Overview

- Set membership data structures
- Why are false positives acceptable
- A Bloom filter in a few steps
- Bloom filter tricks
- GloBiMaps

SetMembership

$$O(1)$$
 $O(\log n)$ $O(1)O(n)$

HASH MAP

$$O(n)$$
 $O(log n)$ $O(1)O(n)$

$$Test(x:U):bool O(n) O(logn) O(1)O(n)$$
"Search" Needs: = \Leftrightarrow hash =

Bit Set

Bijection between elements and array of bits

SetMembership

Add(x:U)

TREE $O(\log n)$ HASH MAP

BIT SET O(1)

O(1)O(n)

Remove(x.1) Olas Colognia (2000)

Test(x:U):bool

 $O(\log n)$ O(1)O(n)

O(1)

Needs:

hash

index

Space

Also store the elements

IUI bits

Space/Time Trade-offs in Hash Coding with Allowable Errors

Burton H. Bloom Computer Usage Company, Newton Upper Falls, Mass.

Communications of the ACM • July 1970

In this paper trade-offs among certain computational factors in hash coding are analyzed. The paradigm problem considered is that of testing a series of messages one-by-one for membership in a given set of messages. Two new hashcoding methods are examined and compared with a particular conventional hash-coding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency.

In such applications, it is envisaged that overall performance could be improved by using a smaller core resident hash area in conjunction with the new methods and, when necessary, by using some secondary and perhaps time-consuming test to "catch" the small fraction of errors associated with the new methods. An example is discussed which illustrates possible areas of application for the new methods.

Allow false positives

FILTER Test(x) True! > NO NO

Allow false positives

Allow false positives

Is this a good idea?

- Depends on "Filter" versus "Actual Set" cost
- Depends on hit rates
- True False

 If filter can be amazingly small

 Negative

 Maybe you don't actually have the set!

 Fastilize to Filter + Set Miss

Applications 1/3

- Bloom '70: hyphenation
 - Most words covered by a few rules
 - Make a set containing the exceptions
 - Hypenation algo: check set, else use rules
 - Let's add a filter! False positives?
 - Unnecessary lookup; still correct

Applications 2/3

- MrIlroy '82: early UNIX spell-checkers
 - Store correct words. False positives?
 - Just accept them
 - Amazingly small filter!
- Spafford '92: unsuitable passwords
 - Store the set. False positives?
 - Not really harmful

Applications 3/3

- Chrome: local filter for malicious URLs
 - Mostly misses
 - Google doesn't see where you try to go
 - You don't get the list
 - False positives?
 - Unnecessary warning; or ask Google.

Bit Set

- Good constant factors
- Too large when universe U is large
 - Especially annoying if n << |U|

 $h: U \rightarrow \mathbb{Z}_m$

Test(2) h(2) 4 5

 $h: U \rightarrow \mathbb{Z}_m$

Remove(x)?

The function h

Take a "hash function"

- For the analysis, we will assume it gives independent uniformly random indices

"Probabilistic data structure"

- Hashmaps:

deterministic correctness expected runtime

Bloom filters:

expected correctness deterministic runtime

False positive probability

P[bit
$$i$$
 is \bullet after the first insertion $1 - \frac{1}{m}$ $\lim_{m \to \infty} (1 - \frac{1}{m})^m = \frac{1}{e}$

P[bit i is still o after the first n insertions]

$$\left(1-\frac{1}{m}\right)^n = \left[\left(1-\frac{1}{m}\right)^n\right]^n \approx e^{-\frac{n}{m}}$$

False positive probability

P[bit i is **1** after n insertions]

$$\approx 1-e^{-\frac{n}{m}}$$

- Consider Test(x) for nonmember x
- Bit h(x) is set with probability...-

Probably fixed

Maybe fixed

Costs space **Parameters** Number of items Number of bits < Frror bound

Dictionary example

English dictionary

(≈3 MB ASCII)

n

500.000

100 kB

1 MB

m

3 MB

3

≈ 46%

 $\approx 5\%$

 $\approx 1.9\%$

 $h_1, h_2: U \rightarrow \mathbb{Z}_m$

$$h_1, h_2: U \rightarrow \mathbb{Z}_m$$

Test(
$$z$$
) $h_{1}(z)$
 $2 \in S$

NO!

 $1 = 1 \quad 1 \quad M$
 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

Bloom filter

- Fix **k** hash functions h_i
- Storage: array of **m** bits, all start unset

```
Add(x): set all bits h_i(x)

Test(x): are all bits h_i(x) set?
```

What is the effect of k?

- Increases runtime
- It does not affect the space!

- Error probability?
 - Check more bits: accidents less likely
 - Set more bits: accidents are more likely

False positive probability

A particular bit is o after the first insertion:

$$\left(1 - \frac{1}{m}\right)^{k} = \left[\left(1 - \frac{1}{m}\right)^{m}\right]^{k} \approx e^{-\frac{k}{m}}$$

A particular bit is still o after n insertions:

$$\left(1-\frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

False positive probability

A particular bit is 1 after n insertions:

$$\approx 1 - e^{-\frac{kn}{m}}$$

- False positive
$$Test(x)$$
 mandwavel.

$$\left[1 - \left(1 - \frac{1}{m}\right)^{kn}\right]^k \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$

$$\approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$

Parameters Frobably fixed Maybe fixed Costs space n Number of items m Number of bits Number of hash functions - Costs time

Error bound

– Idea: given n and m, pick k to minimize ϵ .

$$\varepsilon \approx (1 - e^{-\frac{kn}{m}})^k = \exp\left(k \ln(1 - e^{-\frac{kn}{m}})\right)$$

$$= \frac{1}{2} \left(\frac{1-p}{1-p} \right)$$

$$\frac{dg}{dk} = 0$$

– Idea: given \boldsymbol{n} and \boldsymbol{m} , pick \boldsymbol{k} to minimize $\boldsymbol{\varepsilon}$.

$$\varepsilon \approx (1 - e^{-\frac{kn}{m}})^k = \exp(k \ln(1 - e^{-\frac{kn}{m}}))$$

$$= \lim_{n \to \infty} g \stackrel{\text{def}}{=} k \ln(1-p) = -\frac{m}{n} \ln(p) \ln(1-p)$$

– Idea: given \boldsymbol{n} and \boldsymbol{m} , pick \boldsymbol{k} to minimize $\boldsymbol{\varepsilon}$.

$$\varepsilon \approx (1 - e^{-\frac{kn}{m}})^k = \exp(k \ln(1 - e^{-\frac{kn}{m}}))$$

$$= \frac{1}{2} \lim_{n \to \infty} g \stackrel{\text{def}}{=} k \ln (1-p) = -\frac{m}{n} \ln (p) \ln (1-p)$$

$$e^{-\frac{kn}{m}} = \frac{1}{2} \implies k = k_2 \cdot \frac{m}{n}$$

$$Min \Rightarrow P = \frac{1}{2}$$

– Idea: given \boldsymbol{n} and \boldsymbol{m} , pick \boldsymbol{k} to minimize $\boldsymbol{\varepsilon}$.

- Optimal:
$$k = \frac{m}{n}$$

$$E = (\frac{1}{2})^k \approx 0.6185^m$$

Values of **k**

m=1 kb

Optimal **k**

m=1 kb

Dictionary example

English dictionary

(≈3 MB ASCII)

n	m	k	3
500.000	100 kB	1	≈ 46 %
	1 MB	1	≈ 5 %
	3 MB	1	≈ 1.9 %
	512 kB	1	≈ 11 %
		2	≈ 4 %
		6*	≈ 1 %
	1 MB	12*	≈ 0.03 %
	3 MB	35*	< 10 ⁻¹⁰