

Location-dependent generalization of road networks based on equivalent destinations

T. C. van Dijk¹, J.-H. Haunert², **J. Oehrlein**²

¹University of Würzburg ²University of Osnabrück

Motivation

Hey there! Could you please give me directions to Paris?

Of course! What's your exact destination address?

Idea

Related Work: Map Generalization

- Much work on road selection for static single-scale maps (e.g., Jiang & Claramunt, 2004; Thomson & Brooks, 2002)
- Selection is NP-hard even for rather simple models of the problem (Brunel et al., 2014)

Related Work: Variable-Scale Maps

- Fish-eye projections for user-centered navigation maps
- Level of detail (LoD) follows scale

(Hampe et al., 2004)

Related Work: Destination Maps

- Road selection based on shortest paths
- Scale follows LoD
- No guarantee of optimality with respect to a well-defined objective

(Kopf et al., 2010)

Prerequisites

road network: graph *G* user location: vertex *s*

shortest paths from s to all other vertices

shortest paths from *s* to all points in *G*

Problem definition

- Given a tree $\mathcal{T} = (V, E_{\mathcal{T}})$ rooted at $s \in V$
- For any $u, v \in V, u \neq s$ define **directed** similarity as

$$\sigma(u,v) = \frac{w(P_{SX})}{w(P_{Su})}$$

where $x \in V$ is the lowest common ancestor of u and v in T.

- Any $u, v \in V$ are called α -compatible if $\sigma(u, v) \ge \alpha$ and $\sigma(v, u) \ge \alpha$ with $\alpha \in [0,1]$
- For fixed α this is expressed as $u \oplus v$

$$\sigma(u, v) = \frac{2}{5}$$

$$\sigma(v, u) = \frac{1}{2}$$

Problem definition

- Define a compatibility graph $G_{\bigoplus} = (V, E_{\bigoplus})$ with $E_{\bigoplus} = \{(u, v) \in V \times V : u \oplus v, u \neq v\}$
- Contracting $S \subseteq V$ is **allowed** if and only if
 - S is connected in T
 - S is a clique in G_{\bigoplus}

(here: $\alpha = \frac{2}{3}$)

Problem: TreeSummary

- Instance:
 - A tree $\mathcal{T} = (V, E_{\mathcal{T}})$, rooted at $s \in V$
 - Weights on the edges $w: E_{\mathcal{T}} \to \mathbb{R}_{\geq 0}$
 - A compatibility threshold $\alpha \in [0,1]$
- Problem:

Find a partition of *V* into as few cells as possible, such that each cell is an allowed contraction!

Lemmata

1. Let $u, v \in V$ be vertices and let x be their lowest common ancestor. Then:

$$u \oplus v \iff u \oplus x \land v \oplus x$$

2. Let $x \in V$ and let $a, b \in V$ be descendants of x. Then:

$$w(P_{sa}) \leq w(P_{sb}) \wedge b \oplus x \implies a \oplus x$$
.

Algorithm: ContractTree

(here: $\alpha = \frac{2}{3}$)

Following invariants of a cell C hold: deep vertices of their cell connected in \mathcal{T} • C is clique in G_{\oplus}

Algorithm: ContractTree

Data: Rooted Tree T with edge weights

Result: Minimum-cardinality allowed contraction ${\cal C}$

- 1. $\mathcal{C} \leftarrow$ the set with a singleton cell for each vertex of \mathcal{T} ;
- 2. For all the vertices $x \in \mathcal{T}$, in post-order do
- 3. $S_{\oplus} \leftarrow \{v \in Children(x): x \oplus Deep(Cell(v))\};$
- 4. | Merge Cell(x) and all Cell(v) for $v \in S_{\oplus}$
- 5. **End**
- 6. **Return** *C*;

run-time: $\mathcal{O}(|V|)$

Algorithm: Result is optimal

- Let ${\mathcal C}$ be the set of cells of ${\mathcal T}$ computed with the algorithm
- \mathcal{C} is a clique cover of G_{\oplus}
- Consider $\mathcal{I} := \{Deep(C) : C \in \mathcal{C}\}$
- $\boldsymbol{\mathcal{I}}$ is an independent set of G_{\oplus} :
 - Assume $(u, v) \in E_{\oplus}$ for any $u, v \in \mathcal{J}$
 - Let x be the lowest common ancestor of u and v
 - $u \oplus v \implies x \oplus u \text{ and } x \oplus v$
 - Cell(u) and Cell(v) would have been merged \checkmark
- $\bullet |\mathcal{I}| = |\mathcal{C}|$
- ${\cal C}$ is a minimal clique cover of G_{\oplus}

Visualization

Represent each cell by its root vertex.

• The relation between the cells is a tree structure induced by \mathcal{T} .

•How to visualize this tree?

Visualization: Three proposals

- 1. Detailed drawing For every cell c and its parent p draw P_{pc}
 - + topologically correct
 - ± same level of detail as input
 - internal branches

Visualization: Three proposals

- 1. Detailed drawing
- Direct drawing
 For every cell c and its parent p draw a direct line between p and c
 - + simple and highly generalized
 - + shows the actual clustering
 - not topologically safe

Visualization: Three proposals

- 1. Detailed drawing
- 2. Direct drawing
- 3. Simplified drawing

Construct detailed drawing and apply topologically-safe simplification algorithm (Dyken et al., 2009)

- + topologically safe
- **±** less internal branches
- heuristic

Visualization: Cross connections

- Resulting tree gives no information about cell adjacency
- Draw cross connections between neighboring cells

Example results

 $\alpha = 90\%$

Example results

Example results

Summary

- Problem TreeSummary: Contraction of compatible destination
- Optimal linear-time algorithm (traversing tree in post-order)
- Three kinds of drawings:
 - Detailed
 - Direct
 - Simplified
- Cross connections