

Algorithmische Graphentheorie

Sommersemester 2021

1. Vorlesung

Graphen: Eine Einführung

Lehrstuhl für Informatik I

Alexander Wolff Johannes Zink

Algorithmische Graphentheorie

Sommersemester 2021

1. Vorlesung

Graphen: Eine Einführung

Alexander Wolff Johannes Zink

Lehrstuhl für Informatik I

Vorlesung per Video:

- Folien und Videos auf WueCampus
- Mittwochs, 10:30–11:30, Fragestunde zum Vorlesungsvideo per Zoom und grundsätzlich auch schriftlich per uw-Chat.
- Dozent: Prof. Alexander Wolff (Büro 01.001, Gebäude M4,
 Sprechstunde: Mi, 13:30–14:30)

Vorlesung per Video:

- Folien und Videos auf WueCampus
- Mittwochs, 10:30–11:30, Fragestunde zum Vorlesungsvideo per Zoom und grundsätzlich auch schriftlich per uw-Chat.
- Dozent: Prof. Alexander Wolff (Büro 01.001, Gebäude M4,
 Sprechstunde: Mi, 13:30–14:30)
 Alle Links dazu auf WueCampus!

Vorlesung per Video:

- Folien und Videos auf WueCampus
- Mittwochs, 10:30–11:30, Fragestunde zum Vorlesungsvideo per Zoom und grundsätzlich auch schriftlich per uw-Chat.
- Dozent: Prof. Alexander Wolff (Büro 01.001, Gebäude M4,
 Sprechstunde: Mi, 13:30–14:30)
 Alle Links dazu auf WueCampus!

(Termin bitte per Email abmachen, dann Zoom o.ä.)

Vorlesung per Video:

- Folien und Videos auf WueCampus
- Mittwochs, 10:30–11:30, Fragestunde zum Vorlesungsvideo per Zoom und grundsätzlich auch schriftlich per uw-Chat.
- Dozent: Prof. Alexander Wolff (Büro 01.001, Gebäude M4,
 Sprechstunde: Mi, 13:30–14:30)
 Alle Links dazu auf WueCampus!

(Termin bitte per Email abmachen, dann Zoom o.ä.)

Übungen:

- Organisation: Johannes Zink (Büro 01.007, Gebäude M4, per Email erreichbar)
- Tutoren: Diana Sieper, Vasil Alistarov, Tim Gerlach, Samuel Wolf
- Freitags, 8:30 (Gruppe 1), 10:15 (Gruppe 2 & 3), 12:15 (Gruppe 4)
- Erstmals schon diese Woche, 16.4.!

Übungsaufgaben:

- Bearbeitung in Gruppen von max. je zwei Teilnehmern
- Ausgabe: mittwochs via WueCampus
- Abgabe: dienstags, 12:00 Uhr, auf WueCampus (nur pdf)
 - Bitte möglichst mit LaTFX o.ä. schreiben!

Übungsaufgaben:

- Bearbeitung in Gruppen von max. je zwei Teilnehmern
- Ausgabe: mittwochs via WueCampus
- Abgabe: dienstags, 12:00 Uhr, auf WueCampus (nur pdf)
 Bitte möglichst mit LaTEX o.ä. schreiben!

Übungsmodus:

- Kein "klassischer" Übungsbetrieb mit der ganzen Übungsgruppe Ausnahme: 1. Übung am 16.4.
- 15-Min.-Slots in Übung am 16.4. mit Ihrem Übungsleiter ausmachen
- Treffen über Zoom
- Individuelle Besprechung, Fragen zum letzten Übungsblatt,
 Fragen/Diskussion/Bearbeitung des aktuellen Übungsblatts
 Machen Sie sich vorab Gedanken, was Sie besprechen wollen!
- Zusätzliche Plattform: RocketChat der Uni Würzburg (uw-Chat)

Bitte melden Sie sich sofort bei WueStudy und WueCampus an

Bitte melden Sie sich sofort bei WueStudy und WueCampus an

• Übungseinteilung erfolgt über WueStudy (Die Übungszeiten sind wichtig für die persönliche Besprechung Ihrer Kleingruppe mit dem Übungsleiter.)

Bitte melden Sie sich sofort bei WueStudy und WueCampus an

- Übungseinteilung erfolgt über WueStudy
 (Die Übungszeiten sind wichtig für die persönliche Besprechung Ihrer Kleingruppe mit dem Übungsleiter.)
- WueCampus für Kommunikation, z.B. falls eine Übungsaufgabe fehlerhaft oder missverständlich ist.
 (Zum Einschreiben klicken Sie auf das kleine Zahnrad oben links und wählen dann "Mich in diesen Kurs einschreiben".)

Bitte melden Sie sich sofort bei WueStudy und WueCampus an

- Übungseinteilung erfolgt über WueStudy
 (Die Übungszeiten sind wichtig für die persönliche Besprechung Ihrer Kleingruppe mit dem Übungsleiter.)
- WueCampus für Kommunikation, z.B. falls eine Übungsaufgabe fehlerhaft oder missverständlich ist.
 (Zum Einschreiben klicken Sie auf das kleine Zahnrad oben links und wählen dann "Mich in diesen Kurs einschreiben".)

Klausuren:

- 1. Termin: 26.07.2021, 10:00-12:00 Uhr, Z6 [Anm. bis 15.07.]
- 2. Termin: Anfang Oktober 2021

Bitte melden Sie sich sofort bei WueStudy und WueCampus an

- Übungseinteilung erfolgt über WueStudy
 (Die Übungszeiten sind wichtig für die persönliche Besprechung Ihrer Kleingruppe mit dem Übungsleiter.)
- WueCampus für Kommunikation, z.B. falls eine Übungsaufgabe fehlerhaft oder missverständlich ist.
 (Zum Einschreiben klicken Sie auf das kleine Zahnrad oben links und wählen dann "Mich in diesen Kurs einschreiben".)

Klausuren:

- 1. Termin: 26.07.2021, 10:00-12:00 Uhr, Z6 [Anm. bis 15.07.]
- 2. Termin: Anfang Oktober 2021
 - Wenn Sie sich nicht fristgerecht bei WueStudy anmelden, ist es für uns unmöglich Ihre Note zu verbuchen.

Bücher zur Vorlesung

[KN] [CLRS] [G]

G

Bücher zur Vorlesung

[KN] [CLRS]

Hauptreferenz; elektronische Kopie über die Unibib erhältlich

Wissen aus der Vorlesung Algorithmen und Datenstrukturen:

• Graphdurchlauf-Strategien

- Graphdurchlauf-Strategien
 - Breitensuche
 - Tiefensuche

- Graphdurchlauf-Strategien
 - Breitensuche
 - Tiefensuche
- Berechnung kürzester Wege

- Graphdurchlauf-Strategien
 - Breitensuche
 - Tiefensuche
- Berechnung kürzester Wege
 - Breitensuche
 - Algorithmus von Dijkstra

- Graphdurchlauf-Strategien
 - Breitensuche
 - Tiefensuche
- Berechnung kürzester Wege
 - Breitensuche
 - Algorithmus von Dijkstra
- Minimale Spannbäume

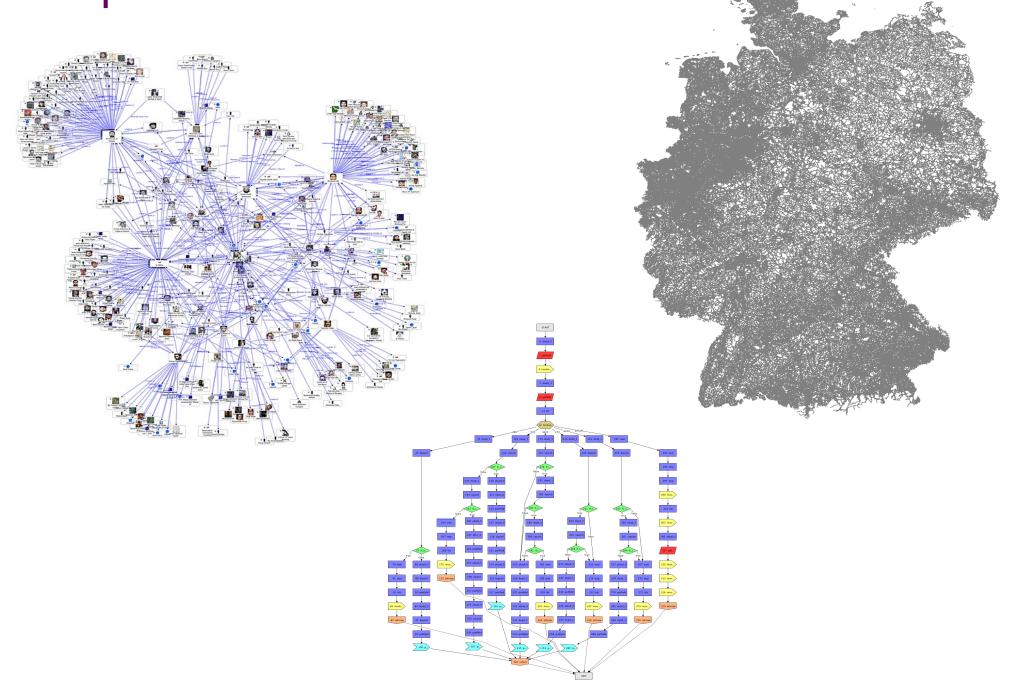
- Graphdurchlauf-Strategien
 - Breitensuche
 - Tiefensuche
- Berechnung kürzester Wege
 - Breitensuche
 - Algorithmus von Dijkstra
- Minimale Spannbäume
 - Algorithmus von Kruskal
 - Algorithmus von Jarník–Prim

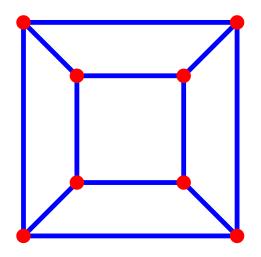
Wissen aus der Vorlesung Algorithmen und Datenstrukturen:

- Graphdurchlauf-Strategien
 - Breitensuche
 - Tiefensuche
- Berechnung kürzester Wege
 - Breitensuche
 - Algorithmus von Dijkstra
- Minimale Spannbäume
 - Algorithmus von Kruskal
 - Algorithmus von Jarník–Prim

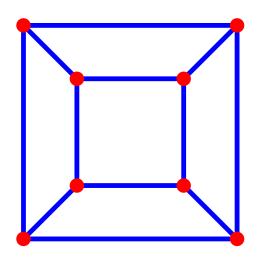
Repetitorium in der ibung der

Graphen

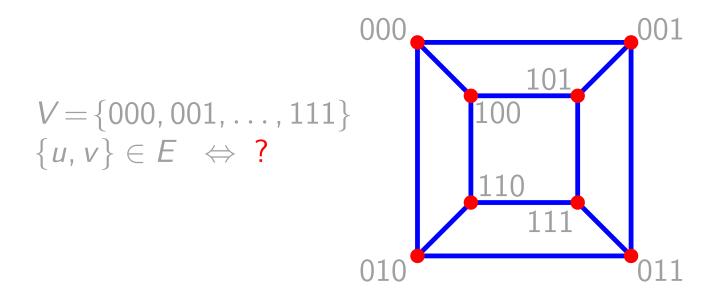




- V Knotenmenge und
- $-E \subseteq \binom{V}{2} = \{\{u, v\} \subseteq V \mid u \neq v\}$ Kantenmenge.



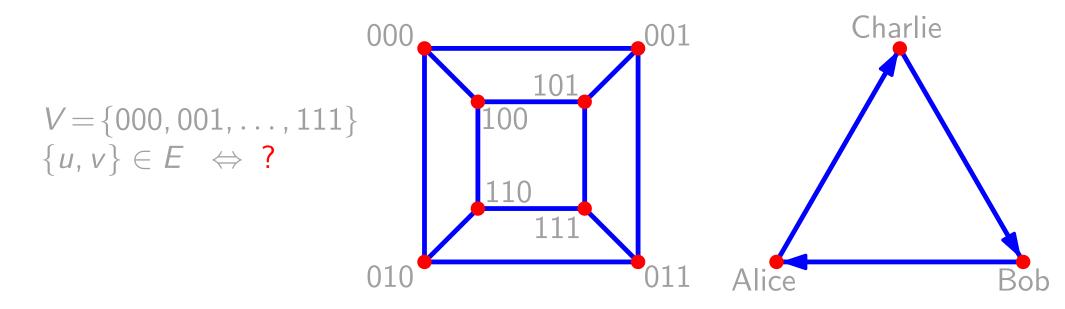
- V Knotenmenge und
- $-E \subseteq \binom{V}{2} = \{\{u, v\} \subseteq V \mid u \neq v\}$ Kantenmenge.



 A_1 : Ein (ungerichteter) Graph ist ein Tupel (V, E), wobei

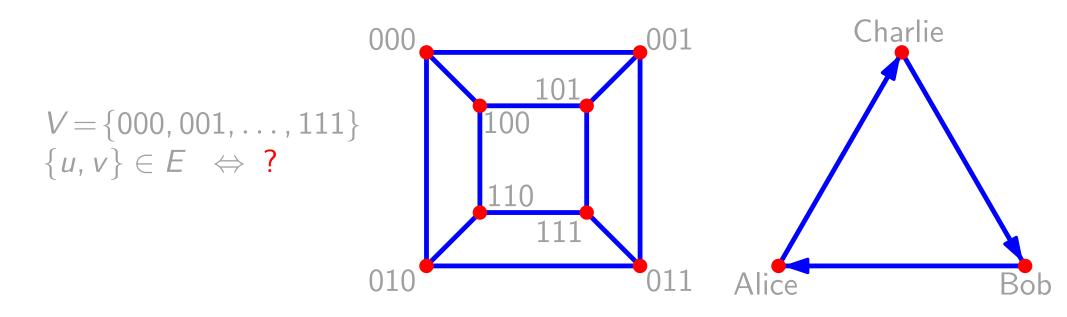
V Knotenmenge und

$$-E\subseteq \binom{V}{2}=\left\{\{u,v\}\subseteq V\mid u\neq v\right\}$$
 Kantenmenge.

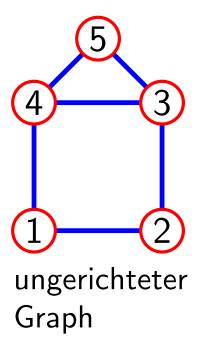


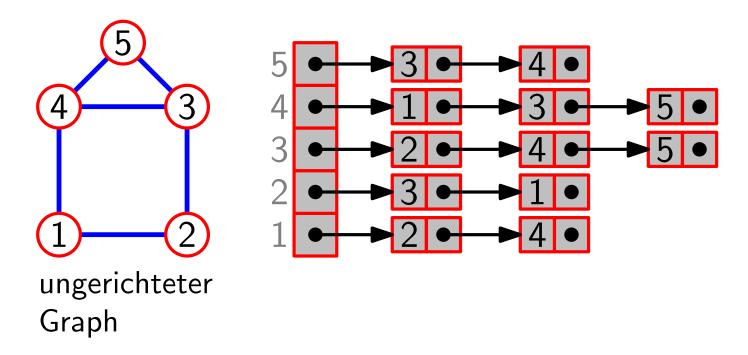
 A_1 : Ein (ungerichteter) Graph ist ein Tupel (V, E), wobei

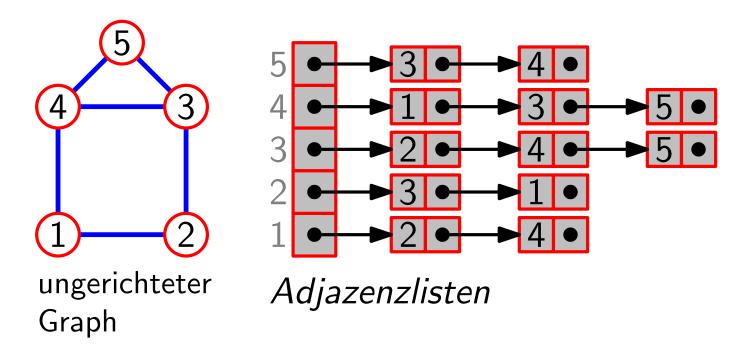
- V Knotenmenge und
- $-E \subseteq \binom{V}{2} = \{\{u, v\} \subseteq V \mid u \neq v\}$ Kantenmenge.



- V Knotenmenge und
- $-E \subseteq V \times V = \{(u, v) \in V^2 \mid u \neq v\}$ Kantenmenge.



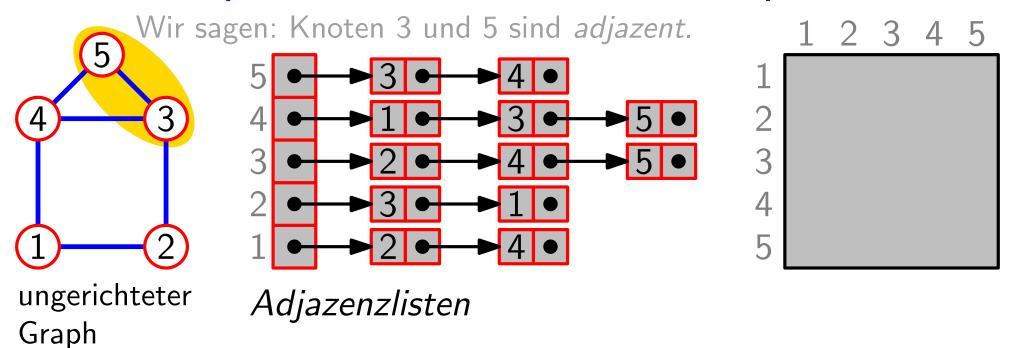


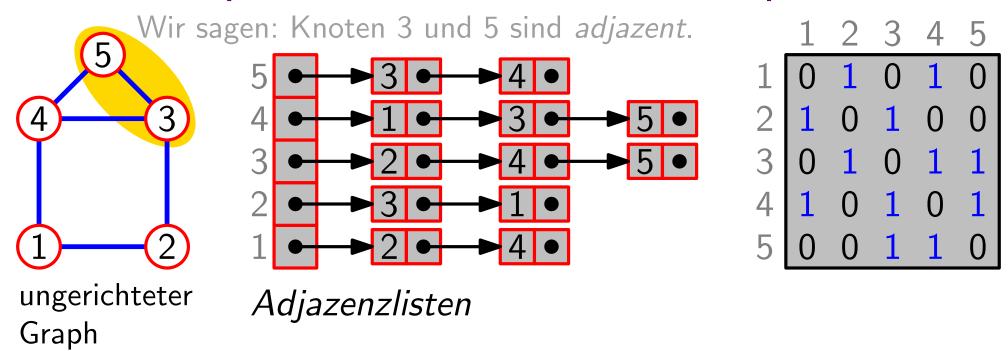


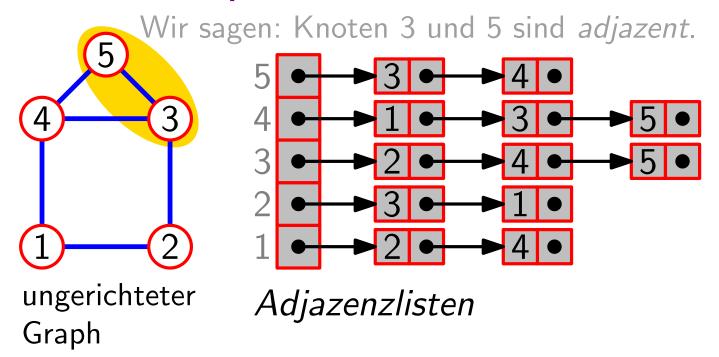
Wir sagen: Knoten 3 und 5 sind adjazent. 5 4 4 4 5 4 5 4 5 5 4 5 5 7

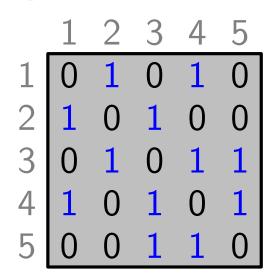
ungerichteter Graph

Adjazenzlisten

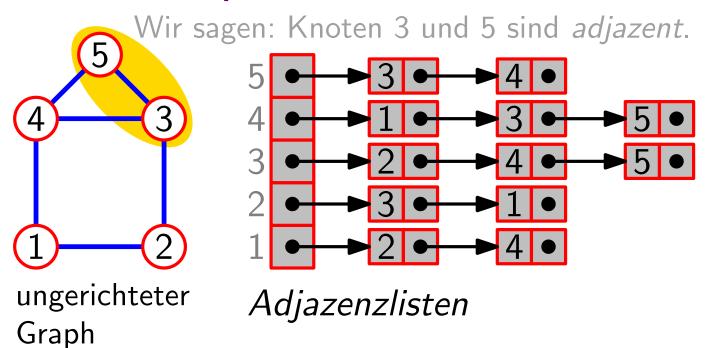


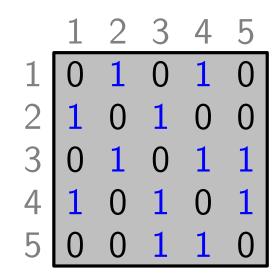






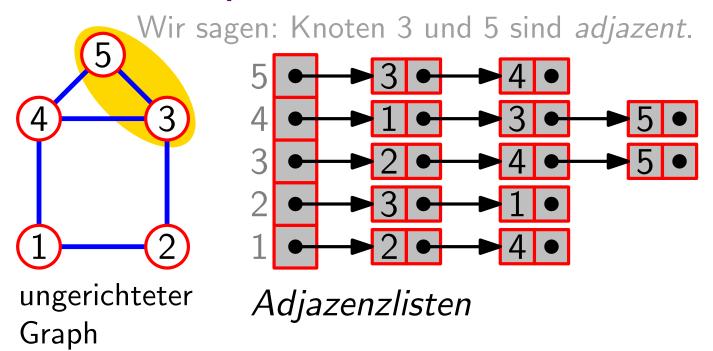
Adjazenzmatrix

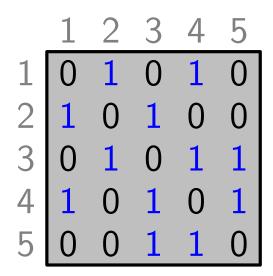




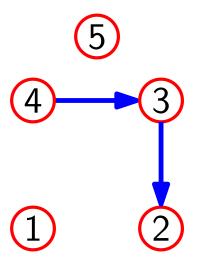
Adjazenzmatrix

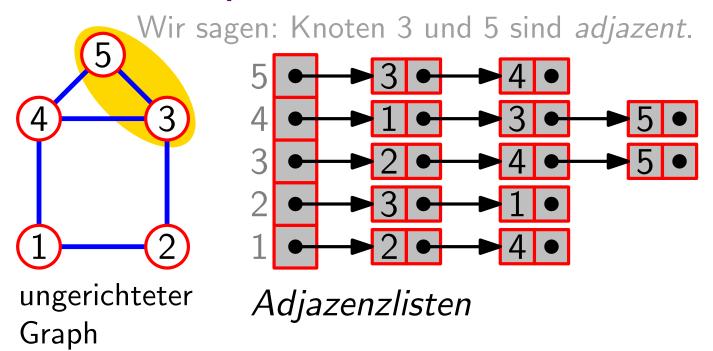
```
(5)
(4) (3)
```

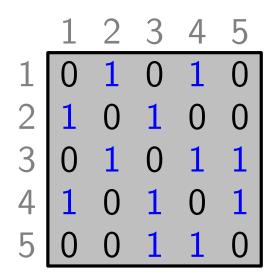





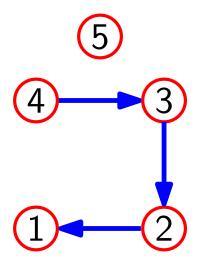
Adjazenzmatrix

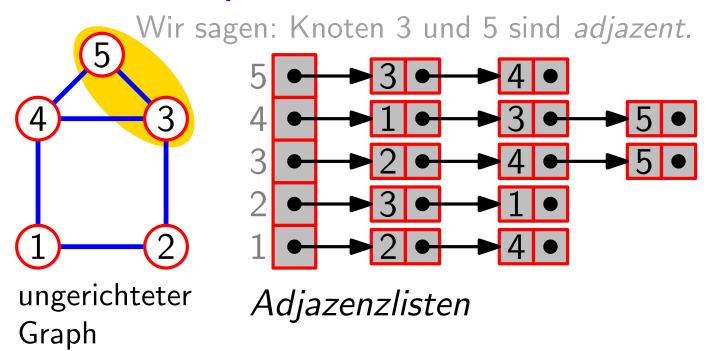


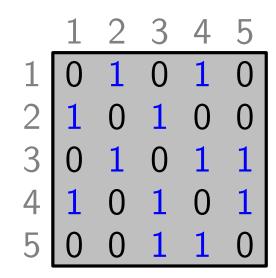




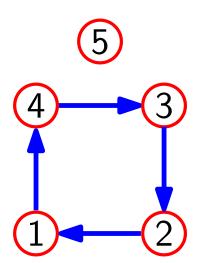
Adjazenzmatrix

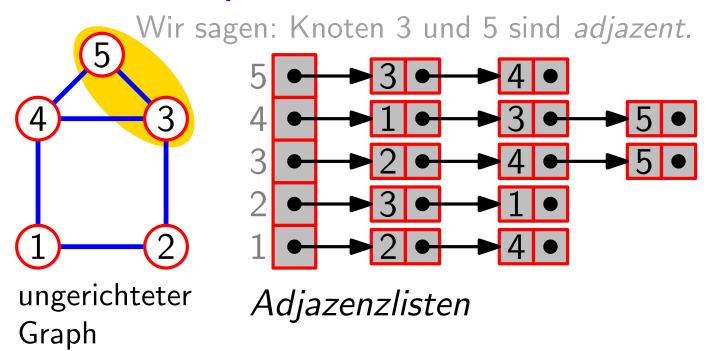


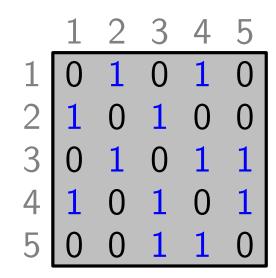




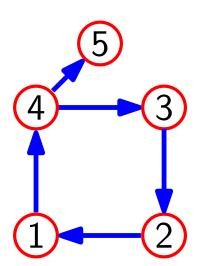
Adjazenzmatrix

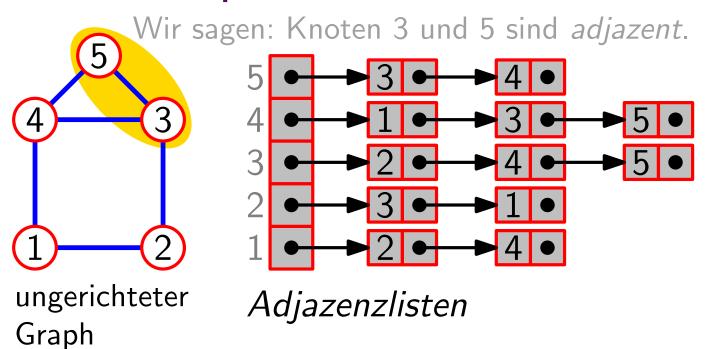


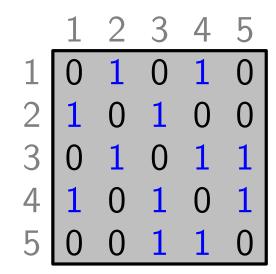




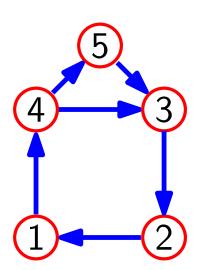
Adjazenzmatrix

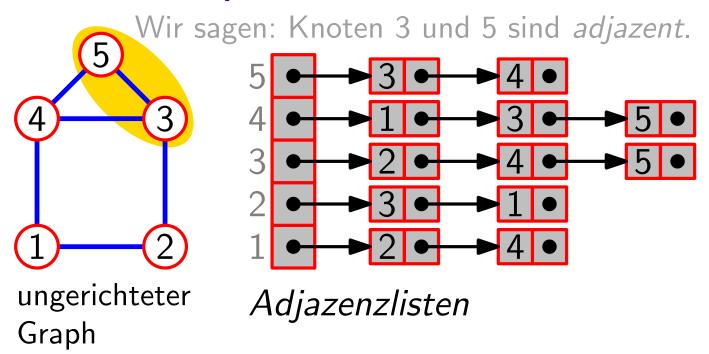


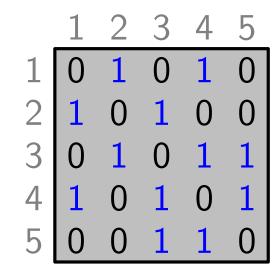




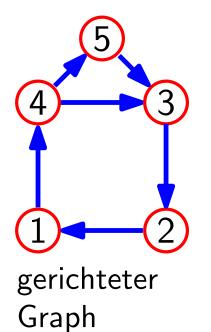
Adjazenzmatrix

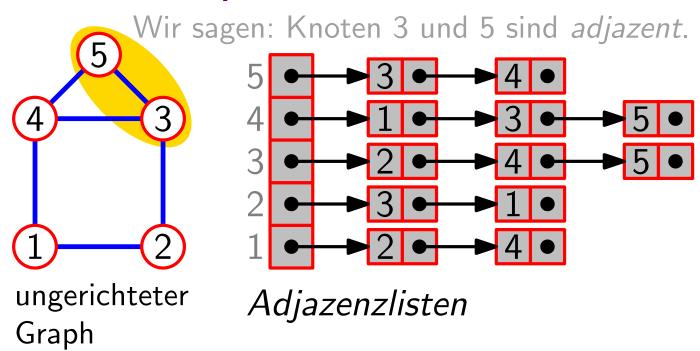


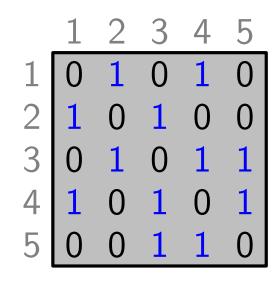




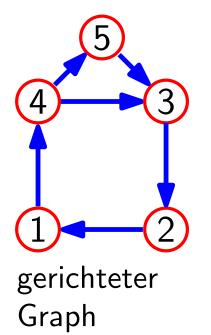
Adjazenzmatrix



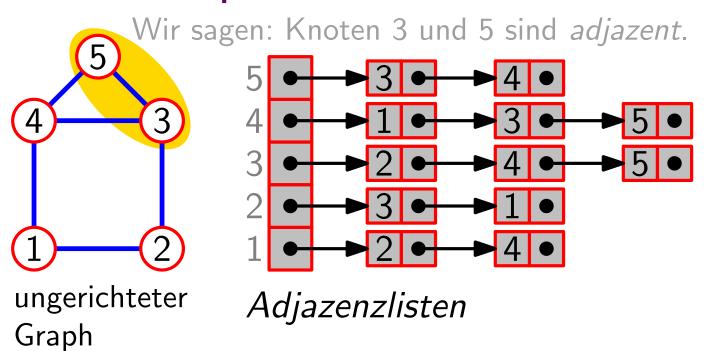


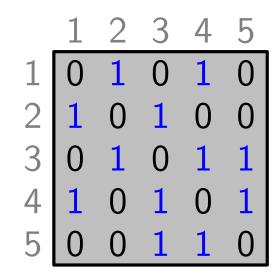


Adjazenzmatrix

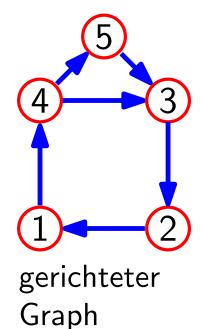


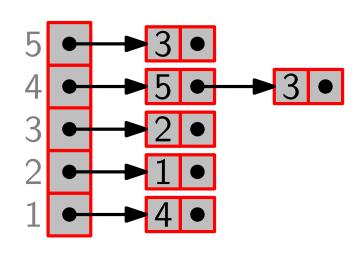
$$Adj[i] = \{j \in V \mid (i,j) \in E\}$$



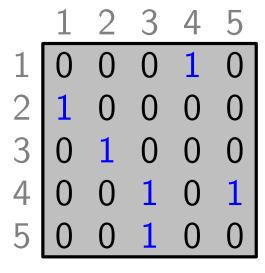


Adjazenzmatrix

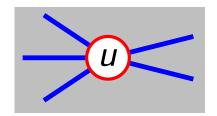


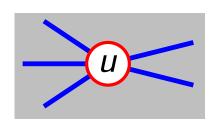


$$Adj[i] = \{ j \in V \mid (i, j) \in E \}$$

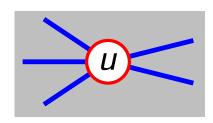


$$a_{ij}=1\Leftrightarrow (i,j)\in E$$

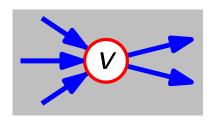


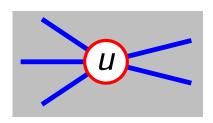


$$deg(u) = |Adj[u]|$$

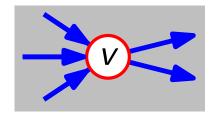


$$deg(u) = |Adj[u]|$$

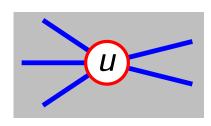




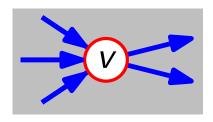
$$deg(u) = |Adj[u]|$$



$$\operatorname{outdeg}(v) = |\operatorname{Adj}[v]|$$

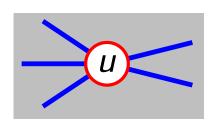


$$deg(u) = |Adj[u]|$$

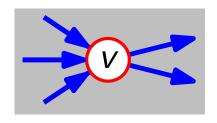


$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Def.



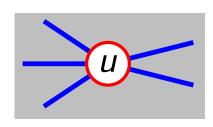
$$deg(u) = |Adj[u]|$$



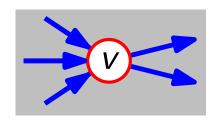
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade =

Def.



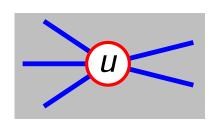
$$deg(u) = |Adj[u]|$$



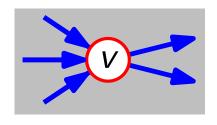
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Def.



$$deg(u) = |Adj[u]|$$

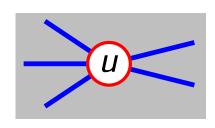


$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

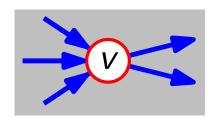
Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Beweis. Technik des zweifachen Abzählens:

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$



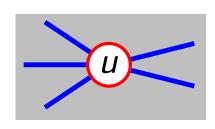
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

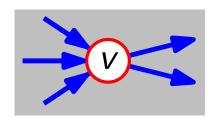
Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$



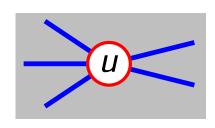
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

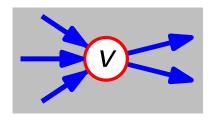
Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Def.



$$deg(u) = |Adj[u]|$$



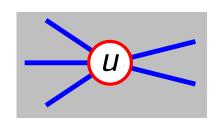
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

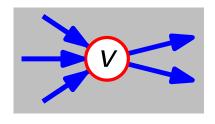
Beweis. Technik des zweifachen Abzählens: Zähle alle Knoten-Kanten-Inzidenzen.

Eine Kante ist *inzident* zu ihren Endknoten.

Def.



$$deg(u) = |Adj[u]|$$



$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

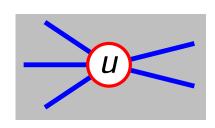
Sei G = (V, E) ein ungerichteter Graph. Beob. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Technik des zweifachen Abzählens: Beweis. Zähle alle Knoten-Kanten-Inzidenzen, Ein Knoten ist inzident

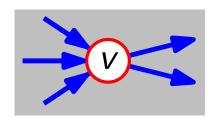
Eine Kante ist inzident zu ihren Endknoten.

zu allen Kanten, deren Endknoten er ist.

Def.



$$deg(u) = |Adj[u]|$$



$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

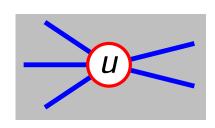
Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

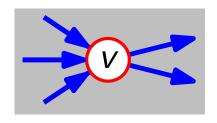
Aus Sicht der Knoten:

Aus Sicht der Kanten:

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$



$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

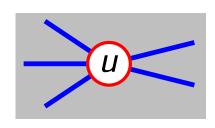
Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

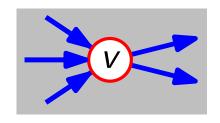
Aus Sicht der Knoten: $\sum_{v \in V} \deg v$

Aus Sicht der Kanten:

Def.



$$deg(u) = |Adj[u]|$$



$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

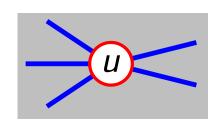
Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

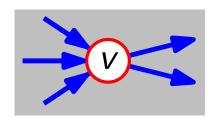
Aus Sicht der Knoten: $\sum_{v \in V} \deg v$

Aus Sicht der Kanten: $\sum_{e \in E} 2$

Def.



$$deg(u) = |Adj[u]|$$



$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

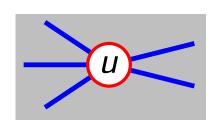
Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

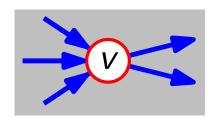
Aus Sicht der Knoten: $\sum_{v \in V} \deg v$

Aus Sicht der Kanten: $\sum_{e \in E} 2 = 2 \cdot |E|$

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$



$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Sei G = (V, E) ein ungerichteter Graph. Beob. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

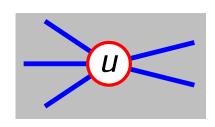
Technik des zweifachen Abzählens: Beweis.

Zähle alle Knoten-Kanten-Inzidenzen.

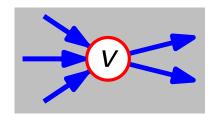
Aus Sicht der Knoten: $\sum_{v \in V} \deg v$

Aus Sicht der Kanten: $\sum_{e \in E} 2 = 2 \cdot |E|$

Def.



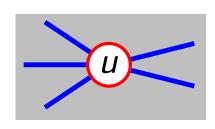
$$\deg(u) = |\mathsf{Adj}[u]|$$



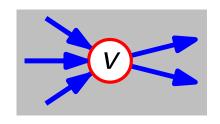
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Def.



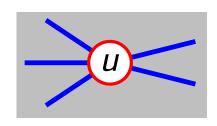
$$deg(u) = |Adj[u]|$$



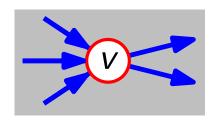
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$



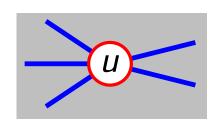
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

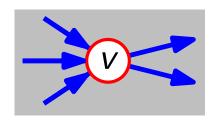
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. $2 \cdot |E| = \sum_{v \in V} \deg v$

Def.



$$deg(u) = |Adj[u]|$$



outdeg
$$(v) = |Adj[v]|$$

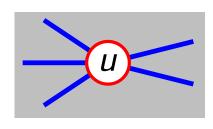
indeg $(v) = |\{u \in V : (u, v) \in E\}|$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

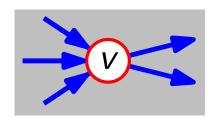
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. $2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$

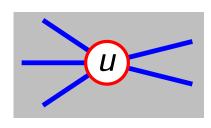


$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

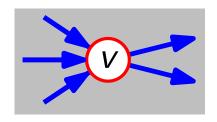
Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Beweis.
$$2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$$
 gerade!

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$

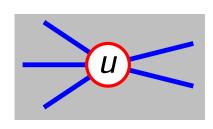


$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

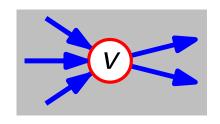
Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Beweis.
$$2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$$
 gerade! gerade!

Def.



$$deg(u) = |Adj[u]|$$

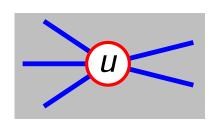


$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

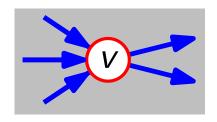
Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Beweis.
$$2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$$
gerade! gerade! gerade!

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$

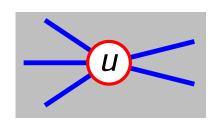


$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

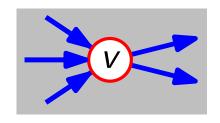
Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Beweis.
$$2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$$
gerade! gerade! gerade! gerade!

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$

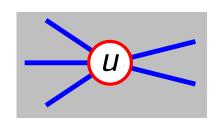


$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

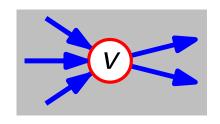
Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Beweis.
$$2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$$
gerade! gerade! gerade! \Rightarrow gerade! \Rightarrow gerade!

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$



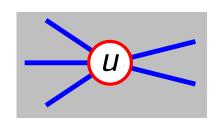
$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

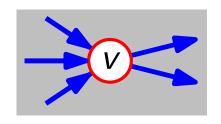
Beweis.
$$2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$$
 $gerade! \quad gerade! \quad gerade! \quad \Rightarrow gerade!$

$$\sum_{v \in V_{ung}} \deg v \quad gerade \Rightarrow$$

Def.



$$\deg(u) = |\mathsf{Adj}[u]|$$



$$outdeg(v) = |Adj[v]|$$
$$indeg(v) = |\{u \in V : (u, v) \in E\}|$$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Beweis.
$$2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$$
 $gerade! \quad gerade! \quad gerade! \quad \Rightarrow gerade!$

$$\sum_{v \in V_{ung}} \deg v \quad gerade \Rightarrow |V_{ung}| \text{ ist } gerade! \quad \Box$$