
Aufgabensammlung ADS-Repetitorium 2021
Rekursive Laufzeit – Datenstrukturen

Aufgabe 1: Rekursive Laufzeiten
Finden Sie für die nachstehenden Rekursionsgleichungen jeweils eine Funktion f , für die T ∈ Θ(f) gilt. Sie
können davon ausgehen, dass die Laufzeit im Basisfall konstant ist.

(a) T (n) = 4T (bn/2c) + 1
2n

2
√
n

Lösung: T (n) ∈ Θ(0, 5n2
√
n).

(b) T (n) = 4T (bn/2c) + n2 log n+ n

Lösung: T (n) ∈ Θ(n2 log2 n).

(c) T (n) = T (n− 3) + 2n

Lösung: T (n) ∈ Θ(n2).

(d) T (n) = 2T (bn/4c) + 3
√
n

Lösung: T (n) ∈ Θ(
√
n log n).

(e) T (n) = 3T (bn/2c) + n
6

Lösung: T (n) ∈ Θ(nlog2 3).

(f) T (n) = 3T (bn/5c) + 1
2

√
n

Lösung: T (n) ∈ Θ(nlog5 3).

(g) T (n) = 12T (bn/2c) + n4

Lösung: T (n) ∈ Θ(n4).

(h) T (n) = T (bn/2c) + T (dn/2e) +O(n log n)

Lösung: T (n) ∈ Θ(n log2 n).

Aufgabe 2: Rekursive Algorithmen
Geben Sie jeweils einen Algorithmus an, der die gegebene Laufzeit erfüllt. Alle Algorithmen sollen im Basis-
fall, also für n = 1, konstante Laufzeit haben. Als Eingabe bekommen die Algorithmen jeweils ein Feld der
Länge n. Die Algorithmen sollten eine Rückgabe haben, doch der Wert der Rückgabe ist egal. Sie dürfen
Rundungsfehler ignorieren.

1

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(a) T (n) = 3T (n− 1) + n

Lösung:

Algorithmus 1: recursiveAlgo(A[])

1 if A.size ≤ 1 then
2 return 42

3 for i = 1 to n do
4 A[i] = i

5 recursiveAlgo(A[1..n− 1])
6 recursiveAlgo(A[1..n− 1])
7 recursiveAlgo(A[1..n− 1])
8 return A[1]

(b) T (n) = 4T (n/4) +O(n)

Lösung:

Algorithmus 2: recursiveAlgo(A[])

1 if A.size ≤ 1 then
2 return 42

3 for i = 1 to n do
4 A[i] = i

5 recursiveAlgo(A[1..n/4])
6 recursiveAlgo(A[1..n/4])
7 recursiveAlgo(A[1..n/4])
8 recursiveAlgo(A[1..n/4])
9 return A[1]

(c) T (n) = T (dn/2e) + T (bn/2c) + T (
√
n); bitte beachten Sie hier die Rundungen.

Lösung:

Algorithmus 3: recursiveAlgo(A[])

1 if A.size ≤ 1 then
2 return 42

3 for i = 1 to
√
n do

4 A[i] = i

5 recursiveAlgo(A[1..dn/2e])
6 recursiveAlgo(A[1..bn/2c])
7 return A[1]

(d) T (n) = 3T (n− 5) + n log n

Seite 2

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung:

Algorithmus 4: recursiveAlgo(A[])

1 if A.size ≤ 1 then
2 return 42

3 MergeSort(A)
4 recursiveAlgo(A[1..n− 5])
5 recursiveAlgo(A[1..n− 5])
6 recursiveAlgo(A[1..n− 5])
7 return A[1]

(e) T (n) = T (n− 1) + T (n− 2) + 42T (n/2) + n2

Lösung:

Algorithmus 5: recursiveAlgo(A[])

1 if A.size ≤ 1 then
2 return 42

3 InsertionSort(A)
4 recursiveAlgo(A[1..n− 1])
5 recursiveAlgo(A[1..n− 2])
6 for i = 1 to 42 do
7 recursiveAlgo(A[1..n/2])

8 return A[1]

Aufgabe 3: Rekursive Gleichung aufstellen
Gegeben sei folgender Algorithmus:

Algorithmus 6: RecursiveAlgo(int A[], l= 1, r=A.length)

1 if l < r then
2 m = b(l + r)/2c
3 RecursiveAlgo(A, l, m)
4 RecursiveAlgo(A, m+ 1, r)
5 InsertionSort(A, l, r)

(a) Stellen Sie eine Rekursionsgleichung T für den gegebenen Algorithmus auf.

Lösung:

T (n) =

{
2 · T (n/2) + n2 falls n > 1

1 sonst

(b) Finden Sie eine Funktion f , für die T ∈ Θ(f) gilt.

Lösung: T (n) ∈ Θ(n2).

Seite 3

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Aufgabe 4: Löschen in einer Hash-Tabelle
Gegeben sei eine Hashtabelle H mit einer Hash-Funktion h(x, i). Es wird offene Adressierung verwendet.

(a) Beschreiben Sie in Worten, wie der Algorithmus Search(int k) aus der Vorlesung funktioniert.

Lösung: Der Algorithmus bildet den Hash h von k und prüft H[h]. Wenn der Inhalt dem gesuchten
Wert entspricht, wird dieser zurückgegeben, ansonsten wird i inkrementiert und mit der verwendeten
Methode zur Auflösung von Kollisionen ein neuer Hash h gebildet. Das wird wiederholt, bis entweder
ein leerer Eintrag oder der gesuchte Wert gefunden wird.

(b) Ein Element k soll aus der Tabelle gelöscht werden. Warum sollte man den Wert nicht mit der folgenden
Befehlsfolge löschen?
j = Search(k)
H[j] = −1

Lösung: Nach dem in a) beschrieben Vorgehen der Methode Search(k) bricht die Suche ab, wenn
ein leerer Eintrag gefunden wird. Wenn nun mitten in der Sondierfolge ein Eintrag gelöscht wird,
bricht die Suche nach einem anderen, später eingefügten Element eventuell zu früh ab und findet
das Element nicht mehr.

(c) Implementieren Sie die Operation Delete(int k), die einen Schlüssel aus der Tabelle löscht, ohne dass das
Problem aus b) auftritt. Tipp: Verwenden Sie einen besonderen Wert, um gelöschte Zellen zu markieren.

Lösung:

Algorithmus 7: Delete(int k)

1 j = Search(k)
2 H[j] = deleted value

(d) Welche Änderung muss nun in den Methoden Insert(int k) und Search(int k) vorgenommen werden?

Lösung: Die Insert(int k)-Methode muss nun jeden Wert, der ihr während der Sondierreihenfolge
begegnet, auf den special value überprüfen. Wenn sie einen solchen findet, darf sie ihn ersetzen. In
der Search(int k) muss keine Änderung vorgenommen werden, da der special value ungleich dem
leeren Wert ist. Die Suche geht also einfach über die gelöschte Zelle hinweg.

(e) Beschreiben Sie kurz die Auswirkungen Ihrer Änderungen auf die Laufzeit der Operationen.

Lösung: Die Laufzeit der Insert(int k) ändert sich nicht, aber die Laufzeit von Search(int k) ver-
schlechtert sich, wenn das gesuchte Element nicht in der Datenstruktur vorhanden ist. Nehmen wir
an, alle Werte aus einer ehemals vollen Datenstruktur wurden gelöscht. Die Search(int k)-Funktion
muss nun trotzdem alle Felder betrachten, da in allen Feldern der special value steht, bevor sie
false zurückgibt.

Aufgabe 5: Doppeltes Hashing
Welche der folgenden Funktionen eignen sich für eine Hashtabelle der Länge 25, wenn doppeltes Hashing
verwendet wird und die Hashfunktion h(k, i) = (h0(k) + ih1(k)) mod 25 mit h0(k) = (4k + 2) mod 25 ist?
Begründen Sie Ihre Entscheidungen.

(a) h1(k) = 1

Seite 4

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung: Geeignet.

(b) h1(k) = 9− (k mod 4)

Lösung: Geeignet.

(c) h1(k) = k mod 17

Lösung: Ungeeignet.

(d) h1(k) = (3 + 5k) mod 25

Lösung: Geeignet.

(e) h1(k) = (4k − 1) mod 13

Lösung: Ungeeignet.

Aufgabe 6: Doppelt-Verkettete Listen
Gegeben sei folgender Algorithmus

Algorithmus 8: modifyList(List L)

1 item = L.head
2 size = 1
3 while item.next ! = null do
4 item = item.next
5 size = size + 1

6 item = L.head
7 for i = 1 to bsize/2c do
8 item = item.next
9 item.prev.next = item.next

10 item.next.prev = item.prev
11 item = item.next

(a) Sei L = 34 42 13 77 23 .

Zeichnen Sie die Liste für jede Iteration der Schleife in Zeile 7.

(b) Beschreiben Sie, was der Algorithmus allgemein macht.

Lösung: Der Algorithmus löscht jedes zweite Element, angefangen beim zweiten, aus der Liste.

(c) Der Algorithmus enthält zwei Fehler. Geben Sie eine Liste an, sodass die Ausführung von Zeile 3
fehlschlägt. Geben Sie außerdem eine Liste an, die zu einem Fehler in Zeile 10 führt. Verbessern Sie den
Pseudocode.

Lösung: Falls die Liste leer ist, also L.head ist leer, dann wird ein Fehler in Zeile drei erzeugt.
Zur Verbesserung muss man zu Beginn des Algorithmus eine Abfrage durchführen, ob die Liste
leer ist. Ist dies der Fall, kann man die Ausführung des Algorithmus sofort abbrechen. Falls die

Seite 5

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Liste eine gerade Länge hat, wird versucht, das letzte Element zu löschen. item.next ist aber nicht
definiert, sodass auf item.next.prev nicht zugriffen werden kann. Man kann dies ebenfalls durch eine
entsprechende Abfrage lösen.

(d) Was würde passieren, wenn Zeile 11 gelöscht würde?

Lösung: Es wird die Subliste angefangen bei Element 2 bis zum ersten Element nach der Hälfte
(inklusive) gelöscht.

(e) Welche Augmentierung der Datenstruktur List schlagen Sie vor, um den Code zu verkürzen?

Lösung: Durch die Verwendung eines Attributs size, welches die Länge der Liste angibt, können
die ersten 5 Zeilen gelöscht werden.

Seite 6

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Aufgabe 7: Ringe
Ein Ring ist eine Datenstruktur, die auf einer doppelt-verketteten Liste aufbaut. Der Unterschied zwischen
beiden Datenstrukturen ist, dass beim Ring die Attribute next und prev niemals nil sind und über next
eines beliebigen Elements jedes andere Element erreicht werden kann (analog auch über prev in die andere
Richtung). Jeder Ring hat einen Pointer entry auf einen beliebiges Element im Ring. Ansonsten gibt es die
gleichen Operationen wie bei der Liste, wobei insert(k) vor dem aktuellen entry einfügt und dann entry aufs
neue Item setzt.

(a) Zeichnen Sie den Ring, der die ersten vier Fibonacci-Zahlen enthält. Der Pointer entry soll auf eine
gerade Primzahl zeigen.

Lösung: 1 � 1 � 2 � 3 � 5, sowie zwischen 5 und 1 besteht eine wechselseitige Verbindung. Der
Pointer entry zeigt auf die 2.

(b) Implementieren Sie die Methode makeRing(List l), die aus einer doppelt-verketteten Liste einen Ring
macht. Der Pointer entry des entstanden Rings soll dabei auf den Kopf der ursprünglichen Liste zeigen.
Die Liste darf verändert werden.

Lösung:

Algorithmus 9: makeRing(List list)

1 tail = list.head
2 if tail = null then return
3 while tail.next 6= null do
4 tail = tail.next

5 list.head.prev = tail
6 tail.next = list.head
7 ring = new Ring()
8 ring.entry = list.head
9 return ring

(c) Implementieren Sie die Methode split(Ring r, Item i, Item j), die den Ring r in zwei Ringe aufspaltet.
Dabei sollen alle Items zwischen i und j (inklusive, in Richtung des next-Attributs) aus r gelöscht werden
und als eigener Ring zurückgegeben werden. Weisen Sie die entry-Werte beliebig, aber gültig, zu. Gehen
Sie davon aus, dass mindestens ein Element in r verbleibt (mit anderen Worten i.prev 6= j).

Lösung:

Algorithmus 10: split(Ring r, Item i, Item j)

1 ring.entry = j.next
2 i.prev.next = j.next
3 j.next.prev = i.prev
4 i.prev = j
5 j.next = i
6 extracted = new Ring()
7 extracted.entry = j
8 return extracted

(d) Implementieren Sie die Methode merge(Ring r, Ring u), die die Items des Rings u vor r.entry einfügt.
Achten Sie darauf, dass die Reihenfolge der Elemente innerhalb der Ringe gleich bleibt.

Seite 7

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung:

Algorithmus 11: merge(Ring r, Ring u)

1 r.entry.prev.next = u.entry.prev
2 u.entry.next.prev = r.entry.prev
3 r.entry.prev = u.entry
4 u.entry.next = r.entry

Aufgabe 8: Waggons stapeln

Wir betrachten einen Zug mit n verschiedenen Güterwagons, die mit den Zahlen 1 bis n aufsteigend be-
schriftet sind. Wir betrachten folgenden Algorithmus:

1. Nimm vom Anfang des Zuges eine zufällige Anzahl von Waggons.

2. Schiebe diese Waggons auf das Abstellgleis.

3. Nimm eine zufällige Anzahl von Waggons auf dem Abstellgleis und schiebe sie aufs Ausfahrtsgleis.

4. Wiederhole ab 1., bis alle Waggons auf dem Ausfahrtgleis sind.

(a) Formulieren Sie den obigen Algorithmus in Pseudocode. Die Eingabe ist eine Zahl n, die Ausgabe soll
ein entsprechend permutiertes Feld der Zahlen 1 bis n sein.

Lösung: Idee: Fasse Abstellgleis als Stapel auf und verwalte Waggons in doppelt-verketteter Liste,
damit wir einfacher löschen können.

(b) Geben Sie einen Algorithmus an, der für eine Waggonfolge entscheidet, ob diese durch dieses Verfahren
zustande gekommen ist. Beispiel: Die Folge 3 – 2 – 4 – 1 ist entstanden, indem zuerst die Wagons 1, 2
und 3 auf das Abstellgleis wanderten. Dann wurde Waggons 3 und 2 aufs Ausfahrtsgleis gestellt, danach
Waggon 4 vom Einfahrtsgleis aufs das Ausfahrtsgleis umgeparkt und zuletzt Waggon 1 hinten an den
Zug angehängt.

Lösung:

Die Idee ist es, den Rangiervorgang rückgängig zu machen. Dazu gehen wir das Eingabefeld
rückwärts durch. Solange die Zahlen dabei auf dem Weg nach vorne steigen, speichern wie sie in
einem Stapel. Dies funktioniert, da wir die kleineren Zahlen praktisch zwischenspeichern müssen.
Sobald auf dem Weg von hinten die Zahlen jedoch wieder kleiner werden, nehmen wir die großen
Zahlen vom Stapel und fügen sie in die Ausgabeliste ein. Wenn diese am Ende die Zahlen in kor-
rekter Reihenfolge enthält, dann war die Eingabefolge gültig.

Seite 8

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Aufgabe 9: Henne-Ei-Problem

(a) Implementieren Sie eine Queue mit den Operationen dequeue() und enqueue(key k), die intern zwei
Stacks verwendet.

Lösung: Idee: Unsere Queue hat intern zwei Stacke s1 und s2. Wir benutzen s1, für die enqeue-
Operationen und s2 für die dequeue-Operationen. Wenn sich die Aktionen ändern, legen wir alle
Elemente auf den jeweils anderen Stapel.

(b) Implementieren Sie einen Stack mit Operationen pop() und push(key k), der zwei Queues verwendet.

Lösung: Idee: Unser Stack hat intern zwei Queues q1 und q2. Wir benutzen q1 und q2 jeweils
abwechselnd, um die Elemente in den Stapel einzufügen. Dabei werden die Elemente bei jeder
Einfügeoperation in die jeweils andere Queue kopiert, um die Reihenfolge der Elemente umzukehren.
Die Lösch-Operation liest jeweils das nächste Element aus der nicht-leeren Queue.

Aufgabe 10: DivContainer-Datenstruktur
In dieser Aufgabe sollen Sie eine Datenstruktur implementieren, die über zwei Operationen verfügt: insert(x)
fügt eine beliebige, positive Zahl in die Datenstruktur ein und get(d), die eine beliebige Zahl aus der Daten-
struktur ausgibt, die durch d teilbar ist.

(a) Geben Sie eine Implementation beider Methoden an, wenn get(d) keine Laufzeitbeschränkungen hat und
die zurückgegebene Zahl nicht aus der Datenstruktur entfernt werden soll. Welche Laufzeiten haben ihre
Methoden?

Lösung: Unsere Datenstruktur besitzt intern eine doppelt-verkettete Liste list, die die üblichen Me-
thoden hat. Dann können beide Operationen durch list.insert(x) bzw. einen modifizierten list.search(k)-
Algorithmus implementiert werden.

(b) Nun soll die zurückgegebene Zahl aus der Datenstruktur gelöscht werden. Wie müssen Sie Ihre Imple-
mentationen aus a) verändern, damit dies möglich wird? Ändern sich die Laufzeiten?

Lösung: Wir rufen im Algorithmus die Methode list.remove(item) auf, die das Löschen für uns
übernimmt. Die Laufzeit ändert sich hierdurch nicht.

Aufgabe 11: Implementieren einer eigenen Datenstruktur
Gesucht ist eine Datenstruktur MinStack zum Verwalten einer dynamischen Menge S von Zahlen. Es sollen
wie bei einem Stapel die Methoden push(key k) und pop() zur Verfügung stehen, zusätzlich eine Methode
Minimum(), welche die kleinste Zahl der Menge S zurück gibt. Alle Operationen sollen in konstanter Zeit
ablaufen. Tipp: Verwenden Sie intern mehr als eine Datenstruktur.

(a) Geben Sie eine Implementierung der Datenstruktur in Pseudocode an.

Lösung: Die Datenstruktur besitzt zwei Stacks s1 und s2. In s1 werden ganz herkömmlich die
Zahlen gespeichert. In s2 wird eine Zahl nur dann gespeichert, falls sie das aktuelle Minimum ist.
Ein Attribut minimum speichert das aktuelle Minimum.

(b) Zeigen Sie, dass es keine Datenstruktur geben kann, die zusätzlich zu den obigen Operationen eine
weitere Operation popMinimum() mit konstanter Laufzeit anbietet. Diese Operation löscht das aktuelle
Minimum aus dem MinStack.

Seite 9

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung: In diesem Fall ließe sich ein Sortieralgorithmus für beliebige Zahlen und mit linearer
Laufzeit konstruieren, was im Widerspruch zum Resultat aus der Vorlesung steht, dass man zum
Sortieren von n beliebigen Zahlen Ω(n log n) Zeit braucht.

Aufgabe 12: Brainfuck-Interpreter (umfang- und lehrreich)
In dieser Aufgabe entwickeln wir einen Interpreter für die esoterische Programmiersprache Brainfuck.

(a) In unserer Version von Brainfuck besteht der Speicher aus einem Band mit theoretisch unendlich vielen
Zellen, in denen ganze Zahlen stehen können. Brainfuck verwaltet einen Zeiger, der auf eine Zelle zeigt.
Zu Beginn zeigt der Zeiger auf die erste Zelle des Bandes. Implementieren Sie eine Datenstruktur
BFMemory, die die folgenden Operationen besitzt:

new BFMemory() Erzeugt ein neues Band. In allen Zellen steht eine 0.
incrementPointer() Schiebt den Zeiger auf die nächste Zelle.
decrementPointer() Schiebt den Zeiger auf die vorherige Zelle.
incrementValue() Erhöht den Wert der Zelle, auf der der Zeiger steht, um eins.
decrementValue() Erniedrigt den Wert der Zelle, auf der der Zeiger steht, um eins.
int getCurrentCellValue() Gibt den Wert der Zelle zurück, auf der der Zeiger gerade steht.

Keine der Operationen soll Fehler verursachen. Wenn der Zeiger auf eine Zelle verschoben wird, die
nicht existiert, muss das Band vergrößert werden.

Lösung: Wir lösen das Problem mit einer doppelt verketteten Liste list, die als Attribut in unseren
Datenstruktur-Methoden zur Verfügung steht. Am Anfgang hat die Liste einen Eintrag.

(b) Ein Brainfuck-Programm wird durch einen Array repräsentiert. Die Einträge des Arrays sind die Befehle.
In unserer Brainfuck-Version erlauben wir sieben Befehle:

> Verschiebt den Zeiger des Bands nach rechts.
< Verschiebt den Zeiger des Bands nach links.
+ Inkrementiert den Wert der aktuellen Zelle.
- Dekrementiert den Wert der aktuellen Zelle.
[Falls der Wert der aktuellen Zelle 0 ist, springe hinter passendes], ansonsten ignoriere Befehl.
] Springe vor passendes], welches als nächstes ausgewertet wird.
. Gebe die Zelle, auf der der Zeiger steht, aus.

Welche Ausgabe hat folgendes Brainfuck-Programm?
++++++[>+++++++++++<-]>-.+++.<++++[>++++<-]>-.

Lösung: Das Programm gibt die ASCII-Werte der Buchstaben
”
A“,

”
D“ und

”
S“ aus, also 65, 68

und 83.

(c) Geben Sie nun unter Verwendung Ihrer Datenstruktur BFMemory einen Algorithmus an, der ein Brainfuck-
Programm als Array entgegen nimmt und dieses gemäß den obigen Regeln ausführt. Sie dürfen davon
ausgehen, dass die eingegebenen Programme korrekt sind. Tipp: Verwenden Sie Rekursion.

Lösung:

Die Schwierigkeit liegt offensichtlich in den verschachtelten Schleifen. Unser Algorithmus sucht,
wenn er eine öffnende Schleife findet, nach der passenden schließenden Klammern, indem er jedes
Zeichen des Codes einliest und die offenen Klammern zählt. Sobald er auf eine schließende Klammer
trifft und der Zähler 0 ist, hat er die richtige Klammer gefunden. Anschließend wird diese Schleife

Seite 10

23.03.2021 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

rekursiv ausgewertet. Um die Sache nicht unnötig zu verkomplizieren gehen wir davon aus, dass die
Datenstruktur BFMemory global zugänglich ist.

(d) Sei B = {x ∈ N | 64 < x < 97}. Schreiben Sie einen Algorithmus, der als Eingabe eine Liste von
Zahlen A mit A[i] ∈ B für alle i ≤ A.length erhält. Die Ausgabe Ihres Algorithmus soll ein gültiger
Brainfuck-Code sein, der die Zahlen in A nacheinander ausgibt. Der Code muss nicht minimal kurz
sein. Verwenden Sie eine verkettete Liste, um den Code Schritt für Schritt aufzubauen.

Lösung: Die einfachste Lösung besteht darin, lediglich eine Zelle zu verwenden und anhand der
Werte im Array den Code aufzubauen.
Schneller wäre es zum Beispiel, zumindest eine konstante Schleifenkonstruktion zu Beginn ein-
zufügen, die den Wert auf 65 hoch zählt und alle Werte in A um 65 erniedrigt. Noch besser wäre
es, dynamisch Schleifen zu erzeugen, um möglichst kurzen Code zu erzeugen.

Seite 11

