Aufgabensammlung ADS-Repetitorium 2021

Rekursive Laufzeit — Datenstrukturen

Aufgabe 1: Rekursive Laufzeiten
Finden Sie fiir die nachstehenden Rekursionsgleichungen jeweils eine Funktion f, fiir die T' € O(f) gilt. Sie
konnen davon ausgehen, dass die Laufzeit im Basisfall konstant ist.

(a) T(n) = 4T([n/2]) + In2yin

Lésung: T(n) € ©(0,5n%/n).

(b) T(n) =4T(|n/2]) +n?logn +n

Losung: T'(n) € ©(n?log? n).

(¢) T(n)=T(n—3)+2n

Losung: T'(n) € ©(n?).

(d) T(n) = 27(|n/4)) + 3y

Losung: T'(n) € O(y/nlogn).

(e) T(n) =3T(n/2]) + §

Lésung: T(n) € ©(nlo823).

(f) T(n) =3T(In/5]) + 5vn

Lésung: T(n) € ©(n'o8s3).

(g) T(n) =12T(|n/2]) +n*

Lésung: T(n) € ©(n?).

(h) T(n) =T([n/2]) + T([n/2]) + O(nlogn)

Losung: T(n) € ©(nlog?n).

Aufgabe 2: Rekursive Algorithmen

Geben Sie jeweils einen Algorithmus an, der die gegebene Laufzeit erfiillt. Alle Algorithmen sollen im Basis-
fall, also fiir n = 1, konstante Laufzeit haben. Als Eingabe bekommen die Algorithmen jeweils ein Feld der
Lénge n. Die Algorithmen sollten eine Riickgabe haben, doch der Wert der Riickgabe ist egal. Sie diirfen
Rundungsfehler ignorieren.

Lehrstuhl fiir Informatik I

23.03.2021 Aufgabensammlung ADS-Repetitorium

Universitdt Wiirzburg

Losung:

Algorithmus 1: recursiveAlgo(A[])

if A.size < 1 then
L return 42

N =

3 for i =1 tondo

4 | Al =i

5 recursiveAlgo(A[l..n — 1])
6 recursiveAlgo(A[l..n — 1])
7 recursiveAlgo(A[l..n — 1])
8 return A[l]

(b) T(n) = 4T(n/4) + O(n)

Loésung:

Algorithmus 2: recursiveAlgo(A[])

1 if Asize < 1 then
2 L return 42

3 for i = 1 ton do

| Al =i
recursiveAlgo(A[1..n/4])
recursiveAlgo(A[1..n/4])
recursiveAlgo(A[1..n/4])
recursiveAlgo(A[1..n/4])
return A[l]

'

© 00 N O »

(c) T(n) =T([n/2]) + T(|n/2]) + T(y/n); bitte beachten Sie hier die Rundungen.

Losung:

Algorithmus 3: recursiveAlgo(A[])

1 if Asize < 1 then
2 L return 42

for i = 1 to \/n do

| Al =i
recursiveAlgo(A[1..[n/2]])
recursiveAlgo(A[1..|n/2]])
return A[l]

<4} [N

N O

(d) T(n) =3T(n—5) +nlogn

Seite 2

Lehrstuhl fiir Informatik I
23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Losung:

Algorithmus 4: recursiveAlgo(A[])

1 if Asize < 1 then
2 L return 42

MergeSort(A)
recursiveAlgo(A[1l..n — 5])
recursiveAlgo(A[l..n — 5])
recursiveAlgo(A[1..n — 5])
return A[l]

N 0 kW

(e) T(n)=T(n—1)+T(n—2)+42T(n/2) + n?

Losung:

Algorithmus 5: recursiveAlgo(A[])
if Asize < 1 then

=

2 L return 42

3 InsertionSort(A)

4 recursiveAlgo(A[l..n — 1])
5 recursiveAlgo(A[l..n — 2])
6 for i = 1 to 42 do

7 LrecursiveAIgo(A[l..n/Q])
return A[1]

®

Aufgabe 3: Rekursive Gleichung aufstellen
Gegeben sei folgender Algorithmus:

Algorithmus 6: RecursiveAlgo(int A[], I= 1, r=A.length)

1 if | <r then

2 | m=|(l+7r)/2]

3 RecursiveAlgo(A, I, m)

4 RecursiveAlgo(A, m + 1, r)
5 InsertionSort(A, I, r)

(a) Stellen Sie eine Rekursionsgleichung T fiir den gegebenen Algorithmus auf.

Loésung:

T(n) = {2 -T(n/2)+n? fallsn>1
1 sonst

(b) Finden Sie eine Funktion f, fiir die T' € O(f) gilt.

Lésung: T'(n) € O(n?).

Seite 3

Lehrstuhl fiir Informatik I
23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 4: Loschen in einer Hash-Tabelle
Gegeben sei eine Hashtabelle H mit einer Hash-Funktion h(z,). Es wird offene Adressierung verwendet.

(a) Beschreiben Sie in Worten, wie der Algorithmus Search(int k) aus der Vorlesung funktioniert.

Losung: Der Algorithmus bildet den Hash h von k und priift H[h]. Wenn der Inhalt dem gesuchten
Wert entspricht, wird dieser zuriickgegeben, ansonsten wird ¢ inkrementiert und mit der verwendeten
Methode zur Auflésung von Kollisionen ein neuer Hash h gebildet. Das wird wiederholt, bis entweder
ein leerer Eintrag oder der gesuchte Wert gefunden wird.

(b) Ein Element k soll aus der Tabelle geloscht werden. Warum sollte man den Wert nicht mit der folgenden
Befehlsfolge 16schen?
Jj = Search(k)
HIjl = —1

Losung: Nach dem in a) beschrieben Vorgehen der Methode Search(k) bricht die Suche ab, wenn
ein leerer Eintrag gefunden wird. Wenn nun mitten in der Sondierfolge ein Eintrag geloscht wird,
bricht die Suche nach einem anderen, spéter eingefiigten Element eventuell zu frith ab und findet
das Element nicht mehr.

(¢) Implementieren Sie die Operation Delete(int k), die einen Schliissel aus der Tabelle 16scht, ohne dass das
Problem aus b) auftritt. Tipp: Verwenden Sie einen besonderen Wert, um geléschte Zellen zu markieren.

Losung:

Algorithmus 7: Delete(int k)

1 j = Search(k)
2 H[j] = deleted value

(d) Welche Anderung muss nun in den Methoden Insert(int k) und Search(int k) vorgenommen werden?

Lésung: Die Insert(int k)-Methode muss nun jeden Wert, der ihr wihrend der Sondierreihenfolge
begegnet, auf den special value iiberpriifen. Wenn sie einen solchen findet, darf sie ihn ersetzen. In
der Search(int k) muss keine Anderung vorgenommen werden, da der special value ungleich dem
leeren Wert ist. Die Suche geht also einfach iiber die geloschte Zelle hinweg.

(e) Beschreiben Sie kurz die Auswirkungen Threr Anderungen auf die Laufzeit der Operationen.

Losung: Die Laufzeit der Insert(int k) &ndert sich nicht, aber die Laufzeit von Search(int k) ver-
schlechtert sich, wenn das gesuchte Element nicht in der Datenstruktur vorhanden ist. Nehmen wir
an, alle Werte aus einer ehemals vollen Datenstruktur wurden geldscht. Die Search(int k)-Funktion
muss nun trotzdem alle Felder betrachten, da in allen Feldern der special value steht, bevor sie
false zuriickgibt.

Aufgabe 5: Doppeltes Hashing

Welche der folgenden Funktionen eignen sich fiir eine Hashtabelle der Lénge 25, wenn doppeltes Hashing
verwendet wird und die Hashfunktion h(k,i) = (ho(k) + th1(k)) mod 25 mit ho(k) = (4k + 2) mod 25 ist?
Begriinden Sie Thre Entscheidungen.

(a) ha(k) =1

Seite 4

Lehrstuhl fiir Informatik I
23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Loésung: Geeignet.

(b) hy(k) =9 — (k mod 4)

Losung: Geeignet.

(¢) hi(k) =k mod 17

Losung: Ungeeignet.

(d) hy(k) = (3+ 5k) mod 25

Losung: Geeignet.

(e) hi(k) = (4k — 1) mod 13

Losung: Ungeeignet.

Aufgabe 6: Doppelt-Verkettete Listen
Gegeben sei folgender Algorithmus

Algorithmus 8: modifyList(List L)

item = L.head

size =1

while item.next ! = null do
item = item.next

size = size + 1

item = L.head

for i =1 to |size/2] do
item = item.next
item.prev.next = item.next
10 item.next.prev = item.prev
11 item = item.next

(a) Sei L= @ |31 [o [12| 0 o |13 [6 lo [77| &Sle | 23

Zeichnen Sie die Liste fiir jede Iteration der Schleife in Zeile 7.

[, SN N

© 0w N o

(b) Beschreiben Sie, was der Algorithmus allgemein macht.

Losung: Der Algorithmus 16scht jedes zweite Element, angefangen beim zweiten, aus der Liste.

(c) Der Algorithmus enthilt zwei Fehler. Geben Sie eine Liste an, sodass die Ausfithrung von Zeile 3
fehlschlégt. Geben Sie auflerdem eine Liste an, die zu einem Fehler in Zeile 10 fithrt. Verbessern Sie den
Pseudocode.

Losung: Falls die Liste leer ist, also L.head ist leer, dann wird ein Fehler in Zeile drei erzeugt.
Zur Verbesserung muss man zu Beginn des Algorithmus eine Abfrage durchfiihren, ob die Liste
leer ist. Ist dies der Fall, kann man die Ausfithrung des Algorithmus sofort abbrechen. Falls die

Seite 5

Lehrstuhl fiir Informatik I
23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Liste eine gerade Lange hat, wird versucht, das letzte Element zu 16schen. item.next ist aber nicht
definiert, sodass auf item.next.prev nicht zugriffen werden kann. Man kann dies ebenfalls durch eine
entsprechende Abfrage 16sen.

(d) Was wiirde passieren, wenn Zeile 11 geloscht wiirde?

Losung: Es wird die Subliste angefangen bei Element 2 bis zum ersten Element nach der Hélfte
(inklusive) geloscht.

(e) Welche Augmentierung der Datenstruktur List schlagen Sie vor, um den Code zu verkiirzen?

Losung: Durch die Verwendung eines Attributs size, welches die Lange der Liste angibt, kénnen
die ersten 5 Zeilen gel6scht werden.

Seite 6

Lehrstuhl fiir Informatik I
23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 7: Ringe

Ein Ring ist eine Datenstruktur, die auf einer doppelt-verketteten Liste aufbaut. Der Unterschied zwischen
beiden Datenstrukturen ist, dass beim Ring die Attribute next und prev niemals nil sind und iiber next
eines beliebigen Elements jedes andere Element erreicht werden kann (analog auch iiber prev in die andere
Richtung). Jeder Ring hat einen Pointer entry auf einen beliebiges Element im Ring. Ansonsten gibt es die
gleichen Operationen wie bei der Liste, wobei insert(k) vor dem aktuellen entry einfiigt und dann entry aufs
neue Item setzt.

(a) Zeichnen Sie den Ring, der die ersten vier Fibonacci-Zahlen enthilt. Der Pointer entry soll auf eine
gerade Primzahl zeigen.

Loésung: 1 = 1= 2 = 3 = 5, sowie zwischen 5 und 1 besteht eine wechselseitige Verbindung. Der
Pointer entry zeigt auf die 2.

(b) Implementieren Sie die Methode makeRing(List 1), die aus einer doppelt-verketteten Liste einen Ring
macht. Der Pointer entry des entstanden Rings soll dabei auf den Kopf der urspriinglichen Liste zeigen.
Die Liste darf verdndert werden.

Losung:

Algorithmus 9: makeRing(List list)

tail = list.head

if tail = null then return
while tail.next # null do
L tail = tail.next

BOW N =

list.head.prev = tail
tail.next = list.head
ring = new Ring()
ring.entry = list.head
return ring

© 0w N O w;

(¢) Implementieren Sie die Methode split(Ring r, Item i, Item j), die den Ring r in zwei Ringe aufspaltet.
Dabei sollen alle Ttems zwischen i und j (inklusive, in Richtung des next-Attributs) aus r geloscht werden
und als eigener Ring zuriickgegeben werden. Weisen Sie die entry-Werte beliebig, aber giiltig, zu. Gehen
Sie davon aus, dass mindestens ein Element in r verbleibt (mit anderen Worten i.prev # j).

Losung:

Algorithmus 10: split(Ring r, Item i, Item j)

extracted = new Ring()
extracted.entry = j
return extracted

1 ring.entry = j.next
2 i.prev.next = j.next
3 j.next.prev = i.prev
4 i.prev =

5 j.next =i

6

7

8

(d) Implementieren Sie die Methode merge(Ring r, Ring u), die die Items des Rings u vor r.entry einfiigt.
Achten Sie darauf, dass die Reihenfolge der Elemente innerhalb der Ringe gleich bleibt.

Seite 7

Lehrstuhl fiir Informatik I
23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Losung:

Algorithmus 11: merge(Ring r, Ring u)

r.entry.prev.next = u.entry.prev
u.entry.next.prev = r.entry.prev
r.entry.prev = u.entry
u.entry.next = r.entry

B W N =

Aufgabe 8: Waggons stapeln

a—

Einfahrtsgleis

Ausfahrtsgleis !

Abstellgleis

Wir betrachten einen Zug mit n verschiedenen Giiterwagons, die mit den Zahlen 1 bis n aufsteigend be-
schriftet sind. Wir betrachten folgenden Algorithmus:

1. Nimm vom Anfang des Zuges eine zufillige Anzahl von Waggons.

2. Schiebe diese Waggons auf das Abstellgleis.

3. Nimm eine zufillige Anzahl von Waggons auf dem Abstellgleis und schiebe sie aufs Ausfahrtsgleis.

4. Wiederhole ab 1., bis alle Waggons auf dem Ausfahrtgleis sind.

(a) Formulieren Sie den obigen Algorithmus in Pseudocode. Die Eingabe ist eine Zahl n, die Ausgabe soll
ein entsprechend permutiertes Feld der Zahlen 1 bis n sein.

Losung: Idee: Fasse Abstellgleis als Stapel auf und verwalte Waggons in doppelt-verketteter Liste,
damit wir einfacher 16schen kénnen.

(b) Geben Sie einen Algorithmus an, der fiir eine Waggonfolge entscheidet, ob diese durch dieses Verfahren
zustande gekommen ist. Beispiel: Die Folge 3 — 2 — 4 — 1 ist entstanden, indem zuerst die Wagons 1, 2
und 3 auf das Abstellgleis wanderten. Dann wurde Waggons 3 und 2 aufs Ausfahrtsgleis gestellt, danach
Waggon 4 vom Einfahrtsgleis aufs das Ausfahrtsgleis umgeparkt und zuletzt Waggon 1 hinten an den
Zug angehéngt.

Losung:

Die Idee ist es, den Rangiervorgang riickgdngig zu machen. Dazu gehen wir das Eingabefeld
riickwérts durch. Solange die Zahlen dabei auf dem Weg nach vorne steigen, speichern wie sie in
einem Stapel. Dies funktioniert, da wir die kleineren Zahlen praktisch zwischenspeichern miissen.
Sobald auf dem Weg von hinten die Zahlen jedoch wieder kleiner werden, nehmen wir die grofien
Zahlen vom Stapel und fiigen sie in die Ausgabeliste ein. Wenn diese am Ende die Zahlen in kor-
rekter Reihenfolge enthélt, dann war die Eingabefolge giiltig.

Seite 8

Lehrstuhl fiir Informatik I
23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 9: Henne-Ei-Problem

(a) Implementieren Sie eine Queue mit den Operationen dequeue() und enqueue(key k), die intern zwei
Stacks verwendet.

Losung: Idee: Unsere Queue hat intern zwei Stacke s; und so. Wir benutzen si, fiir die enqeue-
Operationen und s fiir die dequeue-Operationen. Wenn sich die Aktionen dndern, legen wir alle
Elemente auf den jeweils anderen Stapel.

(b) Implementieren Sie einen Stack mit Operationen pop() und push(key k), der zwei Queues verwendet.

Loésung: Idee: Unser Stack hat intern zwei Queues ¢; und go. Wir benutzen ¢; und ¢ jeweils
abwechselnd, um die Elemente in den Stapel einzufiigen. Dabei werden die Elemente bei jeder
Einfiigeoperation in die jeweils andere Queue kopiert, um die Reihenfolge der Elemente umzukehren.
Die Losch-Operation liest jeweils das néchste Element aus der nicht-leeren Queue.

Aufgabe 10: DivContainer-Datenstruktur

In dieser Aufgabe sollen Sie eine Datenstruktur implementieren, die iiber zwei Operationen verfiigt: insert(z)
fiigt eine beliebige, positive Zahl in die Datenstruktur ein und get(d), die eine beliebige Zahl aus der Daten-
struktur ausgibt, die durch d teilbar ist.

(a) Geben Sie eine Implementation beider Methoden an, wenn get(d) keine Laufzeitbeschriankungen hat und
die zuriickgegebene Zahl nicht aus der Datenstruktur entfernt werden soll. Welche Laufzeiten haben ihre
Methoden?

Lo6sung: Unsere Datenstruktur besitzt intern eine doppelt-verkettete Liste list, die die iiblichen Me-
thoden hat. Dann kénnen beide Operationen durch list.insert(x) bzw. einen modifizierten list.search(k)-
Algorithmus implementiert werden.

(b) Nun soll die zuriickgegebene Zahl aus der Datenstruktur geloscht werden. Wie miissen Sie Ihre Imple-
mentationen aus a) verindern, damit dies moglich wird? Andern sich die Laufzeiten?

Losung: Wir rufen im Algorithmus die Methode list.remove(item) auf, die das Léschen fiir uns
iibernimmt. Die Laufzeit dndert sich hierdurch nicht.

Aufgabe 11: Implementieren einer eigenen Datenstruktur

Gesucht ist eine Datenstruktur MinStack zum Verwalten einer dynamischen Menge S von Zahlen. Es sollen
wie bei einem Stapel die Methoden push(key k) und pop() zur Verfiigung stehen, zusitzlich eine Methode
Minimum(), welche die kleinste Zahl der Menge S zuriick gibt. Alle Operationen sollen in konstanter Zeit
ablaufen. Tipp: Verwenden Sie intern mehr als eine Datenstruktur.

(a) Geben Sie eine Implementierung der Datenstruktur in Pseudocode an.

Losung: Die Datenstruktur besitzt zwei Stacks s; und ss. In s; werden ganz herkéommlich die
Zahlen gespeichert. In sy wird eine Zahl nur dann gespeichert, falls sie das aktuelle Minimum ist.
Ein Attribut minimum speichert das aktuelle Minimum.

(b) Zeigen Sie, dass es keine Datenstruktur geben kann, die zusétzlich zu den obigen Operationen eine
weitere Operation popMinimum() mit konstanter Laufzeit anbietet. Diese Operation l6scht das aktuelle
Minimum aus dem MinStack.

Seite 9

Lehrstuhl fiir Informatik I

23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Losung: In diesem Fall liefle sich ein Sortieralgorithmus fiir beliebige Zahlen und mit linearer
Laufzeit konstruieren, was im Widerspruch zum Resultat aus der Vorlesung steht, dass man zum
Sortieren von n beliebigen Zahlen Q(nlogn) Zeit braucht.

Aufgabe 12: Brainfuck-Interpreter (umfang- und lehrreich)
In dieser Aufgabe entwickeln wir einen Interpreter fiir die esoterische Programmiersprache Brainfuck.

(a)

In unserer Version von Brainfuck besteht der Speicher aus einem Band mit theoretisch unendlich vielen
Zellen, in denen ganze Zahlen stehen koénnen. Brainfuck verwaltet einen Zeiger, der auf eine Zelle zeigt.
Zu Beginn zeigt der Zeiger auf die erste Zelle des Bandes. Implementieren Sie eine Datenstruktur
BFMemory, die die folgenden Operationen besitzt:

new BFMemory() Erzeugt ein neues Band. In allen Zellen steht eine 0.
incrementPointer() Schiebt den Zeiger auf die néchste Zelle.

decrementPointer() Schiebt den Zeiger auf die vorherige Zelle.

incrementValue() Erhoht den Wert der Zelle, auf der der Zeiger steht, um eins.
decrementValue() Erniedrigt den Wert der Zelle, auf der der Zeiger steht, um eins.

int getCurrentCellValue() Gibt den Wert der Zelle zuriick, auf der der Zeiger gerade steht.

Keine der Operationen soll Fehler verursachen. Wenn der Zeiger auf eine Zelle verschoben wird, die
nicht existiert, muss das Band vergrofiert werden.

Losung: Wir 16sen das Problem mit einer doppelt verketteten Liste list, die als Attribut in unseren
Datenstruktur-Methoden zur Verfiigung steht. Am Anfgang hat die Liste einen Eintrag.

Ein Brainfuck-Programm wird durch einen Array repréisentiert. Die Eintréige des Arrays sind die Befehle.
In unserer Brainfuck-Version erlauben wir sieben Befehle:

> Verschiebt den Zeiger des Bands nach rechts.

< Verschiebt den Zeiger des Bands nach links.

+ Inkrementiert den Wert der aktuellen Zelle.

- Dekrementiert den Wert der aktuellen Zelle.

[Falls der Wert der aktuellen Zelle 0 ist, springe hinter passendes], ansonsten ignoriere Befehl.

] Springe vor passendes], welches als néchstes ausgewertet wird.
Gebe die Zelle, auf der der Zeiger steht, aus.

Welche Ausgabe hat folgendes Brainfuck-Programm?
FHtttt Dttt <] D> < D] >

Loésung: Das Programm gibt die ASCII-Werte der Buchstaben ,A“ ,D“ und ,,S*“ aus, also 65, 68
und 83.

Geben Sie nun unter Verwendung Threr Datenstruktur BFMemory einen Algorithmus an, der ein Brainfuck-
Programm als Array entgegen nimmt und dieses geméfl den obigen Regeln ausfiihrt. Sie diirfen davon
ausgehen, dass die eingegebenen Programme korrekt sind. Tipp: Verwenden Sie Rekursion.

Loésung:

Die Schwierigkeit liegt offensichtlich in den verschachtelten Schleifen. Unser Algorithmus sucht,
wenn er eine 6ffnende Schleife findet, nach der passenden schlieffenden Klammern, indem er jedes
Zeichen des Codes einliest und die offenen Klammern zéhlt. Sobald er auf eine schliefende Klammer
trifft und der Zéahler 0 ist, hat er die richtige Klammer gefunden. Anschliefend wird diese Schleife

Seite 10

Lehrstuhl fiir Informatik I
23.03.2021 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

rekursiv ausgewertet. Um die Sache nicht unnétig zu verkomplizieren gehen wir davon aus, dass die
Datenstruktur BFMemory global zugéinglich ist.

(d) Sei B = {x € N| 64 < & < 97}. Schreiben Sie einen Algorithmus, der als Eingabe eine Liste von
Zahlen A mit Afi] € B fiir alle ¢ < A.length erhilt. Die Ausgabe Thres Algorithmus soll ein giiltiger
Brainfuck-Code sein, der die Zahlen in A nacheinander ausgibt. Der Code muss nicht minimal kurz
sein. Verwenden Sie eine verkettete Liste, um den Code Schritt fiir Schritt aufzubauen.

Losung: Die einfachste Losung besteht darin, lediglich eine Zelle zu verwenden und anhand der
Werte im Array den Code aufzubauen.

Schneller wére es zum Beispiel, zumindest eine konstante Schleifenkonstruktion zu Beginn ein-
zufiigen, die den Wert auf 65 hoch zdhlt und alle Werte in A um 65 erniedrigt. Noch besser wire
es, dynamisch Schleifen zu erzeugen, um moglichst kurzen Code zu erzeugen.

Seite 11

