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Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K):= > ..k cle).

Beispiel. C = dEuk,

Problem.

e [SP ist NP-schwer

e und schwer zu /o o
approximieren. -



Etwas Geschichte

Der Handlungsreisende — wie er
sein soll und was er zu thun hat,
um Auftrage zu erhalten und eines
gliicklichen Erfolgs in seinen
Geschaften gewiss zu sein.

Von einem alten Commis-Voyageur
[1832]

Rekord I:
optimale 120-Stadte-Tour
|Groetschel, 1977]

Rekord Il:

optimale 15.112-Stadte-Tour
[Applegate, Bixby, Chvatal, Cook
2001]




Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.i die die Dreiecksungleichung erfiillen,
%
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen” ein.



Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.
2. Analyse
c(ALG) < c(Kreis) = 2-¢(MSB) < 2-0OPT

Dreiecksungleichung Optimale TSP-Tour minus eine Kante ist
(i.A. nicht minimaler) Spannbaum!!

Die ,,Kunst" der unteren Schranke: c(min. Spannbaum) < ¢(TSP-Tour)



Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

Speicher:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 777

Ang. 777 = O(n), dann ist die Laufzeit O(n!).

O(n) fiir: bisher beste, aktuelle & nachste Permutation.



Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:
/

(1,4,3,6,5,2) —» (1,4,8,6,3,2) —» (1,4,5,2,3,6)
I I/ n I n

e Vertausche o(/) und o(j).

e Kehre die Teilfolge (o(i +1),0(i +2),...,0(n)) um.



Wie groB3 i1st n! 7

nf2-n/2-...-nf2 < n=1-2-...-.n< n-n-...-
n/;mal

— 2n/2 log, n/?2 < pl<np"= (2Iog2 n)n — onlog, n

- !l € 26(nlog )

Genauer: Stirlingformel

Fiir n — oo gilt oo
nl ~ \2mn (—) .

Noch genauer:

A (2) < < eva(2)’
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Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!
Dann gilt fir W = {v;}, i > 1.
TIW,vi] = ¢(wv1, V)

Und fir W mit [W|>2, v € Wi | e

Letzter Knoten vor Vi

TIW, vi] = mindewnpvy TIWA (v} ] + c(vj, v)

= OPT = min THw, va, ..., bove] + (v,
ink21 T[{v2, v3 Vot V] + c(vk, v1)

Index des letzten Knotens vor Vi
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Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]:  O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt's? <2""1.p
= Gesamtlaufzeit € O(n*-2") Speicher: O(n-2")
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Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2m)”*

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.
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*) Wie ware es, wenn wir im DP
nicht ganz T[-, | speichern?

Fiir T[W, -] brauchen wir nur alle
TIW', -] mit |\W'| = |W|-1.

Welches j maximiert (7)7 j=13.

Wie groB ist (n%)? In ©(2"/+/n). Richard M. Karp Richard E. Bellman
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