Overview

— Set membership data structures
— Why are false positives acceptable
— A Bloom filter in a few steps

— Bloom filter tricks
— GloBiMaps

SetMembership
List TREE HASH MY

Add (x: 1) O(1) Oltgn) O@1)
Remove(x:1/)) Olgn) O(1)

Test(x:U) On) Ollgn) OQ)
"Searchy Needs: = < hadh =

Bit Set

— Bijection between elements and array of bits

Add (6) ¢

T T T T Tal T 1
Yy 4 § 6 3 & -

o 1

SetMembership
List TREE HASH MY

Add (x: 1) O(1) Oltgn) O@1)

/
‘,i'/’/ YV @AM a Q) 5 ‘

¢

Test(x: L)) On) Ollgn) OQ)
Needs: = < hadh

Space | - O(n)
fa A\SD Sofe the e)emev&s

BT SET
O(1)

O(1)

index

Ul bits

Space/Time Trade-offs in

Hash Coding with
Allowable Errors

BurtOoNn H. Broom
Computer Usage Company, Newton Upper Falls, Mass.

Communications of the ACM < July 1970

In this paper trade-offs among certain computational factors
in hash coding are analyzed. The paradigm problem con-
sidered is that of testing a series of messaaes one-by-one
for membership in a given set of messages.

The computational
factors considered are the size of the hash area (space), the
time required to identify a message as a nonmember of the
given set (reject time), and an allowable error frequency.

it is envisaged that overall performance
could be improved by using a smaller core resident hash area
in conjunction with the new methods and, when necessary, by
using some secondary and perhaps time-consuming test to
“catch” the small fraction of errors associated with the new

methods. An example is discussed which illustrates possible
areas of application for the new methods.

Allow false positives
FILTER

Zt’ _3SNO Tmc!

Allow false positives
FILTER ACTUAL SET

k(e

Tﬁ(ﬂ—% VEs — ™ 5 VES

ten (h__/J

Allow false positives

FILTER ACTUAL SET

Qa\s(’-
‘ Og'\\('\\lb
‘_M (X> YES — NO

e OB 000)
"

Is this a good idea?

— Depends on “Filter” versus “Actual Set” cost
— Depends on hit rates

— |t filter.can be arnguz?“gly small False

Nl@\%%'é’you don F%tgr ally have the@gﬁr |
~ FROSIEVE (ioHRESF e timlter +SetMiss

Applications 1/3

- Bloom ‘70: hyphenation
— Most words covered by a few rules

Make a set containi

et's add a filter! Fa
— Unnecessary looku

g the exceptions

Hypenation algo: check set, else use rules

Se positives?

D: still correct

Applications 2/3

— Mrllroy ’82: early UNIX spell-checkers
— Store correct words. False positives?

Just accept them

— Amazingly small filter!

— Spafford ‘92: unsuitable passwords

— Store the set. False positives?
— Not really harmful

Applications 3/3

— Chrome: local filter for malicious URLS
— Mostly misses
— (Google doesn’t see where you try to go
— You don't get the list
— False positives?
— Unnecessary warming; or ask Google.

Bit Set

— (Good constant factors

— Too large when universe U is large
— Especially annoying if n « |U]

Add (€)
g)

O 1 2 3y 4 § 6 3 8 M

Add (x) ¥

T T T T 1w b

01?.3 4

Add (7> W(y)

CTTAT T T AL 1M bk

o113‘1$6?

The function h

Take a "hash function”

The function i€

~ For the analysis, we WilLa

independe

Nt uniforml

“pProbabilisticldata structure”

— Hashmaps: deterministic correctness
runtime
— Bloom filters: correctness

deterministic runtime

False positive probability

Pl bit 115 0 after the first insert) l
'lrn 24\ 1
1 S)= 2
(R)=

Pl bit 11s still o after the first m insertions |
— ”

i /
%) =[maV]" = e

L

False positive probability

Pl Dit 1151 alter n insertions |

n

~ 1-e "
— Consider Test(x) for nonme@
— Bit h(x) Is set with probability.:

Parameters

A
T

\%
c

\

\

UM
UM

ver of

ver of

tem

DItS

Frror bounda

ﬁ‘o\oauq QD@(J

S ?{. MQ\/L& Fied

® Coﬁ\'s &‘\33(-2,

k_|’\'\::’J_\(\>

156
5.

S

400

200

o ® ©O <
i o o o
pUNOQ J0JJ3

™~
o

<
o

Dictionary example

n m

English dictionary 500.000 100 kB

(=3 MB ASCII) 1 MB
3 MB

\"\1,»\2: u ——>7/

()
Add (MM

e
L[Z
.. m b

O 1 72 3 4

ek (2) L@j Z2e S
@% "

J
T2 T T [2] m bis
S 6 7 |

O 1 2 3 A4

Bloom filter

- Fix k hash functions h;
— Storage: array of m bits, all start unset

Add(x): set all
Test(x): are all

D

D]l

ts h; (x)

ts h;(x) set?

What is the effect of k?

— Increases runtime
— |t does not affect the space!

— Error probability?
— (Check more bits: accidents less likely
— Set more bits: accidents are more likely

False positive probability

— A particular bit is o after the first insertion:

\ r 1%
(~7) = “-%\mJ N

L

— A particular bit s still @ after n insertions:
k

(1- %a\k' re"

False positive probability

— A particular bit is 1 after n insertions:

?}Q
| S

_ ()kr\ N ,’t:('] - e-%g,)k

— False posmve Test (x)

Parameters ... G
Number of 'temg/{.MQ\/La Fied

n
m Number of bits e (osts space

k. Number of hash functions «— o Casts time
&

Frror bound

Picking k

— |dea: given n and m, pick k to minimize .

Picking k

— |dea: given n and m, pick k to minimize .

)

Picking k

— |dea: given n and m, pick k to minimize .

Picking k

— |dea: given m and m, pick k to minimize .

— Optimal 1<Q & 2. %

€= (%.\k ~ 0.6185 "

k_.r\'\:"]_\(\>

==

400

200

<
—

0
o

© <
o o
pUNOQ J0JJ3

™~
o

<
o

O
o

error bound

O
N

O
o

O
o

O
I

Values
of k

m:j_\(\>

400

200

0
o

© T N
o o o
puNoQ J0JJd

Dictionary example

English dictionary
(=3 MB ASCII)

n
500.000

m
100 kB
1 MB
3 MB
512 kB

1 MB
3 MB

k
1
1
1
1
2

