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Der Algorithmus von Edmonds & Karp

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)
foreach uv € E do

|_ fuv =0
while Gr enthalt s-t-Weg do
W = s-t-Weg in Gf

Aw = min,cw cr(uv)
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| fuv = Tyy T AW
else

I_ fvu — fvu — AW

return f
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Der Algorithmus von Edmonds & Karp
EdmondsKarp
FordFutkersen(DirectedGraph G = (V/, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0
while Gr enthalt s-t-Weg do
W = kiirzester s-t-Weg in G¢
Aw = min,cw cr(uv)
foreach uv € W do
if uv € E then
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else
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return f
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Aber wie konnen wir uv € Ef und uv € Es erklaren??
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Zeige: Jede Kante kann hochstens O( V') mal kritisch sein.

0r(s,v) = d¢(s, u) + 1, da uv auf kiirzestem Weg W in Gr.

Nach FlussvergroBerung entlang W verschwindet uv aus Gr.

Die Kante uv erscheint erst wieder im Residualgraphen,

nachdem Fluss entlang vu vergroBert wurde = vu € Ex
(f" = Fluss nach VergréBerung)



Fortsetzung Bewels

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.
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Da vu auf kiirzestem flussvergroBerndem Weg in Gy liegt, gilt

5f/(5, u) = 5f/(5, V) +1
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Kiirzeste Wege sind einfach, d.h. besuchen jeden Knoten < 1x.

= (s, u) < |V/|, solange u von s erreicht werden kann.

= Die Kante uv kann nur O(V) mal kritisch sein.
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Methode Laufzeit O(-) Autoren
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shortest resid. s-t path | VE? | Dinic'70, Ed. & Karp 72
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