Overview

— Set membership data structures
— Why are false positives acceptable
— A Bloom filter in a few steps

— Bloom filter tricks
— GloBiMaps
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Bit Set

— Bijection between elements and array of bits
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In this paper trade-offs among certain computational factors
in hash coding are analyzed. The paradigm problem con-
sidered is that of testing a series of messaaes one-by-one
for membership in a given set of messages.

The computational
factors considered are the size of the hash area (space), the
time required to identify a message as a nonmember of the
given set (reject time), and an allowable error frequency.



it is envisaged that overall performance
could be improved by using a smaller core resident hash area
in conjunction with the new methods and, when necessary, by
using some secondary and perhaps time-consuming test to
“catch” the small fraction of errors associated with the new

methods. An example is discussed which illustrates possible
areas of application for the new methods.
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Allow false positives
FILTER ACTUAL SET
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Allow false positives
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Is this a good idea?

— Depends on “Filter” versus “Actual Set” cost
— Depends on hit rates

— |t filter.can be arnguz?“gly small False
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Applications 1/3

- Bloom ‘70: hyphenation
— Most words covered by a few rules

Make a set containi

et's add a filter! Fa
— Unnecessary looku

g the exceptions

Hypenation algo: check set, else use rules

Se positives?

D: still correct



Applications 2/3

— Mrllroy ’82: early UNIX spell-checkers
— Store correct words. False positives?

Just accept them

— Amazingly small filter!

— Spafford ‘92: unsuitable passwords

— Store the set. False positives?
— Not really harmful




Applications 3/3

— Chrome: local filter for malicious URLS
— Mostly misses
— (Google doesn’t see where you try to go
— You don't get the list
— False positives?
— Unnecessary warming; or ask Google.




Bit Set

— (Good constant factors

— Too large when universe U is large
— Especially annoying if n « |U]
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The function h

Take a "hash function”
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“pProbabilisticldata structure”

— Hashmaps: deterministic correctness
runtime
— Bloom filters: correctness

deterministic runtime



False positive probability
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False positive probability

Pl Dit 1151 alter n insertions |

n

~ 1-e "
— Consider Test(x) for nonme@
— Bit h(x) Is set with probability.:
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Dictionary example

n m

English dictionary 500.000 100 kB

(=3 MB ASCII) 1 MB
3 MB
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Bloom filter

- Fix k hash functions h;
— Storage: array of m bits, all start unset

Add(x): set all
Test(x): are all
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ts h;(x) set?



What is the effect of k?

— Increases runtime
— |t does not affect the space!

— Error probability?
— (Check more bits: accidents less likely
— Set more bits: accidents are more likely




False positive probability

— A particular bit is o after the first insertion:
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False positive probability

— A particular bit is 1 after n insertions:
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Picking k

— |dea: given n and m, pick k to minimize .



Picking k

— |dea: given n and m, pick k to minimize .
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Picking k

— |dea: given n and m, pick k to minimize .




Picking k

— |dea: given m and m, pick k to minimize .

— Optimal 1<Q & 2. %
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Dictionary example

English dictionary
(=3 MB ASCII)

n
500.000

m
100 kB
1 MB
3 MB
512 kB

1 MB
3 MB

k
1
1
1
1
2



