minimale
betragsmäßige Differenz zu seinem Successor hat. Dann löst folgender Algorithmus in O1 die Aufgabe:

Algorithmus 1: minGap(RedBlackTree T)

1 root = T.root
2 return (root.minGapNode, root.minGapNode.successor)

Beim Einfügen eines neuen Knotens y wird der Successor in O(n log n) Zeit und der Predecessor x
von y in O(n log n) berechnet. Anschließend werden in konstanter Zeit die successor-Attribute von x
und y aktualisiert. Vor RBInsertFixUp ist y ein Blatt und y.minGapNode zeigt auf y. Der Wert von
x.minGapNode ist nun x oder der bisherige Wert. Dies lässt sich in O(1) Zeit feststellen. Nun müssen

Seite 3

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

die Werte nach oben bis zur Wurzel getragen werden und gegebenfalls aktualisiert werden. Das kann in
O(log n) geschehen. Bei den nun folgenden Rotationen können die minGapNode in konstanter Zeit neu
gesetzt werden. Daher ändert sich die asymptotische Laufzeit der Einfügeoperation nicht. Das Löschen
funktioniert analog.

Verzichtet man auf die Delete Methode, kann man das Problem mit konstanten Zusatzspeicher lösen.
Man speichert sich einfach immer die Knoten minGapNode1 ,minGapNode2, die in dem Moment den
geringsten Abstand haben. Beim Einfügen muss man lediglich in O(log n) Zeit, den Predecessor und
Successor des neuen Knoten bestimmen und ggf. minGapNode1 und minGapNode2 aktualisieren.

Aufgabe 5: Matchings in Graphen
Sei G = (V,E) ein ungerichteter Graph. Eine Teilmenge M ⊆ E der Kantenmenge heißt Matching, wenn
keine zwei Kanten in M einen Knoten gemeinsam haben. Ein Matching heißt nicht erweiterbar, wenn es
keine Kante e in E \M gibt, sodass e ∪M ein Matching ist.

(a) Überlegen Sie sich ein Szenario, das man als Graph modellieren und mit einem Algorithmus, der ein
maximales Matching findet, lösen kann.

Lösung: Beispielsweise: Menschen in Zweiergruppen aufteilen, die sich untereinander nicht mit
allen verstehen (eventuell werden nicht alle Menschen dabei berücksichtigt.)

(b) Schreiben Sie einen Algorithmus in Pseudocode, der für einen gegebenen Graphen G = (V,E) und eine
Teilmenge M ⊆ E bestimmt, ob M ein Matching ist.

Lösung: Für jede Kante e ∈ E mit den Endknoten u, v ∈ V : Gibt es eine Kante d ∈ E, sodass
e 6= d und v ist Endknoten von d oder u ist Enknoten von d, gibt false zurück
Gib am Ende true zurück.

(c) Entwickeln Sie einen Algorithmus in Pseudocode, der für einen gegebenen Graphen G = (V,E) ein
gültiges, nicht erweiterbares Matching berechnet.

Lösung: Idee: Nimm eine beliebige Kante uv ∈ E, füge sie zu M hinzu und lösche alle Nachbar-
knoten von u, v, bis E leer ist.

Algorithmus 2: maxMatching(Graph G = (V,E))

1 M = ∅
2 while E 6= ∅ do
3 Wähle zufällige Kante uv ∈ E
4 Lösche alle zu u, v adjazenten Knoten aus V

Aufgabe 6: Graphen-Cliquen
Sei G = (V,E) ein ungerichteter Graph. Eine Teilmenge C ⊆ V heißt Clique, wenn jedes Knotenpaar e, d ∈ E
durch eine Kante verbunden ist.
Schreiben Sie einen Algorithmus, der für einen Graphen G = (V,E) und eine Teilmenge C ⊆ E prüft, ob C
eine Clique in G ist.

Lösung: Für jeden Knoten e ∈ C: Überprüfe für jeden anderen Knoten d ∈ C, ob es eine Kante {e, d}
gibt. Wenn nicht, gibt false zurück.
Gib am Ende true zurück.

Seite 4

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Aufgabe 7: Terminale verbinden
Sie sind Betreiber eines Routernetzwerkes, wobei R die Menge Ihrer Router darstellt. Die Router sind
untereinander verbunden, sodass Ihr gesamtes Netzwerk zusammenhängend ist. Dabei muss nicht notwen-
digerweise jeder Router mit jedem anderen Router verbunden sein. Damit die Verbindungen funktionieren,
muss jede Verbindung mit Strom versorgt werden.

Im Falle eines Stromausfalls kann jede Verbindung mit je einem teurem Notstromaggregat betrieben werden.
Die Kosten für dieses Notstromaggregat sind je Verbindung verschieden.

In Ihrem Netzwerk befinden sich einige besonders wichtige Knotenrouter K. Falls der Strom ausfällt, sollen
weiterhin alle Router in K miteinander verbunden sein. Alle anderen Router R\K dürfen, aber müssen nicht
unbedingt, ans Netzwerk angeschlossen sein. Sie sind nun an einer Auswahl an Verbindungen interessiert, die
möglichst günstig mit Notstromaggregaten betrieben werden können und alle Knotenrouter K verbindet.

(a) Modellieren Sie das Problem als Graph-Problem. Tipp: Machen Sie sich mit einer Skizze die Aufgaben-
stellung klar.

Lösung: Knoten: Router; es existiert eine Kante zwischen Router u und v, falls u und v miteinander
verbunden sind. Der Graph ist ungerichtet. Die Gewichte der Kanten entsprechen den Kosten für
das Notstromaggregat. Gesucht ist ein Baum, der mindestens alle Knoten aus K enthält/aufspannt
und minimal unter allen solchen Bäumen ist.

(b) Angenommen |K| = 2. Geben Sie einen effizienten Algorithmus an, der das Problem löst.

Lösung: Dijsktra löst das Problem.

(c) Angenommen K = R, mit anderen Worten: Alle Router sind wichtig. Geben Sie einen effizienten
Algorithmus an, der das Problem löst.

Lösung: Jarnik/Prim bzw. Kruskal lösen das Problem.

(d) Das Software-Unternehmen PISNP bietet einen Algorithmus an, der das Problem für alle K löst. Dieser
Algorithmus berechnet einen Graph T , der angeblich die oben beschrieben Anforderungen erfüllt. Geben
Sie einen effizienten Algorithmus an, der überprüft, ob T tatsächlich gültig ist. Ihr Algorithmus erhält
als Eingabe ihr Routernetzwerk, wie in a) modelliert, sowie K und T .

Lösung:

Algorithmus 3: testTree(G, K, T)

1 V,E = G
2 V ′, E′ = T
3 if K * V ′ or E′ * E then
4 return false

5 for v ∈ K do
6 for u ∈ K do
7 überprüfe mit BFS, ob u von v in T erreichbar ist, falls nicht return false.

8 return true

Die Laufzeit ist O(|K|2 · (|V ′|+ |E′|))

Aufgabe 8: Graphen-Theorie
Als bipartit wird ein Graph G = (V,E) bezeichnet, falls sich seine Knotenmenge V in zwei Mengen S1 und
S2 aufteilen lässt, sodass alle Kanten einen Knoten in S1 mit einem Knoten in S2 verbinden.

Seite 5

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(a) Vervollständigen Sie die Definition, sodass sie äquivalent zur obigen textuellen Definition ist. Füllen Sie
in jede Lücke genau ein Zeichen.

Graph G ist bipartit⇔

∃ S1 ⊆ V ∀ (u , v) ∈ E : (v ∈ S1 ∧ u ∈ V \ S1) ∨ (v ∈ V \ S1 ∧ u ∈ S1)

(b) Beweisen Sie folgende Aussage: Graph G ist bipartit ⇔ Graph G ist zweifärbbar.

Lösung:

Beweis. Wir zeigen beide Richtungen:

⇒ Sei G bipartit. Dann lässt sich die Knotenmenge V in zwei disjunkte Mengen S1 und S2

aufteilen, sodass keine Kante innerhalb S1 bzw. S2 liegt. Folglich können alle Knoten in S1 rot und
alle Knoten in S2 blau gefärbt werden. Da aufgrund der bipartiten Eigenschaft von G keine Kanten
innerhalb von S1 und S2 existieren, ist damit die Zwei-Färbbarkeits-Eigenschaft nicht verletzt.

⇐ Sei G zweifärbbar. Dann gibt es eine Färbung, sodass keine Kante zwei Knoten mit derselben
Farbe verbindet. Wir legen alle roten Knoten in S1 und ale blauen Knoten in S2. Dann sind S1 und
S2 disjunkt und es gibt keine Kante innerhalb von S1 bzw. S2.

(c) Der folgende Algorithmus überprüft, ob ein gegebener Graph bipartit ist. Ergänzen Sie die Lücken. Zu
Beginn des Algorithmus hat das marker-Attribut aller Knoten den Wert 0.

Algorithmus 4: boolean checkIfBipartite(Graph G, Vertex u = nil)

1 if u = nil then
2 u = beliebiger Knoten
3 u.marker = 1

4 foreach v ∈ Adj[u] do
5 if v.marker 6= 0 then
6 if v.marker = u.marker then return false

7 else
8 if u.marker = 1 then v.marker = 2
9 if u.marker = 2 then v.marker = 1

10 flag = checkIfBipartite(G , v)
11 if flag = false then return false

12 return true

(d) Welcher Algorithmus aus der Vorlesung liegt checkIfBipartite(G,v) zu Grunde?

Lösung: Der Tiefensuche-Algorithms liegt checkIfBipartite(G,v) zu Grunde.

Aufgabe 9: Anzahl der einfachen Pfade im Graph
Verwenden Sie den Tiefensuche-Algorithmus, um die Anzahl der einfachen Pfade zwischen zwei Knoten in
einem azyklischen, gerichteten und ungewichteten Graphen in O(|V | + |E|) Zeit zu berechnen. Verwendet
Ihr Algorithmus das Prinzip dynamischer Programmierung oder ist er ein Greedy-Algorithmus?

Seite 6

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung: Die Idee ist, den Tiefensuche-Algorithmus zu modifizieren. Wir geben jedem Knoten u ein
Attribut u.paths, welches die Anzahl der Pfade von u zum Zielknoten t angibt. Dann ergibt sich schnell
die Berechnungsvorschrift:

u.paths =

{∑
(u,v)∈E countPaths(v,t) falls s 6= t

1 sonst

Sobald die Anzahl der Pfade eines Knotens berechnet wurden, müssen sie nicht erneut berechnet werden,
sondern können direkt wiederverwendet werden. Damit verwendet der Algorithmus das Prinzip der
dynamischen Programmierung.

Algorithmus 5: countPaths(s,t)

1 if s == t then
2 return 1

3 if s.paths = 0 then
4 for k in Adj[s] do
5 s.paths = s.paths + countPaths(k, t)

6 return s.paths

Aufgabe 10: DNS-Sequenzen und k-mere
Eine DNS-Sequenz ist ein String aus den vier Zeichen G, T, C und A. In der Biologie vergleicht man die
DNS-Sequenzen verschiedener Organismen. Dazu muss der DNS-String zunächst aus der Zelle extrahiert
werden, wozu Sequenzierautomaten verwendet werden. Technisch bedingt ist die Länge k der Ausgabe der
Automaten beschränkt, sodass eine DNS-Sequenz nicht komplett sequenziert wird. Stattdessen werden alle
Substrings der Länge k in beliebiger Reihenfolge ausgegeben, wobei auch doppelte Substrings enhalten sind.
Diese Substrings der Länge k werden als k-mere bezeichnet. Gesucht ist nun nach einer Möglichkeit, aus den
k-meren die ursprüngliche DNS-Sequenz herzustellen. Ein Präfix eines k-mers ist der String des k-mers ohne
das letzte Zeichen. Äquivalent dazu ist der Suffix eines k-mers der String des k-mers ohne das erste Zeichen.

(a) Ein Automat mit k = 3 sequenziert ein Genom mit der Sequenz GTCCAGTCCAC. Was ist die Ausgabe?

Lösung: Die Ausgabe ist GTC, TCC, CCA, CAG, AGT, GTD, TDD, DDA, DAC in beliebiger Reihenfolge.

(b) Wie viele k-mere gibt es in einer Sequenz der Länge n > k?

Lösung: Die Anzahl der k-mere ist n− k + 1.

(c) Gegeben ist der Graph GH in Abbildung 1a, der aus den 3-meren ACG, ACT, CGT, CTA, GTA, GTT, TAC und
TAC entstanden ist. Leiten Sie die Vorgehensweise ab, mit der aus beliebigen k-meren ein Graph GH

gebildet wird.

Lösung: Man betrachte alle k-mere als Knoten. Zwischen zwei k-meren s1 und s2 befindet sich
dann eine gerichtete Kante von s1 nach s2, falls der Suffix von s1 der Präfix von s2 ist.

(d) Beschreiben Sie in einem Satz, wie man mit GH eine Sequenz findet, die die gegebenen k-mere aufweist.
In der Bioinformatik ist die Anzahl der k-mere häufig in der Größenordnung einiger Millionen. Warum
können Sie die Methode mit dem Graphen GH nicht empfehlen?

Seite 7

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung: Im Graphen GH muss ein Weg gefunden werden, der jeden Knoten genau einmal travier-
siert, mit anderen Worten, ein Hamilton-Weg. Es ist kein effizienter Algorithmus zum Berechnen
eines Hamiltonwegs bekannt, deshalb ist der Einsatz dieser Methode bei der gegebenen Anzahl an
k-meren nicht ratsam.

(e) Geben Sie eine Sequenz s an, deren Sammlung der k-mere identisch zu denen aus c) ist.

Lösung: Durch ein wenig Probieren findet man zum Beispiel folgenden Hamiltonweg: GTA – TAD –
ADT – DTA – TAD – ADG – DGT – GTT. Durch diesen Weg ergibt sich die Sequenz GTADTADGTT. Diese
Sequenz ist unter Umständen nicht eindeutig. In der Realität untersucht man das zu sequenzierende
Genom mit weiteren Methoden, um die eindeutige Sequenz zu finden. Das geht aber über das Ziel
der Aufgabe hinaus.

(f) Glücklicherweise gibt es eine andere Möglichkeit, einen Graphen GE aufzubauen, um eine Sequenz aus
gegebenen k-meren zu berechnen: Die Kantenmenge besteht aus allen k-meren der Eingabemenge, wobei
Duplikate erlaubt sind. Diese Kanten schreiben wir untereinander, beschriften sie mit dem jeweiligen
k-mer und richten sie nach rechts. An die linke Seite jeder Kante fügen wir nun einen Knoten mit dem
Präfix der Kante an und an der rechten Seite einen Knoten mit dem Suffix der Kante. Nun werden die
Kanten analog zu einem Dominospiel an passenden Knoten aneinandergefügt.

Zeichnen Sie diesen Graph für die 3-mere aus c).

Lösung:

TA AC CT

CGGTTT

G
T
A

TAC

TAC
ACT

A
C
G

CGTGTT

CTA

(g) Beschreiben Sie in einem Satz, wie man mit GE eine Sequenz findet, die die gegebenen k-mere aufweist.

Lösung: Man muss in GE einen Weg finden, der alle Kanten genau einmal traversiert, also einen
Eulerweg. Dieser ist nicht unbedingt eindeutig. In der Realität bedient man sich weiterer biologischer
Hilfsmittel, um den richtigen Eulerweg zu finden. Hier ist der Eulerweg GT – TA – AC – CT – TA –
AC – CG – GT – TT. Dies führt zurselben Sequenz wie in e).

Aufgabe 11: Dijkstra’s Alogrithmus
Gegeben sei der Graph in Abbildung 1b. Bearbeiten Sie auf diesem Graph die folgenden Aufgaben.

(a) Führen Sie Dijkstra’s Algorithmus mit Startknoten s aus. Erstellen Sie dazu eine Tabelle mit drei
Spalten: Iteration, Schwarze Knoten, Graue Knoten, zu der sie nach jeder Iteration der While-Schleife
eine Zeile hinzufügen. Schreiben Sie hinter jeden Knoten in Klammern die aktuelle Distanz und den
Vorgänger-Knoten.

Lösung:

Seite 8

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Iteration Schwarze Knoten Graue Knoten
1 s(0, ∅) a(1, s), d(3, s), e(5, s)
2 a(1, s) d(3, s), e(5, s), b(9, a), c(6, a)
3 d(3, s) e(5, s), b(9, a), c(6, a)
4 e(5, s) b(9, a), c(6, a)
5 c(6, a) b(7, c)
6 b(7, c)

(b) Zeichnen Sie den entstandenen Kürzeste-Wege-Baum.

Lösung:

s a b

d

e c

1

3

5 15

(c) Seien nun negative Kantengewichte erlaubt. Verändern Sie den gegeben Graphen, sodass Dijkstra nach
Beendigung kein richtiges Ergebnis liefert, obwohl der kürzeste Weg definiert ist. Warum kann dies
nicht behoben werden, indem wir das minimale Kantengewicht g < 0 identifizieren und alle Gewichte
um |g| erhöhen? Dann wären alle Kantengewichte wieder positiv und wir könnten Dijkstra verwenden.
Begründen Sie allgemein, warum diese Vorgehensweise nicht korrekt ist.

Lösung: Wir können auf dem gegeben Graphen die das Gewicht Kante (d, a) auf −1 setzen. Dann
hat der kürzeste Weg nach a die Länge 2. Die Wege nach c und b verkürzen sich ebenfalls um 1.
Dijkstra erkennt dies nicht, da zuerst a behandelt wird und danach schwarz gefärbt ist. Knoten,
die einmal schwarz sind, werden von Dijsktra nicht mehr verändert, weshalb der neue kürzeste Weg
von d nach a nicht gefunden wird. Wenn wir allgemein alle Kanten um den Betrag des minimalen
Kantengewichts erhöhen, verlängen wir die Wege mit vielen Kanten mehr als die Wege mit wenigen
Kanten, wie folgendes Beispiel zeigt:

1

5−
2

1 1 1 3

70

3 3 3

Gesucht ist ein Weg vom roten linken Knoten zum grünen rechten Knoten. Der kürzeste Weg
geht über die drei Knoten in der Mitte. Da ein Kantengewicht negativ ist, wird der Graph in den
rechten Graph transformiert. Nun ist der direkte Weg von links nach rechts ohne Zwischenstation
der kürzeste. Folglich bleibt der kürzeste Weg bei der Transformation nicht derselbe.

Seite 9

24.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

CTA TAC

TAC ACG CGT

GTT

GTA

ACT

(a) 3-mere-Graph für die Sequenz-Aufgabe.

s a b

d

e c

1 8

3 4

4

5 1 4

9

2

5

(b) Beispiel-Graph für Dijkstras-Algorithmus.

Abbildung 1: Graphen für die Aufgaben 8 und 9.

Seite 10

