Faster DBSCAN and HDBSCAN
in Low-Dimensional Euclidean Spaces

Paper: Mark de Berg, Ade Gunawan, Marcel Roeloffzen
Slides: Thomas van Dijk

Noon seminar: 15" Feb 2018

Julius-Maximilians- Lehrstuhl fiir
UNIVERSITAT INFORMATIK |
WU RZ B U RG Effiziente Algorithmen und

wissensbasierte Systeme

i

Institut flr Informatik

Clustering

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different

sets are distant.

Clustering

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different

sets are distant.

Fundamental problem in data mining, but not uniquely defined.

What are you clustering? What are you trying to do with the data?

Clustering

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different

sets are distant.

Fundamental problem in data mining, but not uniquely defined.

What are you clustering? What are you trying to do with the data?

Distance: Euclidean? Metric?

Clustering

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different
sets are distant.

Fundamental problem in data mining, but not uniquely defined.

What are you clustering? What are you trying to do with the data?

Distance: Euclidean? Metric?

How many clusters? What can clusters look like?

Clustering

MATHEMATIQUE

Sur la division des corps matériels en parties

par

H. STEINHAURS
Présentd le 19 Octobre 1856

Un corps Q est, par définition, une répartition de matiére dans l'es-
pace, donnée par une fonction f(FP); on appelle cette fonction la: densité
du corpg en question; elle est définie pour tous les points P de l'espace;
elle est non-négative et mesurable. On suppose que Uensemble caracté-

Clustering

SOME METHODS FOR
CLASSIFICATION AND ANALYSIS
OF MULTIVARIATE OBSERVATIONS

J. MAcCQUEEN
UNIVERSITY OF CALIFORNIA, L0os ANGELES

1. Introduction

The main purpose of this paper is to describe a process for partitioning an
N-dimensional population into % sets on the basis of a sample. The process,
which 1s called ‘k-means,” appears to give partitions which are reasonably
efficient in the sense of within-class variance. That is, if p is the probability mass
function for the population, S = {S;, S,, - -+, Sk} 1s a partition of Ey, and wu;,

Clustering

A Density-Based Algorithm for Discovering Clusters

in Large Spatial Databases with Noise

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

Institute for Computer Science, University of Munich
QOettingenstr. 67, D-80538 Miinchen, Germany
{ester | krniegel | sander | xwxu} @informatik.uni-muenchen.de

Clustering

A Density-Based Algorithm for Discovering Clusters

in Large Spatial Databases with Noise

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

Institute for Computer Science, University of Munich
QOettingenstr. 67, D-80538 Miinchen, Germany
{ester | krniegel | sander | xwxu} @informatik.uni-muenchen.de

> 8 x 103 citations KDD “test of time award” 2014

Open source implementations available in many languages

Clustering

A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

Institute for Computer Science, University of Munich
QOettingenstr. 67, D-80538 Miinchen, Germany
{ester | kriegel | sander | xwxu} @informatik.uni-muenchen.de

ing an appropriate value for it. It discovers clusters of arbi-
trary shape. Finally, DBSCAN is efficient even for large spa-
tial databases. The rest of the paper is organized as follows.

O)
C
-
)
-t
)
D
O

database 1

Clustering

Clustering

database 3

DBSCAN: Objectives

1. "Minimal requirements of domain knowledge to determine the
iInput parameters, because appropriate values are often not known in

advance when dealing with large databases'’

DBSCAN: Objectives

1. "Minimal requirements of domain knowledge to determine the
iInput parameters, because appropriate values are often not known in
advance when dealing with large databases'’

2. "Discovery of clusters with arbitrary shape, because the shape of
clusters in spatial databases may be spherical, drawn-out, linear,
elongated etc”’

DBSCAN: Objectives

1. "Minimal requirements of domain knowledge to determine the
iInput parameters, because appropriate values are often not known in
advance when dealing with large databases'’

2. "Discovery of clusters with arbitrary shape, because the shape of
clusters in spatial databases may be spherical, drawn-out, linear,

elongated etc”’

3. "Good efficiency on large databases, i.e. on databases of
significantly more than just a few thousand objects’”

DBSCAN
Given: data points X, distance function d(-, -), thresholds ¢ and k.

DBSCAN
Given: data points X, distance function d(-, -), thresholds ¢ and k.

DBSCAN
Given: data points X, distance function d(-, -), thresholds ¢ and k.

Def. The e-neighborhood of a pointp € X is
Ne(p) ={qeX|d(p,q) <et

DBSCAN
Given: data points X, distance function d(-, -), thresholds ¢ and k.

Def. The e-neighborhood of a pointp € X is
Ne(p) ={qeX|d(p,q) <et

Def. A point p € X is called a core point iff [N, (p)| > k.

DBSCAN
Given: data points X, distance function d(-, -), thresholds ¢ and k.

Def. The e-neighborhood of a pointp € X is
Ne(p) ={qeX|d(p,q) <et

Def. A point p € X is called a core point iff [N, (p)| > k.
Def. A point p € X is directly density-reachable from a point q iff:

p € N:(q) IN:(q)| = k

DBSCAN
Given: data points X, distance function d(-, -), thresholds ¢ and k.

Def. The e-neighborhood of a pointp € X is
Ne(p) ={qeX|d(p,q) <et

Def. A point p € X is called a core point iff [N, (p)| > k.
Def. A point p € X is directly density-reachable from a point q iff:

Not a symmetric relation!

DBSCAN
Given: data points X, distance function d(-, -), thresholds ¢ and k.

Def. The e-neighborhood of a pointp € X is
Ne(p) ={qeX|d(p,q) <et

Def. A point p € X is called a core point iff [N, (p)| > k.
Def. A point p € X is directly density-reachable from a point q iff:

Not a symmetric relation!

Def. A point p € X is density reachable from a point g if there exists
a chain of direct density-reachability from q to p.

DBSCAN

Given: data points X, distance function d(-, -), thresholds ¢ and k.

Def. The e-neighborhood of a pointp € X is
Ne(p) ={qeX|d(p,q) <et

Def. A point p € X is called a core point iff [N, (p)| > k.

Def. A point p € X is directly density-reachable from a point q iff:

p € N¢(q)

Ne(q)l =k

Not a symmetric relation!

Def. A point p € X is density reachable from a point g if there exists
a chain of direct density-reachability from q to p.

Def. A point p € X is density connected to a point q if there exists a
(core) point r such that both p and g are density-reachable from r.

DBSCAN example

DBSCAN example

k=3

Distance ¢

DBSCAN example

k=3

Distance ¢

Core points

DBSCAN example

k=3

Distance ¢

Core points

DBSCAN example

k=3
Distance ¢

Core points

Density connected

DBSCAN example

@ noise point — e
k=3 ®
Distance ¢ : @
Core points

*

o <=Dborder point

Density connected

: DBSCAN clustering :

“‘llllllllllll....'
’n,

*
L
L
-
-
-
-
-
-
-
|
-
-
L
-~
n
-
L]
L J
L J
R
&4
&

border point = o

\J
"'lll“‘

DBSCAN example

S e noise point — e

k=3 ®::

le o

".':'llll“‘: :“‘
Core points

i e <=porder point

: DBSCAN clustering :
: DBSCAN* clustering: | porder point %

N
N
]
-
-
-
g
g

DBSCAN example

Runtime

k=3 4 Naive algorithm runs in O(n?)

, 71 time.
Distance ¢ :

Core points

Density connected

border

DBSCAN example

k=3 4 Naive algorithm runs in O(n?)
i1 time.
~ “Since the Eps-Neighborhoods
Core points are expected to be small

compared to the size of the
whole data space, the average

DBSCAN Clustermg run time complexity of a single
-------------------------------------- region query is O(logn). (...)
""""""""""""""""""""" Thus, the average run time
 DBSCAN” clustering: | border| commlexity of DBSGAN I

O(nx*xlogn)’

Results

Everywhere: ¢ free, k fixed constant, Euclidean distances

2D dD

2
DBSCAN O(nlogn) O(m* TaAET Y)

HDBSCAN O(nlogn) expected X

Results

Everywhere: ¢ free, k fixed constant, Euclidean distances

2D dD

2
DBSCAN O(nlogn) e O(n* TaaET Y)

HDBSCAN O(nlogn) expected X

BoX graph Gpex

BoX graph Gpex

£. =

80X graph Gpoy £/\/2: =

Make a grid
° . Side length e/v/2
® ® ®
[[
o ®
[
[[
o
o
® o ©
o o ® ®
o [[o [
® o
o [[
® ° o ¢
o o
® ®
o o
[o
o ® o
® ®
o o ®

£. = >

BoX graph Gpox e/V2: g

Make a grid
° . Side length e/v/2
° ® ¢
o ®
® o
y ¢ o Connectivity within cells?
° o © ’
o ® o o
® o o ® o
® o
® o ®
o o ° ®
® ®
PY ®
® ®
o o
® o o
o o
o o o

BoX graph Gpex

€. = >

8/\/224 >

Make a grid
Side length ¢/v/2

Connectivity within cells?

Between points in different
cells?

BoX graph Gpex

€. = >

8/\/224 >

Make a grid
Side length ¢/v/2

Connectivity within cells?

Between points in different
cells?

Not clear how to get a
runtime bound in n without
assumption on the
distribution.

Be more flexible...

BoX graph Gpex

£. =

£/\/2. -

Box graph Gpox

1. Construct boxes

Add points as long as

o . strip width < ¢/v/2.
® ® ® o
° ®
° °
°
® °
°
°
® o ©
o ® ® o
° ° ® ® ®
o o
® ® ®
® ° o ¢
° °
® o
® °
e o
o ®)
® ®
° ° °

Box graph Gpox

1. Construct boxes

Add points as long as

o . strip width < ¢/v/2.
o o o o
o ®
°® ®
o
® o
°®
°®
o o ©
o ® ® o
°® o ® ® ®
o o
® ® ®
® ° o ¢
o o
® o
® o
C)
o ® ®
® ®
® ® ®

£. =

80X graph Gpoy £/\/2: = .

Add points as long as

. . strip width < ¢/v/2.
® ® ®
] o
o o
]
o ®
o
o
® o ©
o ® ® o
® ® o o o
® o
o o o
® ° o ¢
® ®
® o
o ®
o o
® o ®
o o
o o o

£. =

80X graph Gpoy £/\/2: = .

Add points as long as

. . strip width < ¢/v/2.
® ® ®
o o
o o
3
o ®
o
o
® o ©
o ® ® o
® ® o o o
® o
o o o
® ° o ¢
® ®
® o
o ®
o o
o o ®
o o
o o o

£. =

80X graph Gpoy £/\/2: = .

Add points as long as

. . strip width < ¢/v/2.
® ® ®
o o
o o
3
o ®
o
o
® o ©
o ® ® o
o ® o o o
® o
o o o
® ° o ¢
® ®
® o
o ®
o o
o o ®
o o
o o o

£. =

80X graph Gpoy £/\/2: = .

Add points as long as

. . strip width < ¢/v/2.
® ® ®
o o
® o
3
o ®
®
®
® o ©
o ® ® o
o ® o o o
® o
(3 o o
® ° o ¢
® ®
® ®
o ®
o o
o o ®
o o
Y o o

£. =

80X graph Gpoy £/\/2: = .

« < e/V/2 ¥ Add points as long as
. . strip width < ¢/v/2.
[® ® o
o ®
o o
o
® ®
o
o
® o ©
® o o o
o ® ® ® ®
® o
[® ®
° ° o °
® ®
® o
® ®
o o
o ®)
o o
o o o

Box graph Gpox

Add points as long as
strip width < ¢/v/2.

Box graph Gpox

> e/vV/2

Add points as long as
strip width < ¢/v/2.

Box graph Gpox

1. Construct boxes

Add points as long as
strip width < ¢/v/2.

Box graph Gpox

1. Construct boxes

Add points as long as

III I -

BoX graph Gpex

€. = >

8/\/224 >

Add points as long as
strip width < ¢/v/2.

Per strip: add points to box
as long as height < ¢/v/2.

BoX graph Gpex

€. = >

8/\/224 >

Add points as long as
strip width < ¢/v/2.

Per strip: add points to box
as long as height < ¢/v/2.

BoX graph Gpex

€. = >

8/\/224 >

Add points as long as
strip width < ¢/v/2.

Per strip: add points to box
as long as height < ¢/v/2.

BoX graph Gpex

€. = >

8/\/224 >

Add points as long as
strip width < ¢/v/2.

Per strip: add points to box
as long as height < ¢/v/2.

BoX graph Gpex

—._
®
®
[®
- o——
®
o~
® o 9
o o
[o ®
®
o ®
[
@
—o

€. = >

8/\/224 >

Add points as long as
strip width < ¢/v/2.

Per strip: add points to box
as long as height < ¢/v/2.

BoX graph Gpex

—._
®
® [
® ®
o
®
S
.—
® o 9
® ® ®
[® ® ®
® o
[® —@—
¢ —a——0-
o o
—@
®
®
e O

€. = >

8/\/224 >

Add points as long as
strip width < ¢/v/2.

Per strip: add points to box
as long as height < ¢/v/2.

BoX graph Gpex

—._
¢
® [
® ®
o
®
S
.—
® o 9
® ® ®
[® ® ®
® o
[® —@—
¢ —a——0-
o o
—@

S

€. = >

8/\/224 >

Add points as long as
strip width < ¢/v/2.

Per strip: add points to box
as long as height < ¢/v/2.

Runtime:

Sort by x
O(nlogn)

BoX graph Gpex

. -
®
® ® (@]
o [
)
'Qi
o >
R
° <
O &
® o 9
[[o
o [[®
® o
[[—@—
o ? R
_.
®
O(mlogm) ®
o o

€. = >

8/\/224 >

Add points as long as
strip width < ¢/v/2.

Per strip: add points to box
as long as height < ¢/v/2.

Runtime:
Sort by x
O(nlogn)
Sort by y per strip
Z)- O(le |Ongj)

Total
O(nlogn)

Box graph Gpox

Property of single boxes

All points within a box...

Box graph Gpox

\
|
g

7 ON

BoX graph Gpex

£. =

8/\/224 >

All points within a box...
are in e-neighbourhood.

In boxes with at least k
points, ...

BoX graph Gpex

—@®-
®
® ® (@]
O ®
-@—
®
o)
® ® ®
O O O
@ O ® ®
® ®
® ® —®-
® ® o @
N @
®
® @

£. =

8/\/214 >

All points within a box...
are in e-neighbourhood.

In boxes with at least k
points, ...

all points are core points.

BoX graph Gpex

—e-
®
® ® @
® ®
Lo——
®
o)
® ® @
® ® ®
® ® ® ®
® ®
® ® —e-
o |9 -
- ®
®
® @

4

€. = >

8/\/214 >

All points within a box...
are in e-neighbourhood.

In boxes with at least k
points, ...

all points are core points.

In boxes with fewer than k
points, ...

k=4 £. = =

80X graph Gpoy £/\/2: = .
All points within a box...
—®- - are in e-neighbourhood.
® ® (@]
O ® ‘
.«
©© ® In boxes with at least k
———— o—® & — points, ...
o ® ° ® ° g ® {—* all points are core points.
@ > ® — @& n boxes with fewer than k
® w ® poINts, ...

@ —® . .
\ ® ® noints can be core points.

BoX graph Gpex

—._
o
® (@]
e o
- o——
o
S
.—
® o 9
o o o
e o o ®
® o
o o @
¢ —a——0-
o o
@
o
®
e o

€. = >

8/\/224 >

Connect boxes with edge
if distance between boxes
IS at most «.

€. = >

80X graph Gpoy £/\/2: = .

Connect boxes with edge
if distance between boxes
IS at most «.

€. = >

80X graph Gpoy £/\/2: = .

Connect boxes with edge
if distance between boxes
IS at most «.

Nonneighbours in Gyoy.

none of these points are
INn e-neighbourhood.

€. = >

80X graph Gpoy £/\/2: = .

Connect boxes with edge
if distance between boxes
IS at most «.

Nonneighbours in Gpoy:

none of these points are
INn e-neighbourhood.

How many neighbours can
a box have?

€. = >

80X graph Gpoy £/\/2: = .

Connect boxes with edge
if distance between boxes
IS at most «.

Nonneighbours in Gpoy:

none of these points are
INn e-neighbourhood.

How many neighbours can
a box have? cO(1)

8/\/214 >

NN

AN\
MR

BOX gra

Connect boxes with edge
if distance between boxes

O E IS at most «.

Nonneighbours in Gpoy.
none of these points are

‘ ‘k\‘\\‘ : INn e-neighbourhood.
¢
. e * ° | —* How many neighbours can
® < | a box have? cO(1)
® ® o
[.
@ o
L
o o
[[
o o
® ®

BOX grapgirox w w;: -]
W \\\\\\}\N L :1; gfmgte fetween boxes
L=

A\ Qe

ARLL MR
€ O(1)

h\\\\“m,

R

W

\f:<

BOX grag \\\ \\\ .
\ \ ooooooooooooo ith edge
_ _______ \\\ ance between boxes
. ® \\ OS’[€.
ooooooooooooo IN Gpoy.
~\\\ \\\\\\ of these pointsb are
\\\\ \\\\ oooooooooooooooo .
\ many neighbours can
X have?

\\\\\\\\\\\\\\

‘\\\\\‘ ‘\ &\\\

‘\\\\\\\\\\‘k\\\ A

NN

Connect boxes with edge

NNNNNNNNNNNNN IN 9bOX:

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

\\\\\\\\\\\\\\

‘\\\\\‘ ‘\ &\\\

‘\\\\\\\\\\‘k\\\ A

NN

Connect boxes with edge

NNNNNNNNNNNNN IN 9bOX:

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

€. = >

80X graph Gpoy £/\/2: = .

Connect boxes with edge
if distance between boxes

E IS at most ¢.
Nonneighbours in Gpoy:

none of these points are
INn e-neighbourhood.

&—* How many neighbours can
aboxhave? 22 €0O(1)

€. = >

80X graph Gpoy £/\/2: = .

Connect boxes with edge
——0— if distance between boxes

¢ ¢ E IS at most «.
o ®
Nonneighbours in Gpoy:

none of these points are
INn e-neighbourhood.

&—* How many neighbours can
aboxhave? 22 €0O(1)

€. = >

80X graph Gpoy £/\/2: = .

Connect boxes with edge
——0— if distance between boxes

¢ ¢ E IS at most «.
. | .
Nonneighbours in Gpoy:

none of these points are
INn e-neighbourhood.

&—* How many neighbours can
abox have? 22 € 0O(1)

€. = >

80X graph Gpoy £/\/2: = .

Connect boxes with edge
if distance between boxes
IS at most «.

Nonneighbours in Gpoy:

none of these points are
INn e-neighbourhood.

How many neighbours can
abox have? 22 € 0O(1)

k=4 £. = =

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

k=4 £. = [

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

()

For all “"sparse” boxes:

k=4 £. = =

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

()

For all “"sparse” boxes:
For all neighbour boxes:

~
|

4 €. = >

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

For all “"sparse” boxes:

For all neighbour boxes:
... check all pairs.

Total runtime?

k=4 £. = =

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

For all “"sparse” boxes:

For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:

k=4 £. = =

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

For all “"sparse” boxes:

For all neighbour boxes:
... check all pairs.

Total runtime?

Other box is sparse:
O(k*)=0(1)

k=4 £. = =

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

For all “"sparse” boxes:

For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k*)=0(1)
Other box is crowded:

k=4 £. = =

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

For all “"sparse” boxes:

For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k*)=0(1)
Other box is crowded:
Charge to crowded box

k=4 £. = =

80X graph Gpoy £/\/2: = .

Already have all core points
in “crowded” boxes.

For all “"sparse” boxes:

For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k*)=0(1)
Other box is crowded:
Charge to crowded box

Point in crowded box
checked < 22k times.

k=4 £. = =

80X graph Gpoy £/\/2: = .

These are all core points.

Are the the same cluster?

Box graph Gpox

Pairs of crowded boxes

These are all core points.

Are the the same cluster?

BoX graph Gpex

These are all core points.
Are the the same cluster”

BICHROMATIC CLOSEST PAIR

BoX graph Gpex

These are all core points.
Are the the same cluster”
BICHROMATIC CLOSEST PAIR

In Euclidean 2D?

Box graph Gpox

These are all core points.
Are the the same cluster”
BICHROMATIC CLOSEST PAIR

In Euclidean 2D?

Box graph Gpox

Pairs of crowded boxes

These are all core points.

Are the the same cluster”
BICHROMATIC CLOSEST PAIR

In Euclidean 2D?

BoX graph Gpex

These are all core points.
Are the the same cluster”
BICHROMATIC CLOSEST PAIR

In Euclidean 2D?

Delaunay triangulation has
this edge.

BoX graph Gpex

These are all core points.
Are the the same cluster”
BICHROMATIC CLOSEST PAIR

In Euclidean 2D?

Delaunay triangulation has
this edge.
O(nlogn)

BoX graph Gpex

These are all core points.
Are the the same cluster”
BICHROMATIC CLOSEST PAIR

In Euclidean 2D?

Delaunay triangulation has
o—9 this edge.
. v O(nlogn)

\ Charge to edges in Gpox

Results

Everywhere: ¢ free, k fixed constant, Euclidean distances

2D dD

2
DBSCAN O(nlogn) O(m* TaAET Y)

HDBSCAN O(nlogn) expected X

Results

Everywhere: ¢ free, k fixed constant, Euclidean distances

2D dD

2
DBSCAN O(nlogn) O(m* TaAET Y)

HDBSCAN/O(nIogn)expected X

1. Construct Gpex
2. Find core points
3. Merge clusters

(4. Assign border points.)

Results

Everywhere: ¢ free, k fixed constant, Euclidean distances

2D dD

2
DBSCAN O(nlogn) O(m* TaAET Y)

HDBSCAN/O(nIogn)expected X [

1. Construct Gpex

| | BICHROMATIC CLOSEST POINT instead of
2. Find core points Delauney triangulation.
3. Merge clusters

(4. Assign border points.)

Results

Everywhere: ¢ free, k fixed constant, Euclidean distances

2D dD

2
DBSCAN O(nlogn) O(m* TaAET Y)

HDBSCAN/O(nIogn)expected X [

1. Construct Gpex

| | BICHROMATIC CLOSEST POINT instead of
2. Find core points Delauney triangulation.
3. Merge clusters

(4. Assign border points.)

Results

Everywhere: ¢ free, k fixed constant, Euclidean distances

2D dD

2
DBSCAN O(nlogn) O(m* TaAET Y)

HDBSCAN/O(nIogn)expected X [

1. Construct Gpex \

2. Find core points

BICHROMATIC CLOSEST POINT instead of
Delauney triangulation.

3. Merge clusters

(4. Assign border points.)

HDBSCAN

Use DBSCAN* and sweep ¢ from 0 to oo.

HDBSCAN

Use DBSCAN* and sweep ¢ from 0 to oo.

Initially all points are noise; eventually everything is one cluster.
Three types of “events.”’

HDBSCAN

Use DBSCAN* and sweep ¢ from 0 to oo.

Initially all points are noise; eventually everything is one cluster.
Three types of “events.”’
e Noise point becomes core point. Call this value d¢ore(p).

HDBSCAN

Use DBSCAN* and sweep ¢ from 0 to oo.

Initially all points are noise; eventually everything is one cluster.
Three types of “events.”’

e Noise point becomes core point. Call this value d¢ore(p).

e New cluster forms.

HDBSCAN

Use DBSCAN* and sweep ¢ from 0 to oo.

Initially all points are noise; eventually everything is one cluster.
Three types of “events.”’

e Noise point becomes core point. Call this value d¢ore(p).

e New cluster forms.

e TWoO clusters merge

HDBSCAN

Use DBSCAN* and sweep ¢ from 0 to oo.

Initially all points are noise; eventually everything is one cluster.

Three types of “events.”’
e Noise point becomes core point. Call this value d¢ore(p).

e New cluster forms.
e TWoO clusters merge

Fvents only happen when ¢ = d(p, q) for some p, qg.

HDBSCAN

Use DBSCAN* and sweep ¢ from 0 to oo.

Initially all points are noise; eventually everything is one cluster.

Three types of “events.”’
e Noise point becomes core point. Call this value d¢ore(p).

e New cluster forms.
e TWoO clusters merge

Fvents only happen when ¢ = d(p, q) for some p, qg.

Store this tree structure of cluster creation and merges: HDBSCAN.

Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Both need to be core point, so at least degre(p) and deore(q).

Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Both need to be core point, so at least degre(p) and deore(q).
Either ¢ > d(p, q), or they must be connected through other points.

Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Both need to be core point, so at least degre(p) and deore(q).
Either ¢ > d(p, q), or they must be connected through other points.

Def. Let drr (P, q) = Max{ deore(P), deore(q), d(p,q) }.

Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Both need to be core point, so at least degre(p) and deore(q).
Either ¢ > d(p, q), or they must be connected through other points.

Def. Let drr (P, q) = Max{ deore(P), deore(q), d(p,q) }.
Def. Mutual reachability graph G, complete, edge weights d.

Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Both need to be core point, so at least degre(p) and deore(q).
Either ¢ > d(p, q), or they must be connected through other points.

Def. Let drr (P, q) = Max{ deore(P), deore(q), d(p,q) }.
Def. Mutual reachability graph G, complete, edge weights d.

Algorithm: 1. Compute dgore for all points.

Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Both need to be core point, so at least degre(p) and deore(q).
Either ¢ > d(p, q), or they must be connected through other points.

Def. Let drr (P, q) = Max{ deore(P), deore(q), d(p,q) }.
Def. Mutual reachability graph G, complete, edge weights d.

Algorithm: 1. Compute dgore for all points.

2. Construct G and compute a minimum spanning tree 7.

Mutual reachability

Starting at which value of ¢ will these points be in the same cluster?

Both need to be core point, so at least degre(p) and deore(q).
Either ¢ > d(p, q), or they must be connected through other points.

Def. Let drr (P, q) = Max{ deore(P), deore(q), d(p,q) }.
Def. Mutual reachability graph G, complete, edge weights d.

Algorithm: 1. Compute dgore for all points.
2. Construct G and compute a minimum spanning tree 7.

3. Convert T Into HDBSCAN tree.

2. Construct 9, and compute an MST.

Cannot look at all edges: too slow.

2. Construct 9, and compute an MST.

Cannot look at all edges: too slow.

Def. {p, q} is a Delaunay edge “itf" there exists a circle with:
e p and q on the boundary

e NO poINts In Its Interior

2. Construct 9, and compute an MST.

Cannot look at all edges: too slow.

kth-order

Def. {p, q} is a Delaunay edge “itt" there exists a circle with:

e p and q on the boundary
<k a "k-OD edge’
e }Q poINts in its interior

2. Construct 9, and compute an MST.

Cannot look at all edges: too slow.

kth-order

Def. {p, q} is a Delaunay edge “itt" there exists a circle with:

e p and q on the boundary
<k a "k-OD edge’
e }Q poINts in its interior

Theorem (Gudmundsson, Hammer, v. Kreveld, 2002) The k'"-order
Delaunay graph has O(n(k + 1)) edges and can be computed in
O(n(k + 1) logn) expected time by randomized incremental
construction.

2. Construct 9, and compute an MST.

Cannot look at all edges: too slow.

kth-order

Def. {p, q} is a Delaunay edge “itt" there exists a circle with:

e p and q on the boundary
<k a "k-OD edge’
e }Q poINts in its interior

Theorem (Gudmundsson, Hammer, v. Kreveld, 2002) The k'"-order
Delaunay graph has O(n(k + 1)) edges and can be computed in
O(n(k + 1) logn) expected time by randomized incremental
construction.

Claim: The MST of G, uses only k-OD edges.

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Recurse until only k-OD edges.

The MST of G uses only k-OD edges.

Consider applying Kruskal's algorithm to G
e | 00ks at edges in order of increasing cost.
e With weights d., this corresponds to the HDBSCAN events,

Claim: Whenever Kruskal looks at a non-k-OD edge {p, g},
p and g are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Recurse until only k-OD edges.

Kruskal has already considered those
edges, so p and g already connected.

Results

Everywhere: ¢ free, k fixed constant, Euclidean distances

2D dD

2
DBSCAN O(nlogn) O(m* TaAET Y)

HDBSCAN O(nlogn) expected X

	Titel

