Julius-Maximilians-
UNJVERS'T}-.\T Lehrstuhl fiir I ' ' ' I i fl
WURZBURG INFORMATIK |

Algorithmen & Komplexitat Institut fiir Informatik

Algorithmische Graphentheorie

Sommersemester 2021

4. Vorlesung

Flussalgorithmen

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f
konstruiert.

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f
konstruiert, also eine Funktion f: E — R>g, die

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f
konstruiert, also eine Funktion f: E — R>g, die

— den Fluss erhalt

— zulassig ist

— maximal ist

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f
konstruiert, also eine Funktion f: E — R>g, die

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist

— maximal ist

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f
konstruiert, also eine Funktion f: E — R>g, die

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:
0 < f(e) <c(e),

— maximal ist

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f
konstruiert, also eine Funktion f: E — R>g, die

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:
0 < f(e) <c(e),

— maximal ist, d.h. unter allen zulassigen s-t-Fliissen

|f| = Nettozuflusss(t) maximiert.

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f

konstruiert, also eine Funktion f: E — R~q, die
- Variable

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:
0 < f(e) < c(e),

— maximal ist, d.h. unter allen zulassigen s-t-Fliissen

|f| = Nettozuflusss(t) maximiert.

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f

konstruiert, also eine Funktion f: E — R~q, die
- Variable

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:
Konstante 0 < f(e) <c(e),
~»

— maximal ist, d.h. unter allen zulassigen s-t-Fliissen

|f| = Nettozuflusss(t) maximiert.

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f

konstruiert, also eine Funktion f: E — R~q, die
- Variable

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:
Konstante 0 < f(e) < c(e),
~>

— maximal ist, d.h. unter allen zulassigen s-t-Fliissen

|f| = Nettozuflusss(t) maximiert.

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f

konstruiert, also eine Funktion f: E — R~q, die
- Variable

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:

|V| — 2+ |E| lineare
Konstante 0 < f(e) <cle),
\>

Beschrankungen!
44—

— maximal ist, d.h. unter allen zulassigen s-t-Fliissen

|f| = Nettozuflusss(t) maximiert.

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f

konstruiert, also eine Funktion f: E — R~q, die
- Variable

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:

|V| — 2+ |E| lineare
Konstante 0 < f(e) < c(e),
\>

Beschrankungen!
44—

— maximal ist, d.h. unter allen zulassigen s-t-Fliissen

|| = Nettozuflusss(t) maximiert.

Aufgabe

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f

konstruiert, also eine Funktion f: E — R~q, die
- Variable

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:

|V| — 2+ |E| lineare
Konstante 0 < f(e) <cle),
\>

Beschrankungen!
44—

— maximal ist, d.h. unter allen zulassigen s-t-Fliissen

. lineare
fl = '
] Nettozuflussf(t)‘nlzmmlert/Zie/funktion_,

2

Aufgabe Indeed, it's an LP!

Gegeben ein gerichteter Graph G = (V/, E) mit s, t € V und
Kantenkapazitaten c: E — Ryy.

Geben Sie eine Methode an, die einen maximalen s-t-Fluss f

konstruiert, also eine Funktion f: E — R~q, die
- Variable

— den Fluss erhalt, d.h. fiir jeden Knoten v ¢ {s, t} sicherstellt:

Nettozuflusss(v) = Z f(uv) — Zf(vw):O,

u: veAdjlu] weAdj[v]

— zulassig ist, d.h. fiir jede Kante e garantiert:

|V| — 2+ |E| lineare
Konstante 0 < f(e) <cle),
\>

Beschrankungen!
44—

— maximal ist, d.h. unter allen zulassigen s-t-Fliissen

_ lineare
fl = '
] NettOZUHUSSf(t)LTX'm'ert/Zie/funktion!

Flussalgorithmen

Kann man maximale Fliisse (= Spezialfall eines LPs) auch mit
maBgeschneiderten kombinatorischen Algorithmen berechnen?

Flussalgorithmen

Kann man maximale Fliisse (= Spezialfall eines LPs) auch mit
maBgeschneiderten kombinatorischen Algorithmen berechnen?

Hoffnung: Das konnte schneller gehen —
und strukturelle Einsichten liefern.

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T

Raus(S)={uve E|ueS veT}

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T S

Raus(S)={uve E|ueS veT}

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T S

Raus(S)={uve E|ueS veT}
fuve E|ue T,veS}t=Rein(S)

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T S

Raus(S)={uve E|ueS veT}
fuve E|ue T,veS}t=Rein(S)

Zuflussf(S) = f(Rein(S))

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T S

Raus(S)={uve E|ueS veT}
fuve E|ue T,veS}t=Rein(S)

Zuflusss(S) = f(Rein(S)) = X ecreincs) F(€)

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T S

Raus(S)={uve E|ueS veT}
fuve E|ue T,veS}t=Rein(S)

Zufluss¢(S) = f(Rein(S)) = > .creins) F(€)
Abflusss(S) = f(Raus(S5))

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T S

Raus(S)={uve E|ueS veT}
fuve E|ue T,veS}t=Rein(S)

Zuflusse(S) = f(Rein(S)) = > .crein(s) F(€)
Abflusss(S) = f(Raus(S)) = > ccraus(s) F(€)

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T S

Raus(S)={uve E|ueS veT}
fuve E|ue T,veS}t=Rein(S)

Zufluss¢(S) = f(Rein(95))
minus

Abflusss(S) = f(Raus(S))

Nichts ist praktischer als eine gute Theorie

Def. Sei G =(V, E) ein gerichteter Graph, s, t € V.

Eine Zerlegung (S, T) von V ist ein s-t-Schnitt,
fallsse S, te T.

S T S

Raus(S)={uve E|ueS veT}
fuve E|ue T,veS}t=Rein(S)

Zuflusss(S) = f(Rein(S))
minus » =: Nettozuflusss(S)
Abfluss¢(S) = f(Raus(S))

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G = (V,E) Graph, SC V und f: E — R. Dann:
Nettozuflusss(S) =

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G = (V,E) Graph, SC V und f: E — R. Dann:

Nettozuflusss(S) = >, cs

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G = (V,E) Graph, SC V und f: E — R. Dann:

Nettozufluss¢(S) = > s Nettozuflusss(v).

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) s Nettozufle(v) =

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))
— ZvES(Ze:uv f(e) o Ze:vw f(e))

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))
— ZvES(Ze:uv f(e) o Ze:vw f(e))

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

S(J@ — ZvES(Ze:uv f(e) R Ze:vw f(e))

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

— ZvES(Ze:uv f(e) R Ze:vw f(e))

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

— ZvES(Ze:uv f(e) R Ze:vw f(e))

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

— ZvES(Ze:uv f(e) R Ze:vw f(e))

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

— ZvES(Ze:uv f(e) R Ze:vw f(e))
+f

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

— ZvES(Ze:uv f(e) _ Ze:vw f(e))
+f

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

S — ZvES(Ze:uv f(e) — Ze:vw f(e))
+f e

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

S — ZVES (Ze:uv f(e) R Ze:vw f(e))
= D fle)= > f(e)
o f —f ecRein(S) ecRaus(S)

Nettozufllisse von Schnitten und Knoten

Zur Erinnerung: Nettozuflusss(S) := f(Rein(S)) — f(Raus(5))

Raus(S) C E Rein(S) C E
S T S T

Lem.! Sei G =(V,E) Graph, SC V und f: E — R. Dann:
Nettozufluss¢(S) = > s Nettozuflusss(v).

Beweis.) .sNettozufle(v) = > .o (Zuflusss(v) — Abflusss(v))

S — ZVES (Ze:uv f(e) R Ze:vw f(e))
= Z f(e) — Z f(e) = Nettozufl¢(S5)
f —f e€Rein(S) e€Raus(S)

Noch mehr Schnitte

Lemma!. Sei G = (V,E) Graph, S C V und f: E — R. Dann:

Nettozuflusss(S) =), s Nettozuflusss(v).

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| =

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozuflusss(T).

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozuflusss(T).

Beweis. |f| =pef.

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozuflusss(T).

Beweis. |f| =per, Nettozuflusss(t)

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozuflusss(T).

Beweis. |f| =per, Nettozuflusss(t)
= 2,1 Nettozuflusss(v)

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozuflusss(T).

Beweis. |f| =per, Nettozuflusss(t)
= 2,1 Nettozuflusss(v)

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozuflusss(T).

Beweis. |f| =per, Nettozuflusss(t)
= 2,1 Nettozuflusss(v)

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozuflusss(T).

Beweis. |f| =per, Nettozuflusss(t)
= 2,1 Nettozuflusss(v)

Noch mehr Schnitte

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozuflusss(T).

Beweis. |f| =per, Nettozuflusss(t)
= 2,1 Nettozuflusss(v)

Nettozuflusss(T)

Kapazitat von Schnitten

Lemma?. G Graph, s,t € V, f s-t-Fluss, (S, T) s-t-Schnitt.
Dann gilt |f| = Nettozufluss¢(T)

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitat von (S5,T).

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitit von (S,T).

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitit von (S,T).

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).

Beweis. || =

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).

Beweis. || =

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).
Beweis. |f| = Nettoabflusss(S)

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).

Beweis. |f| = Nettoabfluss¢(S) =

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).
Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).
Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).
Lemma3. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S5).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus(5))

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).
Lemma3. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S5).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus(S)) < c(Raus(95))

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).
Lemma3. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S5).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus(S)) < c(Raus(95))

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus($5)) < cEE;us(S))

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus($5)) < cEE;us(S))

Speziell:

ming c(S)
> MaxXy¢ |f|

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus($5)) < cEE;us(S))

Speziell:

minse(S) | T
> MaxXy¢ ’f’ |

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).
Lemma3. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S5).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus(S)) < c(Raus(95))

= ¢(9)
Speziell: | 4 Korollar.
. Wenn
mings c(S) T f| = c(S)
> maxs ’f’ —
10

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).
Lemma3. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S5).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus(S)) < c(Raus(95))

= c(5)
Speziell: | 4 Korollar.
. Wenn
minsc(S) | T | = c(95)
> maxr ||| T = f max.,
10

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).
Lemma3. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S5).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus(S)) < c(Raus(95))

= ¢(5)
Speziell: | 4 Korollar.

. Wenn
minsc(S) | T | = c(95)
> maxr ||| T = f max.,

1o (S, T) min.

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).
Lemma3. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S5).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus(S)) < c(Raus(95))

= c(5)
Speziell: | 4 Korollar.

. Wenn
minsc(S) | T | = c(95)
Zmaxf’f’ [:>fmax., ”

1o (S, T)min. -

Kapazitat von Schnitten

=: Nettoabflusss(S5).

Def. G Graph mit Kap. c: E — Ry, (5,T) s-t-Schnitt.
Dann ist ¢(S) := c(Raus(S)) die Kapazitidt von (S,T).

Lemma®. f zuldss. s-t-Fluss, (S,T) s-t-Schnitt = |f| < ¢(S).

Beweis. |f| = Nettoabflusss(S) = f(Raus(S)) — f(Rein(S))
< f(Raus(S)) < c(Raus(95))

Speziell:

minse(S) | T
> MaxXy¢ ’f’ |

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)
® +e:=uv falls f(e) < c(e)
® —e:=vufalls f(e) >0

12/12

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mit cs(+e) := c(e) — f(e)
® —e:=vufalls f(e) >0

12/12

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mit cs(+e) := c(e) — f(e)
® —e:=vufalls f(e) >0 mitc(—e):=f(e)

12/12

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

12/12

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

12/12

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)
® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

@ @

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

©@

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

: @,

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

: @,

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

: @,

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)
® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)
® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)
® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)
® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)
® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

Residual-
kapazitaten

Residualnetz

Beob. Falls es einen s-t-Weg gibt, bei dem auf keiner Kante
die Kapazitat ausgeschopft ist, konnen wir f vergroBern.

Aber: Falls es keinen solchen s-t-Weg gibt,
so ist f nicht unbedingt maximal.

Def. Der Residualgraph Gr = (V/, Ef) enthalt
fiir jede Kante e = uv von G = (V, E) die Kante(n)

® +e:=uv falls f(e) < c(e) mitles(+e) = c(e) — f(e)
® —e:=vufalls f(e) >0 mitec(—e):=f(e)

12/12
8/16 @ - ’@ 16/ 20 8 @

3/9

Residual-
kapazitaten

FlussvergroBernde Wege

Def. Ein s-t-Weg W in Gr heiBt flussvergroBernder Weg
fur f.

8/16 @12'/12’@ 16/ 20 g »(D O

4/4 3/2 707 :

3
B C @

FlussvergroBernde Wege

Def.

Ein s-t-Weg W in Gr heiBt flussvergroBernder Weg
fiur f. Die Residualkapazitat von W ist

Aw = mingcw cr(e),

FlussvergroBernde Wege

Def.

Ein s-t-Weg W in Gr heiBt flussvergroBernder Weg
fiur f. Die Residualkapazitat von W ist

Aw = mingcw cr(e),

FlussvergroBernde Wege

Def.

Satz.

Ein s-t-Weg W in Gr heiBt flussvergroBernder Weg
fiur f. Die Residualkapazitat von W ist

Aw = mingcw cr(e),

(vom flussvergréBernden Weg).
Ein zulassiger s-t-Fluss f in G ist maximal <
es gibt keinen flussvergroBernden Weg in Gr.

FlussvergroBernde Wege

Def.

Satz.

Ein s-t-Weg W in Gr heiBt flussvergroBernder Weg
fiur f. Die Residualkapazitat von W ist

Aw = mingcw cr(e),

(vom flussvergréBernden Weg).
Ein zulassiger s-t-Fluss f in G ist maximal <
es gibt keinen flussvergroBernden Weg in Gr.

Das Max-Flow-Min-Cut-Theorem

Satz.

10

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Kurz: _
max | = min c(S)
f zul3dssiger s-t-Fluss (S, T) s-t-Schnitt

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Kurz: _
max | = min c(S)
f zul3dssiger s-t-Fluss (S, T) s-t-Schnitt

Beweis. (1)=-(2):

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).
Kurz:

max | = min c(S)
f zul3dssiger s-t-Fluss (S, T) s-t-Schnitt

Beweis. (1)=-(2):
Ang. Gr enthalt augmentierenden Weg.

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Kurz: _
max f| = min c(S)
f zuldssiger s-t-Fluss (S, T) s-t-Schnitt
Beweis. (1)=-(2):
Ang. Gr enthalt augmentierenden Weg.
Aber dann konnte f erhoht werden.

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Kurz: _
max f| = min c(S)
f zuldssiger s-t-Fluss (S, T) s-t-Schnitt
Beweis. (1)=-(2):
Ang. Gr enthalt augmentierenden Weg.
Aber dann konnte f erhoht werden.

Widerspruch zu |f| maximal.

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Kurz: _
max f| = min c(S)
f zuldssiger s-t-Fluss (S, T) s-t-Schnitt
Beweis. (1)=-(2):
Ang. Gr enthalt augmentierenden Weg.
Aber dann konnte f erhoht werden.

Widerspruch zu |f| maximal.
(3)=(1):

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Kurz: _
max f| = min c(S)
f zuldssiger s-t-Fluss (S, T) s-t-Schnitt
Beweis. (1)=-(2):
Ang. Gr enthalt augmentierenden Weg.
Aber dann konnte f erhoht werden.

Widerspruch zu |f| maximal.
(3)=(1): Korollar =

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Kurz: _
max | = min c(S)
f zuldssiger s-t-Fluss (S, T) s-t-Schnitt
Beweis. (1)=-(2):
Ang. Gr enthalt augmentierenden Weg. | Korollar.
Aber dann konnte f erhoht werden. f| = ¢(S)

Widerspruch zu |f| maximal. U
(3)=(1): Korollar = f maximal

Das Max-Flow-Min-Cut-Theorem

Satz. Sei f ein zulassiger s-t-Fluss in einem gerichteten
Graphen G mit Kapazitaten c: E — R..
Dann sind folgende Bedingungen aquivalent:

1. f ist ein maximaler Fluss in G.
2. Gr enthalt keine augmentierenden Wege.

3. Es gibt einen s-t-Schnitt (S, T) mit |f| = ¢(S5).

Kurz: _
max | = min c(S)
f zuldssiger s-t-Fluss (S, T) s-t-Schnitt
Beweis. (1)=-(2):
Ang. Gr enthalt augmentierenden Weg. | Korollar.
Aber dann konnte f erhoht werden. f| = ¢(S)

Widerspruch zu |f| maximal. U
(3)=(1): Korollar = |f| maximal. f maximal

Zu zeigen:

11

Zu zeigen:

(2)=(3):

11

Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.

11

Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
—

11

Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |In G¢ ist t von s aus nicht erreichbar.

11

11
Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

(Ist s-t-
= } Schnitt.

11
Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.

— |n Gf ist t von s aus nicht erreichbar.
N <(5 = {v | v von s erreichbar} ot o t
T ={v | v von s nicht erreichbar} Schnitt.

11
Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

'S ={v | v von s erreichbar} } ist s-f-

$< [- n
T ={v | v von s nicht erreichbar} Schnitt.

Sei e = uv € Raus(9).

Nun sei e = uv € Rein(S)

11
Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

'S ={v | v von s erreichbar} } ist s-f-

$< [- n
T ={v | v von s nicht erreichbar} Schnitt.

Sei e = uv € Raus(9).
—

Nun sei e = uv € Rein(S)

11
Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

= <

Sei e = uv € Raus(9).
= f(e) = c(e)

Nun sei e = uv € Rein(S)

Zu zeigen: 2.

3.

Gr enthalt keine augmentierenden Wege.

4
Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.

—

= <

Sei
—

n Gr ist t von s aus nicht erreichbar.

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

e = uv € Raus(S).

11

f(e) = c(e), sonst ware v von s in Gy erreichbar.

Nun sei e = uv € Rein(S)

Zu zeigen: 2.

3.

Gr enthalt keine augmentierenden Wege.

4
Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.

—

= <

Sei
—

>
=3

n Gr ist t von s aus nicht erreichbar.

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

e = uv € Raus(S).

11

f(e) = c(e), sonst ware v von s in Gy erreichbar.

Nun sei e = uv € Rein(S)

Zu zeigen: 2.

3.

Gr enthalt keine augmentierenden Wege.

4
Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.

—

n Gr ist t von s aus nicht erreichbar.

= <

Sei
—
>

=

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

e = uv € Raus(S).

11

f(e) = c(e), sonst ware v von s in Gy erreichbar.

f(Raus(S)) = c(Raus(S))

Nun sei e = uv € Rein(S)

Zu zeigen: 2.

3.

Gr enthalt keine augmentierenden Wege.

4
Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.

—

n Gr ist t von s aus nicht erreichbar.

= <

Sei

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

e = uv € Raus(S).

11

= f(e) = c(e), sonst ware v von s in Gr erreichbar.

>
=3

f(Raus(S)) = c(Raus(S))

Nun sei e = uv € Rein(S) = f(e) =0

Zu zeigen: 2.

3.

Gr enthalt keine augmentierenden Wege.

4
Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.

—

n Gr ist t von s aus nicht erreichbar.

= <

Sei
—
>

=

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

e = uv € Raus(S).

11

f(e) = c(e), sonst ware v von s in Gy erreichbar.

f(Raus(S)) = c(Raus(S))

Nun sei e = uv € Rein(S) = f(e) =0

>
=

f(Rein(S)) = 0

Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

= <

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

Sei e = uv € Raus(9).

11

= f(e) = c(e), sonst ware v von s in Gr erreichbar.

= f(Raus(S)) = c(Raus(S))

Nun sei e = uv € Rein(S) = f(e) =0
= f(Rein(S)) =0

Also: ¢(S) =

Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

= <

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

Sei e = uv € Raus(9).

11

= f(e) = c(e), sonst ware v von s in Gr erreichbar.

= f(Raus(S)) = c(Raus(S))

Nun sei e = uv € Rein(S) = f(e) =0
= f(Rein(S)) =0

Also: ¢(S) = c(Raus(S5)) =

Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

= <

'S ={v | v von s erreichbar} ot ot
T ={v | v von s nicht erreichbar} Schnitt.

Sei e = uv € Raus(9).

11

= f(e) = c(e), sonst ware v von s in Gr erreichbar.

= f(Raus(S)) = c(Raus(S))
Nun sei e = uv € Rein(S) = f(e) =0

= f(Rein(5)) =0 ™\

Also: c(S) = c(Raus(S)) =

11
Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

= <

'S ={v | v von s erreichbar} } ict o_f-

T ={v | v von s nicht erreichbar} [Schnitt.
Sei e = uv € Raus(S5).

= f(e) = c(e), sonst ware v von s in Gr erreichbar.
= f(Raus(S)) = c(Raus(S))
Nun sei e = uv € Rein(S) = f(e) =0

= f(Rein(5)) =0 ™\

Also: ¢(S) = c(Raus(S)) = f(Raus(S) — f(Rein(S5))

11
Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

= <

'S ={v | v von s erreichbar} } ist s-t-

T ={v | v von s nicht erreichbar} [Schnitt.
Sei e = uv € Raus(9).

= f(e) = c(e), sonst ware v von s in Gf erreichbar.
= f(Raus(S)) = c(Raus(S))
Nun sei e = uv € Rein(S) = f(e) =0
= f(Rein(5)) =0 ™\
Also: ¢(S) = c(Raus(S)) = f(Raus(S) — f(Rein(S5))
= Nettoabflussf(S) =

Lem. 2

11
Zu zeigen: 2. Gr enthalt keine augmentierenden Wege.

4
3. Es gibt einen Schnitt (S, T) mit |f| = ¢(S).

(2) = (3): Es gibt keinen augmentierenden Weg in Gr.
— |n Gf ist t von s aus nicht erreichbar.

= <

'S ={v | v von s erreichbar} } ist s-t-

T ={v | v von s nicht erreichbar} [Schnitt.
Sei e = uv € Raus(9).

= f(e) = c(e), sonst ware v von s in Gf erreichbar.
= f(Raus(S)) = c(Raus(S))
Nun sei e = uv € Rein(S) = f(e) =0
= f(Rein(5)) =0 ™\
Also: ¢(S) = c(Raus(S)) = f(Raus(S) — f(Rein(S5))
:-Nettoabflussf(S) = |f|]

Lem. 2

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
I_ fuv =0

return f

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

=0 } Initialisierung mit Null-Fluss

return f

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

=0 } Initialisierung mit Null-Fluss

return f } Riickgabe eines max. Flusses

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0
while Gr enthilt s-t-Weg W do

} Initialisierung mit Null-Fluss

return f } Riickgabe eines max. Flusses

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0
while Gr enthilt s-t-Weg W do

} Initialisierung mit Null-Fluss

Schreiben Sie lhren eigenen
Code, der bei Abbruch der
while-Schleife in f einen
maximalen Fluss liefert.

return f } Riickgabe eines max. Flusses

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0

while Gr enthilt s-t-Weg W do

Aw = minyew cr(uv) |} Residualkapazitat von W

} Initialisierung mit Null-Fluss

Schreiben Sie lhren eigenen
Code, der bei Abbruch der
while-Schleife in f einen
maximalen Fluss liefert.

return f } Riickgabe eines max. Flusses

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0
while Gr enthilt s-t-Weg W do
Aw = minyew cr(uv) |} Residualkapazitat von W
foreach uv € W do
if uv € E then
| fuv — fuv + AW
else
|_ fvu — fvu — AW

return f } Riickgabe eines max. Flusses

} Initialisierung mit Null-Fluss

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0
while Gr enthilt s-t-Weg W do

if uv € E then

| fuv — fuv +
else
|_ fvu — fvu —

return f

Aw = ming,cw cr(uv)
foreach uv € W do

Aw

Ay

} Initialisierung mit Null-Fluss

} Residualkapazitat von W

\

> FlussvergroBerung entlang W

/
} Riickgabe eines max. Flusses

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0
while Gr enthilt s-t-Weg W do

if uv € E then

| fuv — fuv +
else
|_ fvu — fvu —

return f

Korrektheit?

Aw = ming,cw cr(uv)
foreach uv € W do

Aw

Ay

} Initialisierung mit Null-Fluss

\

} Residualkapazitat von W

> FlussvergroBerung entlang W

/

} Riickgabe eines max. Flusses

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0

while Gr enthilt s-t-Weg W do

Aw = minyew cr(uv) |} Residualkapazitat von W

foreach uv € W do)

if uv € E then

|I fuv = fuv + Aw > FlussvergroBerung entlang W
else

|_ fvu — fvu_AW

— /

} Initialisierung mit Null-Fluss

return f } Riickgabe eines max. Flusses

Korrektheit?

Folgt aus Max-Flow-
Min-Cut-Theorem

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)
foreach uv € E do
I_ fuv =0
while Gr enthilt s-t-Weg W do

Aw = ming,cw cr(uv)
foreach uv € W do

if uv € E then
| fuv — fuv + AW
else
I_ fvu — fvu — AW
re_turn f
Korrektheit? Laufzeit?

Folgt aus Max-Flow-
Min-Cut-Theorem

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)
foreach uv € E do
I_ fuv =0
while Gr enthilt s-t-Weg W do

Aw = ming,cw cr(uv)
foreach uv € W do

if uv € E then
| fuv — fuv + AW
else
I_ fvu — fvu — AW
re_turn f
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)
foreach uv € E do
I_ fuv =0
while Gr enthilt s-t-Weg W do

Aw = ming,cw cr(uv)
foreach uv € W do

if uv € E then
| fuv — fuv + AW
else
I_ fvu — fvu — AW
re_turn f
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)
foreach uv € E do
I_ fuv =0
while Gr enthalt s-t-Weg W do

Aw = ming,cw cr(uv)
foreach uv € W do

if uv € E then
| fuv — fuv + AW
else
I_ fvu — fvu — AW
re_turn f
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do
I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen

Aw = ming,cw cr(uv)
foreach uv € W do

if uv € E then
| fuv — fuv + AW
else
I_ fvu — fvu — AW
re_turn f
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Aw = min,ecw Cf(UV) — Breitensuche
foreach uv € W do — Tiefensuche
if uv € E then
| fuv — fuv + AW
else
I_ fvu — fvu — AW
return f
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q-o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Ay = min,,ew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
if uv € E then
| fuv — fuv + AW
else
I_ fvu — fvu — AW
re_turn f
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Ay = min,,ew Cf(UV) — Breitensuche} :
. E) 7/
foreach uv € W do — Tiefensuche O(E) Zeit
if uv € E then . .
=1 Aw Anz. Schleifendurchliufe
else
I_ fvu — fvu — AW
re_turn f
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Aw = mingew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
if uv € E then Anz. Schleifendurchlzufe
| fuv:fuv+AW .. .
alse — in jedem Durchlauf wird
| f,=Ff,—Aw f um > 1 vergroBert
re_turn f
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Aw = ming ew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
if uv € E then Anz. Schleifendurchlzufe
| fuv:fuv+AW .. .
— in jedem Durchlauf wird
else)
| f,=f,— Ay f um > 1 vergroBert
. — max. |f*| Durchlaufe,
return f wobel f* ein max. Fluss
Korrektheit? Laufzeit? 1. c: E — N:
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Ay = mingew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
Ty € E ey Anz. Schleifendurchliufe
| fuv:fuv+AW . .
— in jedem Durchlauf wird
else .
| f,=f,— Ay f um > 1 vergroBert
. — max. |f*| Durchlaufe,
return f wobei * ein max. Fluss
Korrektheit? Laufzeit? 1. c: E - N: O(|f*| - E)
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Ay = mingew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
Ty € E ey Anz. Schleifendurchliufe
| fuv:fuv+AW . .
— in jedem Durchlauf wird
else .
| f,=f,— Ay f um > 1 vergroBert
. — max. |f*| Durchlaufe,
return f wobei * ein max. Fluss
Korrektheit? Laufzeit? 1. c: E - N: O(|f*| - E)
Folgt aus Max-Flow- 2. Q>o:

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Ay = mingew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
L gy € £ e Anz. Schleifendurchlzufe
| fuv:fuv+AW . .
— in jedem Durchlauf wird
else .
| f,=f,— Ay f um > 1 vergroBert
. — max. |f*| Durchlaufe,
return f wobei f* ein max. Fluss
Korrektheit? Laufzeit? 1. c: E - N: O(|f*|- E)
Folgt aus Max-Flow- 2. Q<q: erweitern...

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Ay = mingew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
L gy € £ e Anz. Schleifendurchlzufe
| fuv:fuv+AW . .
— in jedem Durchlauf wird
else .
| f,=f,— Ay f um > 1 vergroBert
. — max. |f*| Durchlaufe,
return f wobei f* ein max. Fluss
Korrektheit? Laufzeit? 1. c: E - N: O(|f*|- E)
Folgt aus Max-Flow- 2. Q<q: erweitern...

Min-Cut-Theorem 3. R<o:

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Ay = mingew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
L gy € £ e Anz. Schleifendurchlzufe
| fuv:fuv+AW . .
— in jedem Durchlauf wird
else .
| f,=f,— Ay f um > 1 vergroBert
. — max. |f*| Durchlaufe,
return f wobei f* ein max. Fluss
Korrektheit? Laufzeit? 1. c: E - N: O(|f*|- E)
Folgt aus Max-Flow- 2. Q<q: erweitern...

Min-Cut-Theorem 3. R<o: problematisch!

12

Der Algorithmus von Ford & Fulkerson

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)

foreach uv € E do

I_ fuv =0
while Gf enthalt s-t-Weg W do Berechnung von s-t-Wegen
Ay = mingew Cf(UV) — Breitensuche} :
foreach uv € W do — Tiefensuche O(E) Zeit
L gy € £ e Anz. Schleifendurchlzufe
| fuv:fuv+AW . .
— in jedem Durchlauf wird
else .
| f,=f,— Ay f um > 1 vergroBert
. — max. |f*| Durchlaufe,
return f wobei f* ein max. Fluss
Korrektheit? Laufzeit? 1. c: E - N: O(|f*|- E)
Folgt aus Max-Flow- 2. Q<q: erweitern...

Min-Cut-Theorem 3. R<o: problematisch!

Beispiel

13

Beispiel

13

Beispiel

13

Beispiel

13

Beispiel

13

Beispiel

13

Beispiel

13

Beispiel

13

Beispiel

Laufzeit € Q(|f*| - E)

13

14

Der Algorithmus von Edmonds & Karp

FordFulkerson(DirectedGraph G = (V, E; ¢), Vertex s, Vertex t)
foreach uv € E do

|_ fuv =0
while Gr enthalt s-t-Weg do
W = s-t-Weg in Gf

Aw = min,cw cr(uv)
foreach uv € W do
if uv € E then

| fuv = Tyy T AW
else

I_ fvu — fvu — AW

return f

14

Der Algorithmus von Edmonds & Karp

EdmondsKarp
FordFutkersen(DirectedGraph G = (V/, E; ¢), Vertex s, Vertex t)

foreach uv € E do

|_ fuv =0
while Gr enthalt s-t-Weg do
W = s-t-Weg in Gf

Aw = min,cw cr(uv)
foreach uv € W do
if uv € E then

| fuv = Tyy T AW
else

I_ fvu — fvu — AW

return f

14

Der Algorithmus von Edmonds & Karp
EdmondsKarp
FordFutkersen(DirectedGraph G = (V/, E; ¢), Vertex s, Vertex t)

foreach uv € E do
|_ fuv =0
while Gr enthalt s-t-Weg do
W = kiirzester s-t-Weg in G¢
Aw = min,cw cr(uv)
foreach uv € W do
if uv € E then
| fuv = Tyy + AW
else
I_ fvu — fvu — AW

return f

Beispiel

15

Beispiel

15

Beispiel

15

Beispiel

15

Beispiel

15

Beispiel

15

Beispiel

15

Beispiel

15

15

Beispiel

15

Beispiel

Abstand von s = ?

15

Beispiel

Abstand von s = 1

15

Beispiel

Abstand von s = 1

15

Beispiel

Abstand von s = 1

15

Beispiel

Abstand von s = 1

15

Beispiel

Abstand von s = 1

16

Kiirzeste Wege machen effiziente Algorithmen!

Def. Sei d¢(u, v) die Lange (= Anz. Kanten) eines
kiirzesten u-v-Wegs in Gr.

16

Kiirzeste Wege machen effiziente Algorithmen!

Def. Sei d¢(u, v) die Lange (= Anz. Kanten) eines
kiirzesten u-v-Wegs in Gr.

Lemma. Wiahrend EdmondsKarp(G, s, t) gilt fiir jeden
Knoten v € V, dass d¢(s, v) mit jeder
FlussvergroBerung monoton zunimmt.

16

Kiirzeste Wege machen effiziente Algorithmen!

Def. Sei d¢(u, v) die Lange (= Anz. Kanten) eines
kiirzesten u-v-Wegs in Gr.

Lemma. Wiahrend EdmondsKarp(G, s, t) gilt fiir jeden
Knoten v € V, dass d¢(s, v) mit jeder
FlussvergroBerung monoton zunimmt.

Bewelrs.

16

Kiirzeste Wege machen effiziente Algorithmen!

Def. Sei d¢(u, v) die Lange (= Anz. Kanten) eines
kiirzesten u-v-Wegs in Gr.

Lemma. Wiahrend EdmondsKarp(G, s, t) gilt fiir jeden
Knoten v € V, dass d¢(s, v) mit jeder
FlussvergroBerung monoton zunimmt.

Beweis. Annahme: es gibt einen Knoten v derart, dass é¢(s, v)
bei einer VergroBerung von f abnimmt.

16

Kiirzeste Wege machen effiziente Algorithmen!

Def. Sei d¢(u, v) die Lange (= Anz. Kanten) eines
kiirzesten u-v-Wegs in Gr.

Lemma. Wiahrend EdmondsKarp(G, s, t) gilt fiir jeden
Knoten v € V, dass d¢(s, v) mit jeder
FlussvergroBerung monoton zunimmt.

Beweis. Annahme: es gibt einen Knoten v derart, dass é¢(s, v)
vei einer VergroBerung von f abnimmt.

Sei f der Fluss vor der VergroBerung;
sei f' der Fluss nach der VergroBerung.

Kurzeste Wege

Def. Sei d¢(u, v)

16

machen effiziente Algorithmen!

die Liange (= Anz. Kanten) eines

kiirzesten u-v-Wegs in Gr.

Lemma. Wiahrend EdmondsKarp(G, s, t) gilt fiir jeden
Knoten v € V, dass d¢(s, v) mit jeder
FlussvergroBerung monoton zunimmt.

Beweis. Annahme: es gibt einen Knoten v derart, dass é¢(s, v)

Sei f der F
sei f' der F

Ab jetzt sel

vei einer VergroBerung von f abnimmt.

uss vor der VergroBerung;

uss nach der VergroBerung.

v unter den Knoten mit 7 (s,v) < d¢(s,v)

einer mit minimalem Wert von ¢/ (s, v).

Kurzeste Wege

Def. Sei d¢(u, v)

16

machen effiziente Algorithmen!

die Liange (= Anz. Kanten) eines

kiirzesten u-v-Wegs in Gr.

Lemma. Wiahrend EdmondsKarp(G, s, t) gilt fiir jeden
Knoten v € V, dass d¢(s, v) mit jeder
FlussvergroBerung monoton zunimmt.

Beweis. Annahme: es gibt einen Knoten v derart, dass é¢(s, v)

Sei f der F
sei f' der F

Ab jetzt sel

vei einer VergroBerung von f abnimmt.

uss vor der VergroBerung;

uss nach der VergroBerung.
kleinster Schurke*
v unter den Knoten mit d¢(s,v) < d¢(s,v)

einer mit minimalem Wert von ¢/ (s, v).

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
—

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Eg

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Ef und

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)
Beh. uv ¢ Ef

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)
Beh. uv ¢ Ef

Bewelrs.

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)
Beh. uv ¢ Ef

Beweis. Angenommen uv € Ef

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)
Beh. uv ¢ Ef

Beweis. Angenommen uv € Ef =

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)
Beh. uv ¢ Ef

Beweis. Angenommen uv € Ef = d¢(s,v) < d¢(s,u) +1

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)

Beh. uv ¢ Ef PN b,

Beweis. Angenommen uv € Ef = d¢(s,v) < 6¢(s,u) +1

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.

Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)

Beh. uv ¢ Ef PN b,

Beweis. Angenommen uv € Ef | = d¢(s,v) < 6¢(s,u) +1

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: ¢ (s, u) > d¢(s, u)

Beh. uv ¢ E; PN Y,

Beweis. Angenommen uv € Ef | = d¢(s,v) < 6¢(s,u) +1
< 5f/(5, U) +1

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: d¢/((s, u) > d¢(s, u)

Beh. uv ¢ E; PN Y,

Beweis. Angenommen uv\€ Ef | = d¢(s,v) < (s, u) +1
< 5f/(5, U) +1

17

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: d¢/((s, u) > d¢(s, u)

Beh. uv ¢ E PN Yy
Beweis. Angenommen uv\€ Ef \ = d¢(s,v) < d¢(s, u) +1
< s (s,u)+1
= d¢/(s, v)

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: d¢/((s, u) > d¢(s, u)

Beh. uv ¢ E PN Yy
Beweis. Angenommen uv\€ Ef \ = d¢(s,v) < d¢(s, u) +1
< dr/(s,u) +1
= d¢/(s, v)

Widerspruch zur Annahme, dass ¢/ (s, v) < d¢(s, v). N

17

Fortsetzung Bewels

Sei W ein kiirzester s-v-Weg in Gy.
Sei u der letzte Knoten vor v auf W.
= uv € Ef und d¢/(s,v) = dr/(s, u) + 1.

Nach Wahl von v gilt: d¢/((s, u) > d¢(s, u)

Beh. uv ¢ Ef PN Y,

Beweis. Angenommen uv\€ Ef \ = d¢(s,v) < d¢(s, u) +1
< 5f/(5, U) +1
— 5f/(5, V)

Widerspruch zur Annahme, dass ¢/ (s, v) < d¢(s, v). N

Aber wie konnen wir uv € Ef und uv € Es erklaren??

Fortsetzung |

1. Fall: uveE

2. Fall: vue E

18

Fortsetzung |

1. Fall: wvekE
uv & Er bedeutet

2. Fall: vue E

18

Fortsetzung |

1. Fall: wuvekE
uv ¢ Ef bedeutet f(uv) = c(uv).

2. Fall: vue E

18

Fortsetzung |

1. Fall: wveE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet

2. Fall: vue E

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

2. Fall: vue E

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv & Er bedeutet

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.
uv € Es bedeutet

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.
uv € Ef bedeutet f'(vu) > 0.

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).
~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE
uv ¢ Ef bedeutet f(vu) = 0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

18

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

= (5f(S, V) =

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

— (5f(5, V) — 5f(5, U) — 1

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

= dr(s,v) = dr(s,u) —1 <

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

— (5f(5, V) — 5f(5, U) —1 < 5f/(5, U) —1

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

— (5f(5, V) — 5f(5, U) —1 < 5f/(5, U) —1 =

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.

uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

= (5f(5, V) — 5f(5, U) —1 < 5f/(5, U) —1 = 5;"/(5, V) — 2

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.
uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

— (5f(5, V) = 5f(5, U) —1 S 5f/(5, U) —1 = 5;"/(5, V) — 2
<

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.
uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

= (5f(5, V) — 5f(5, U) —1 < 5f/(5, U) —1 = 5;"/(5, V) — 2
< 5,6/(5, V).

18

18

Fortsetzung |

1. Fall: wvekE
uv ¢ Ef bedeutet f(uv) = c(uv).
uv € Ef bedeutet f'(uv) < c(uv).

~+ FlussvergroBerung entlang vu € Ef
2. Fall: vueE

uv ¢ Ef bedeutet f(vu)=0.
uv € Ef bedeutet f'(vu) > 0.
~+ FlussvergroBerung entlang vu € Ef

Der Fluss wird in beiden Fallen entlang vu vergroBert.

Da EdmondsKarp entlang kiirzester Wege vergroBert, muss v
Vorganger von u auf einem kiirzesten s-u-Weg in Gy sein.

= 0r(s,v) = d¢(s,u) —1 < bp(s,u) —1 = 0¢(s,v) — 2
< d¢r(s,v). Widerspr. zur Ann. d¢/(s, v) < d¢(s, v).

Anzahl Flusserhohungen & Laufzeit

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

19

Anzahl Flusserhohungen & Laufzeit
Satz. EdmondsKarp(G, s, t) fiihrt O(VE)

FlussvergroBerungen durch.

Korollar. Der Edmonds-Karp-Algorithmus lduft in O(V E?)
Leit.

19

Anzahl Flusserhohungen & Laufzeit

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Korollar. Der Edmonds-Karp-Algorithmus lduft in O(V E?)
Leit.

Beweis. Jede der O(V E) FlussvergréBerungen bendtigt
O(E) Zeit bei Anwendung von Breitensuche.

19

Beweis (Satz)

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Bewelis. Sei f der aktuelle Fluss in G.

Algorithmus vergroBere entlang kiirzestem s-t-Weg W in Gr.

20

Beweis (Satz)

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Bewelis. Sei f der aktuelle Fluss in G.

Algorithmus vergroBere entlang kiirzestem s-t-Weg W in Gr.

Kante uv auf W heiBt kritisch in G, wenn cs(uv) = Ay.

20

Beweis (Satz)

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Bewelis. Sei f der aktuelle Fluss in G.

Algorithmus vergroBere entlang kiirzestem s-t-Weg W in Gr.
Kante uv auf W heiBt kritisch in G, wenn cs(uv) = Ay.

Zeige: Jede Kante kann hochstens O(V') mal kritisch sein.

20

20

Beweis (Satz)

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Bewelis. Sei f der aktuelle Fluss in G.

Algorithmus vergroBere entlang kiirzestem s-t-Weg W in Gr.
Kante uv auf W heiBt kritisch in G, wenn cs(uv) = Ay.
Zeige: Jede Kante kann hochstens O(V') mal kritisch sein.

0r(s,v) = d¢(s, u) + 1, da uv auf kiirzestem Weg W in Gr.

20

Beweis (Satz)

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Bewelis. Sei f der aktuelle Fluss in G.

Algorithmus vergroBere entlang kiirzestem s-t-Weg W in Gr.

Kante uv auf W heiBt kritisch in G, wenn cs(uv) = Ay.
Zeige: Jede Kante kann hochstens O(V') mal kritisch sein.
0r(s,v) = d¢(s, u) + 1, da uv auf kiirzestem Weg W in Gr.

Nach FlussvergroBerung entlang W verschwindet uv aus Gr.

20

Beweis (Satz)

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Bewelis. Sei f der aktuelle Fluss in G.

Algorithmus vergroBere entlang kiirzestem s-t-Weg W in Gr.

Kante uv auf W heiBt kritisch in G, wenn cs(uv) = Ay.
Zeige: Jede Kante kann hochstens O(V') mal kritisch sein.
0r(s,v) = d¢(s, u) + 1, da uv auf kiirzestem Weg W in Gr.

Nach FlussvergroBerung entlang W verschwindet uv aus Gr.

Die Kante uv erscheint erst wieder im Residualgraphen,
nachdem Fluss entlang vu vergroBert wurde

20

Beweis (Satz)

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Bewelis. Sei f der aktuelle Fluss in G.

Algorithmus vergroBere entlang kiirzestem s-t-Weg W in Gr.

Kante uv auf W heiBt kritisch in G, wenn cs(uv) = Ay.

Zeige: Jede Kante kann hochstens O(V') mal kritisch sein.

0r(s,v) = d¢(s, u) + 1, da uv auf kiirzestem Weg W in Gr.

Nach FlussvergroBerung entlang W verschwindet uv aus Gr.

Die Kante uv erscheint erst wieder im Residualgraphen,

nachdem Fluss entlang vu vergroBert wurde = vu € Ex
(f" = Fluss nach VergréBerung)

Fortsetzung Bewels

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Beweis (Forts.)
Da vu auf kiirzestem flussvergroBerndem Weg in Gy liegt, gilt

5f/(5, u) = 5f/(5, V) +1

21

Fortsetzung Bewels

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Beweis (Forts.)
Da vu auf kiirzestem flussvergroBerndem Weg in Gy liegt, gilt
o (s, u) = s (s, v) + 1
>0 (s,v)+1

voriges Lemma

21

Fortsetzung Bewels

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Beweis (Forts.)
Da vu auf kiirzestem flussvergroBerndem Weg in Gy liegt, gilt
o (s, u) = s (s, v) + 1
UARURAAINNGE > o (s, v) +1
=05 (s,u) + 2.

voriges Lemma

21

21

Fortsetzung Bewels

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Beweis (Forts.)
Da vu auf kiirzestem flussvergroBerndem Weg in Gy liegt, gilt
o (s, u) = s (s, v) + 1
UARURAAINNGE > o (s, v) +1
=05 (s,u) + 2.

voriges Lemma

Also steigt d(s, u) bei jeder Flusserhéhung um > 2.

21

Fortsetzung Bewels

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Beweis (Forts.)
Da vu auf kiirzestem flussvergroBerndem Weg in Gy liegt, gilt
o (s, u) = s (s, v) + 1
UARURAAINNGE > o (s, v) +1
=05 (s,u) + 2.

voriges Lemma

Also steigt d(s, u) bei jeder Flusserhéhung um > 2.

Kiirzeste Wege sind einfach, d.h. besuchen jeden Knoten < 1x.

Fortsetzung Bewels

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Beweis (Forts.)
Da vu auf kiirzestem flussvergroBerndem Weg in Gy liegt, gilt
o (s, u) = s (s, v) + 1
UARURAAINNGE > o (s, v) +1
=05 (s,u) + 2.

voriges Lemma

Also steigt d(s, u) bei jeder Flusserhéhung um > 2.

Kiirzeste Wege sind einfach, d.h. besuchen jeden Knoten < 1x.

= (s, u) < |V/|, solange u von s erreicht werden kann.

21

Fortsetzung Bewels

Satz. EdmondsKarp(G, s, t) fiihrt O(VE)
FlussvergroBerungen durch.

Beweis (Forts.)
Da vu auf kiirzestem flussvergroBerndem Weg in Gy liegt, gilt
o (s, u) = s (s, v) + 1
UARURAAINNGE > o (s, v) +1
=05 (s,u) + 2.

voriges Lemma

Also steigt d(s, u) bei jeder Flusserhéhung um > 2.

Kiirzeste Wege sind einfach, d.h. besuchen jeden Knoten < 1x.

= (s, u) < |V/|, solange u von s erreicht werden kann.

= Die Kante uv kann nur O(V) mal kritisch sein.

21

22

Kurze Geschichte der Berechnung max. Fliisse

Methode Laufzeit O(-) Autoren

Allgemeine gerichtete Graphen
shortest resid. s-t path | VE? | Dinic'70, Ed. & Karp 72

22

Kurze Geschichte der Berechnung max. Fliisse

Methode Laufzeit O(-) Autoren
Allgemeine gerichtete Graphen
shortest resid. s-t path | VE? Dinic '70, Ed. & Karp '72

push relabel V2E Goldberg '87

22

Kurze Geschichte der Berechnung max. Fliisse

Methode Laufzeit O(-) Autoren
Allgemeine gerichtete Graphen
shortest resid. s-t path | VE? Dinic '70, Ed. & Karp '72
push relabel V2E Goldberg '87
relabel to front V3 Goldberg & Tarjan '88
VE log(V?/E + 2) "

22

Kurze Geschichte der Berechnung max. Fliisse

Methode Laufzeit O(-) Autoren
Allgemeine gerichtete Graphen
shortest resid. s-t path | VE? Dinic '70, Ed. & Karp '72
push relabel V2E Goldberg '87
relabel to front V3 Goldberg & Tarjan '88
VE log(V?/E + 2) K
blocking flow min(V2/3, EY/?). E. | Goldberg & Rao '98
log(V?/E + 2) - log C, |wobei C =5 __c(e)

22

Kurze Geschichte der Berechnung max. Fliisse

Methode

Laufzeit O(-)

Autoren

Allgemeine gerichtete Graphen

shortest resid. s-t path | VE? Dinic '70, Ed. & Karp '72
push relabel V2E Goldberg '87
relabel to front V3

blocking flow

VE log(V?/E + 2)
min(V?/3, E/2) . E.
log(V?/E + 2) - log C,

Goldberg & Tarjan '88

Goldberg & Rao '98
wobei C =} __.c(e)

new

VE

Orlin '13

22

Kurze Geschichte der Berechnung max. Fliisse

Methode

Laufzeit O(-)

Autoren

Allgemeine gerichtete Graphen

shortest resid. s-t path | VE? Dinic '70, Ed. & Karp '72
push relabel V2E Goldberg '87
relabel to front V3

VE log(V?/E + 2)

Goldberg & Tarjan '88

blocking flow min(V2/3, EY/?). E. | Goldberg & Rao '98
log(V2/E +2) -log C, |wobel C = 5" __c(e)
new VE Orlin "13

s-t-planare Graphen

shortest path in dual

V

Hassin '81
+ Henzinger et al. '97

22

Kurze Geschichte der Berechnung max. Fliisse

Methode Laufzeit O(-) Autoren
Allgemeine gerichtete Graphen
shortest resid. s-t path | VE? Dinic '70, Ed. & Karp '72
push relabel V2E Goldberg '87
relabel to front V3

blocking flow

VE log(V?/E + 2)
min(V?/3, E/2) . E.
log(V?/E + 2) - log C,

Goldberg & Tarjan '88

Goldberg & Rao '98
wobei C =} __.c(e)

new

VE

Orlin '13

s-t-planare Graphen

shortest path in dual

V

Hassin '81

+ Henzinger et al. '97

Planare Graphen

leftmost resid. s-t path
+ vertex capacities

Viog V
V log V

Borradaile & Klein '06
Kaplan & Nussbaum '09

	Titel
	Aufgabe
	Future Work
	Nichts ist praktischer als eine gute Theorie
	Nettozuflüsse von Schnitten und Knoten
	Noch mehr Schnitte
	Kapazität von Schnitten
	Residualnetz
	Flussvergrößernde Wege
	Das Max-Flow-Min-Cut-Theorem
	Der Algorithmus von Ford \& Fulkerson
	Beispiel
	Der Algorithmus von Edmonds \& Karp
	Beispiel
	Kürzeste Wege machen effiziente Algorithmen!
	Fortsetzung Beweis
	Fortsetzung II
	Anzahl Flusserhöhungen \& Laufzeit
	Kurze Geschichte der Berechnung max.\ Flüsse

