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Clustering

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different
sets are distant.

Fundamental problem in data mining, but not uniquely defined.

What are you clustering?  What are you trying to do with the data?

Distance: Euclidean? Metric?

How many clusters? What can clusters look like?
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MATHEMATIQUE

Sur la division des corps matériels en parties

par

H. STEINHAURS
Présentd le 19 Octobre 1856

Un corps Q est, par définition, une répartition de matiére dans l'es-
pace, donnée par une fonction f(FP); on appelle cette fonction la: densité
du corpg en question; elle est définie pour tous les points P de l'espace;
elle est non-négative et mesurable. On suppose que Uensemble caracté-
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SOME METHODS FOR
CLASSIFICATION AND ANALYSIS
OF MULTIVARIATE OBSERVATIONS
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1. Introduction

The main purpose of this paper is to describe a process for partitioning an
N-dimensional population into % sets on the basis of a sample. The process,
which 1s called ‘k-means,” appears to give partitions which are reasonably
efficient in the sense of within-class variance. That is, if p is the probability mass
function for the population, S = {S;, S,, - -+, Sk} 1s a partition of Ey, and wu;,
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Open source implementations available in many languages
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ing an appropriate value for it. It discovers clusters of arbi-
trary shape. Finally, DBSCAN is efficient even for large spa-
tial databases. The rest of the paper is organized as follows.
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DBSCAN: Objectives

1. "Minimal requirements of domain knowledge to determine the
iInput parameters, because appropriate values are often not known in
advance when dealing with large databases'’

2. "Discovery of clusters with arbitrary shape, because the shape of
clusters in spatial databases may be spherical, drawn-out, linear,

elongated etc”’

3. "Good efficiency on large databases, i.e. on databases of
significantly more than just a few thousand objects’”
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DBSCAN

Given: data points X, distance function d(-, -), thresholds ¢ and k.

Def. The e-neighborhood of a pointp € X is
Ne(p) ={qeX|d(p,q) <et

Def. A point p € X is called a core point iff [N, (p)| > k.

Def. A point p € X is directly density-reachable from a point q iff:

p € N¢(q)

Ne(q)l =k

Not a symmetric relation!

Def. A point p € X is density reachable from a point g if there exists
a chain of direct density-reachability from q to p.

Def. A point p € X is density connected to a point q if there exists a
(core) point r such that both p and g are density-reachable from r.
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DBSCAN example

k=3 4 Naive algorithm runs in O(n?)
i1 time.
~ “Since the Eps-Neighborhoods
Core points are expected to be small

compared to the size of the
whole data space, the average

DBSCAN Clustermg run time complexity of a single
-------------------------------------- region query is O(logn). (...)
""""""""""""""""""""" Thus, the average run time
 DBSCAN” clustering: | border| commlexity of DBSGAN I

O(nx*xlogn)’
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Make a grid
Side length ¢/v/2

Connectivity within cells?

Between points in different
cells?

Not clear how to get a
runtime bound in n without
assumption on the
distribution.

Be more flexible...
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Per strip: add points to box
as long as height < ¢/v/2.

Runtime:
Sort by x
O(nlogn)
Sort by y per strip
Z)- O(le |Ongj )

Total
O(nlogn)
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Already have all core points
in “crowded” boxes.

For all “"sparse” boxes:

For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k*)=0(1)
Other box is crowded:
Charge to crowded box

Point in crowded box
checked < 22k times.
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Are the the same cluster”
BICHROMATIC CLOSEST PAIR

In Euclidean 2D?

Delaunay triangulation has
o—9 this edge.
. v O(nlogn)

\ Charge to edges in Gpox
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HDBSCAN

Use DBSCAN* and sweep ¢ from 0 to oo.

Initially all points are noise; eventually everything is one cluster.

Three types of “events.”’
e Noise point becomes core point. Call this value d¢ore(p).

e New cluster forms.
e TWoO clusters merge

Fvents only happen when ¢ = d(p, q) for some p, qg.

Store this tree structure of cluster creation and merges: HDBSCAN.
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Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Both need to be core point, so at least degre(p) and deore(q).
Either ¢ > d(p, q), or they must be connected through other points.

Def. Let drr (P, q) = Max{ deore(P), deore(q), d(p,q) }.
Def. Mutual reachability graph G, complete, edge weights d.

Algorithm: 1. Compute dgore for all points.
2. Construct G and compute a minimum spanning tree 7.

3. Convert T Into HDBSCAN tree.
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2. Construct 9, and compute an MST.

Cannot look at all edges: too slow.

kth-order

Def. {p, q} is a Delaunay edge “itt" there exists a circle with:

e p and q on the boundary
<k a "k-OD edge’
e }Q poINts in its interior

Theorem (Gudmundsson, Hammer, v. Kreveld, 2002) The k'"-order
Delaunay graph has O(n(k + 1) ) edges and can be computed in
O(n(k + 1) logn ) expected time by randomized incremental
construction.

Claim: The MST of G, uses only k-OD edges.
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The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Recurse until only k-OD edges.

Kruskal has already considered those
edges, so p and g already connected.




Results

Everywhere: ¢ free, k fixed constant, Euclidean distances
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HDBSCAN O(nlogn ) expected X
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